• Aucun résultat trouvé

THERMAL STABILITY OF SUPERCONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "THERMAL STABILITY OF SUPERCONDUCTORS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00223571

https://hal.archives-ouvertes.fr/jpa-00223571

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMAL STABILITY OF SUPERCONDUCTORS

C. Meuris

To cite this version:

C. Meuris. THERMAL STABILITY OF SUPERCONDUCTORS. Journal de Physique Colloques,

1984, 45 (C1), pp.C1-503-C1-510. �10.1051/jphyscol:19841103�. �jpa-00223571�

(2)

Colloque C I , supplement au no 1, Tome 45, janvier 1984 page C1-503

THERMAL S T A B I L I T Y OF SUPERCONDUCTORS

C. Meuris

C E A / S a c Z a y , L ) P ~ / P E - S T . ~ P E , 9 1 1 9 1 M f - s h r - Y v e t t e C e d e x , F r a n c e

Resume

-

Nous analysons l e s p r i n c i p a u x r 6 s u l t a t s experimentaux obtenus s u r diff@rentes c o n f i g u r a t i o n s , l i e e s

a

l a t e c h n o l o g i e a c t u e l l e des a i m a n t s supra-

conducteurs, en c e q u i concerne l e u r s t a b i l i t e .

A b s t r a c t

-

The l i m i t s o f a p p l i c a t i o n o f t h e commonly a p p l i e d s t a b i l i t y c r i t e r i a a r e discussed. Some p a r t i c u l a r c o n f i g u r a t i o n s connected t o t h e p r e s e n t t e c h n o l o g y o f s u p e r c o n d u c t i n g o i l s have been s t u d i e d e x p e r i m e n t a l l y . We a n a l y s e t h e p r i n c i p a l r e s u l t s o b t a i n e d .

I

-

INTRODUCTION

When a superconducting magnet i s quoted t o be " s t a b l e " , t h i s a l m o s t c e r t a i n l y means t h a t no-matter-what mechanical, thermal o r e l e c t r i c a l p e r t u r b a t i o n induces a t r a n s i t i o n f r o m t h e superconducting s t a t e t o t h e normal s t a t e , t h e s u r r o u n d i n g medium i s capable o f e x t r a c t i n g t h i s sudden q u a n t i t y o f energy t o g e t h e r w i t h t h e subsequent e n e r g y generated b y J o u l e e f f e c t , t h e magnet then b e i n g b r o u g h t back t o i t s o r i g i n a l s t a t e . However, t h e d i v e r s i t y o f cryomagnetic systems makes i t d i f f i c u l t t o develop a g e n e r a l model o f t h e s t a b i l i t y o f t h e o p e r a t i n g mode.

A f t e r a s h o r t o u t l i n e o f t h e c l a s s i c a l s t a b i l i t y c r i t e r i a , some s p e c i a l sys- tems f o r which these c r i t e r i a a r e n o t a p p l i c a b l e a r e presented. A few i m p o r t a n t p o i n t s a r e examined, some o f which a r e g e n e r a l , such as t h e MPZ concept and c r i t i c a l energy, and some o f which a r e more s p e c i f i c t o c e r t a i n c o i 1 and c o n d u c t o r c o n f i g u r a t i o n s c u r r e n t l y employed e.g. " t r a n s i e n t " s t a b i l i t y and s t a b l e normal zones.

I n t h e l i g h t o f a l l t h e s o l v e d problems, f u r t h e r work which can be madeissuggested.

I 1

-

OPERATIONAL CONDITIONS SOUGHT. LIMITS OF APPLICATION OF GENERALLY ACCEPTED STABILITY CRITERIA

1

.

S t a b i l i t y o f an e q u i l i b r i u m p o s i t i o n o f a system

...

I t i s u s e f u l t o c o n s i d e r t h e problem o f t h e thermal s t a b i l i t y o f a super- c o n d u c t o r i n t h e general framework o f t h e s t a b i l i t y o f a system so as t o be a b l e t o d e f i n e an a p p r o p r i a t e language ( 1 , 2 ) . The s t a t e o f a superconductor i s c h a r a c t e - r i z e d b y i t s temperature d i s t r i b u t i o n T. A s t a t e o f e q u i l i b r i u m To i s a s t a t i o n a r y s o l u t i o n o f t h e h e a t e q u a t i o n w i t h boundary c o n d i t i o n s . A r e a l system i s exposed t o p e r t u r b a t i o n s , and t h e q u e s t i o n o f t h e s t a b i l i t y o f t h e e q u i l i b r i u m s t a t e t h u s a r i s e s : i f i t i s assumed t h a t t h e system i s i n an i n i t i a l s t a t e Ti

,

s u f f i c i e n t l y c l o s e t o To, o r t h a t i t i s s u b j e c t e d t o t h e a c t i o n o f a small p e r t u r b a t i o n , t h e problem i s t o know whether t h e system w i l l r e t u r n t o

To.

If t h i s i s t h e case, t h e To s t a t e i s ( a s y m p t o t i c a l l y ) s t a b l e o r a t t r a c t i v e . An e v i d e n t a t t r a c t o r i s t h e u n i f o r m temperature d i s t r i b u t i o n T

=

T

,

t h e b a t h temperature.

2

. ~ttractlye_reglon-of-~-?ta!!1e-?tkte

I t i s p o s s i b l e t o have a s t a b l e system which does n o t behave c o r r e c t l y when p e r t u r b a t i o n s exceed a c e r t a i n magnitude. The system may t h e r e f o r e be u n s t a b l e i n p r a c t i c e . The q u e s t i o n o f t h e s i z e o f t h e r e g i o n o f a t t r a c t i o n o r t h e r e g i o n o f s t a b i l i t y o f t h e a t t r a c t o r t h u s a r i s e s . I f t h e superconducting s t a t e i s t h e o n l y a t t r a c t o r , g l o b a l s t a b i l i t y o c c u r s ; f o r a l l p e r t u r b a t i o n s , t h e c o n d u c t o r w i l l r e t u r n spontaneously t o t h e s u p e r c o n d u c t i n g s t a t e . I f t h e r e i s a n o t h e r a t t r a c t o r however, s t a b i l i t y i s l i m i t e d ; i t i s t h u s u s e f u l

to

know what p e r t u r b a t i o n s c o n s t i t u t e t h e boundary o f t h e a t t r a c t i v e r e g i o n o f t b e s u p e r c o n d u c t i n g s t a t e ;.such p e r t u r b a t i o n s a r e d e s i g n a t e d " c r i t i c a l p e r t u r b a t i o n s

.

When t h e p e r t u r b a t i o n 1 ~ e s i n s l d e t h e Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841103

(3)

C1-504 JOURNAL DE PHYSIQUE

a t t r a c t i v e r e g i o n o f t h e s u p e r c o n d u c t i n g s t a t e , t h e c o n d u c t o r i s s t a b l e ; t h e normal zone i s absorbed. Otherwise, t h e temperature d i s t r i b u t i o n tends towards t h e o t h e r a t t r a c t o r ; t h e c o n d u c t o r i s u n s t a b l e ; t h e normal zone propagates u n t i l t h e second s t a b l e p r o f i l e i s e s t a b l i s h e d .

I n o r d e r t o e x a c t l y i d e n t i f y t h e s t a b i l i t y r e g i o n and t o p r e d i c t t h e t r a n s i e n t response o f t h e conductor, i t i s necessary t o use n u m e r i c a l models.However, appro- x i m a t e a n a l y t i c a l s o l u t i o n s a r e u s e f u l t o a c q u i r e an u n s d e r s t a n d i n g o f t h e

c o n d u c t o r ' b e h a v i o r , t o a p p r e c i a t e t h e e f f e c t o f v a r i o u s p h y s i c a l parameters and geometries on s t a b i l i t y and t o compare d i f f e r e n t conductors.

3

.

Staymt~-~rctf

TI"

Several q u a n t i t a t i v e e x p r e s s i o n s f o r t h e s t a b i l i t y o f a superconductor c o o l e d b y a h e l i u m b a t h have been f o r m u l a t e d f r o m t h e b a s i c i d e a s developed b y Z.J.J. S t e k l y and J.L. Zar ( 3 ) and f r o m t h e equal areas theorem o f B.J. Maddock and a l . ( 4 ) . The l a t t e r a u t h o r s p r e s e n t a model e n a b l i n g a s t a b i l i t y c r i t e r i o n , which t a k e s c o n d u c t i o n a l o n g t h e c o n d u c t o r I n t o account, t o be d e f i n e d g r a p h i c a l l y . It i s a p p l i c a b l e when t h e power t r a n s f e r r e d t o t h e o u t s i d e and d i s s i p a t e d i n t h e c o n d u c t o r depends e x p l i c i t l y o n l y on t h e temperature o f t h e c o n d u c t o r . Furthermore, t h e c o n d u c t o r i s t r e a t e d as a one-dimensional i n f i n i t e l y l o n g w i r e .

The c r i t e r i o n d e f i n e s t h e c o l d end r e c o v e r y c u r r e n t Ir and a s s u r e s g l o b a l c o n d u c t o r s t a b i l i t y f o r a l l c u r r e n t s l e s s t h e n Ir. F o r c u r r e n t s i n excess o f Ir, t h e c o n d u c t o r can, i n f a c t , r e t u r n t o t h e s u p e r c o n d u c t i n g s t a t e p r o v i d e d t h a t t h e p e r t u r b a t i o n has a f i n i t e a m p l i t u d e . Conductor s t a b i l i t y i s l i m i t e d . M. N. Wilson and Y . Iwasa extended t h e equal areas theorem t o t h e normal f i n i t e zones case ( 5 ) . F o r a l l c u r r e n t s i n excess o f Ir, a s t a t i o n a r y temperature p r o f i l e e x i s t s f o r which t h e J o u l e power i s i n e q u i l i b r i u m w i t h t h e power e x t r a c t e d b y c o n d u c t i o n and b y t h e e x t e r n a l environment. T h i s s t a t i o n a r y s o l u t i o n i s d e s i g n a t e d "minimum p r o p o g a t i n g zone" (MPZ) ( 6 ) . As w i l l be seen l a t e r , t h e u n s t a b l e s t a t i o n a r y s t a t e MPZ g i v e s i n f o r m a t i o n about t h e a t t r a c t i v e r e g i o n of t h e s t a b l e s t a t i o n a r y s u p e r c o n d u c t i n g s t a t e .

The h y p o t h e s i s o f a c o n d u c t o r , which i s s e m i - i n f i n i t e i n t h e d i r e c t i p o f i t s a x i s , l e a d s t o two c o n d i t i o n s b e i n g imposed a t t h e i n f i n i t y l i m i t : T (x-,

-

) = T and aT/ a x = 0. These two c o n d i t i o n s e l i m i n a t e t h e s t a t i o n a r y s o l u t i o n f o r which a l m o s t t h e e n t i r e c o n d u c t o r 1 s i n t h e normal s t a t e . I t i s , i n f a c t , i n t u i t i v e l y c l e a r t h a t i f T 5 T i s s t a b l e and MPZ u n s t a b l e , t h e n a n o t h e r s t a b l e s o l u t i o n e x i s t s , o t h e r w i s e t k e c o n d u c t o r whould be g l o b a l l y s t a b l e i n a l l cases : a l l s o l u - t i o n s c o u l d o n l y converge t o t h e s t a b l e s u p e r c o n d u c t i n g s t a t e . T h i s o t h q r s t a b l e s o l u t i o n can be c a l c u l a t e d b y imposing a f i n i t e boundary and t h e T ( x =

-

L ) = Tb c o n d i t i o n .

I f t h e c o n d u c t o r e x h i b i t s t i m e dependent h e a t exchange c h a r a c t e r i s t i c s w i t h t h e o u t s i d e environment, t h e p r e v i o u s l y d e s c r i b e d c r i t e r i a a r e n o t a p p l i c a b l e . F o r example, f o r i n t e r n a l l y c o o l e d cables, t h e s t a b i l ~ t v concept i s d i f f e r e n t t o t h a t a p p l i c a b l e t o c o i l s c o o l e d b y h e l i u m channels a c t i n g as a c o l d source.

A s t a t i o n a r y s t a t e does n o t , i n g e n e r a l , e x i s t f o r h e a t exchange. The k i n e t i c s o f t h e h e a t exchange between t h e c o n d u c t o r and c o o l a n t and t h e e n t h a l p y a v a i l a b l e i n t h e l i m i t e d volume o f h e l i u m a d j a c e n t t o t h e c o n d u c t o r a r e o f p r i m e importance f o r s t a b i 1 i t y ( s e e paragraph V ) .

Another c o n f i g u r a t i o n f o r which t h e h y p o t h e s i s o f t h e equal areas c r i t e r i o n a r e n o t v e r i f i e d i s t h e one i n which heat t r a n s f e r c h a r a c t e r i s t i c s a r e e x p l i c i t l y dependent on t h e x c o o r d i n a t e . T h i s case i s encountered, i n p a r t i c u l a r , w i t h magnets c o o l e d b y channels i n s i d e t h e w i n d i n g . The i n s u l a t i n g spacers d e f i n i n g t h e channel geometry r e s u l t i n a heterogeneous c o o l a n t d i s t r i b u t i o n a l o n g t h e c o n d u c t o r . Experimental and t h e o r e t i c a l s t u d i e s i n d i c a t e t h e e x i s t e n c e o f a r a t h e r unusual b e h a v i o r o f t h e superconductor (see paragraph I V ) .

F i n a l l y , a t t e n t i o n must be drawn t o t h e case o f compact magnets, c o o l e d by c o n d u c t i o n f r o m t u r n t o t u r n , which i s n o t s t u d i e d i n d e t a i l here. The minimum energy o f t h e l o c a l p e r t u r b a t i o n necessary t o quench an impregnated s u p e r c o n d u c t i n g c o i l i s t h e o r e t i c a l l y determined f r o m t h e t h r e e - d i m e n s i o n a l minimum p r o p a g a t i n g zone concept ( 7 ) . A h e a t c o n d u c t i o n model i s developed by c o n s i d e r i n g t h e c o i l t o be a c o n t i n u o u s a n i s o t r o p i c medium w i t h l o n g i t u d i n a l and t r a n s v e r s e thermal conduc-

(4)

s i z e i s g r e a t e r t h a n t h a t o f t h e c o n d u c t o r .

111

-

ATTRACTIVE REGION OF THE SUPERCONDUCTING STATE. ENERGY OF CRITICAL PERTURBATIONS

P e r t u r b a t i o n s can be c h a r a c t e r i z e d i n d i f f e r e n t ways. They may o r i g i n a t e e i t h e r o u t s i d e o r i n s i d e t h e superconductor. Furthermore, t h e y may o r may n o t be r e p e t i t i v e . T h e i r importance can, however, be deduced f r o m t h e h e a t which t h e y d e v e l o p i n a c o n d u c t o r . P e r t u r b a t i o n s can t h u s be c h a r a c t e r i z e d b y t h r e e parameters s p a t i a l d i s t r i b u t i o n , d u r a t i o n and energy o r power amp1 i t u d e s .

The g e n e r a l l y accepted h y p o t h e s i s i s t h a t an i n s t a n t a n e o u s p e r t u r b a t i o n , d e s c r i b e d b y a l o c a l i z e d e x t e r n a l i n p u t o f h e a t E,, l e a d s t o a p r o p a g a t i o n o f t h e normal zone i f E, exceeds t h e e n t h a l p y o f t h e MPZ d e f i n e d b y :

j x + - m / T b

where A i s t h e c r o s s s e c t i o n o f t h e c o n d u c t o r and C i t s volumic h e a t . I f t h e energy, E,, i s l e s s than EMpZ, c o n d u c t o r r e c o v e r y i s assured. EMpZ i s t h e r e f o r e t h e c r i t i c a l energy o f t h e c o n d u c t o r .

In

p r a c t i c e , t h e temperature d i s t r i b u t i o n o f t h e c o n d u c t o r tends t o e v o l v e i n a p r e d i c t a b l e way o n l y when i t i s s u b j e c t e d t o an i n i t i a l temperature d i s t r i b u t i o n capable o f b e i n g compared t o t h e MPZ p r o f i l e ( 8 ) . A c o n d u c t o r exposed t o a p e r t u r b a t i o n r e s u l t i n g i n a temperature p r o f i l e l e s s t h a n t h e MPZ r e t u r n s t o t h e s u p e r c o n d u c t i n g s t a t e . I f t h e i n i t i a l t e m p e r a t u r e p r o f i l e i s g r e a t e r t h a n t h e MPZ, t h e normal zone converges t o a n o t h e r s t a b l e non supercon- d u c t i n g s t a t e .

A n u m e r i c a l s i m u l a t i o n o f t h e temperature d s i t r i b u t i o n e v o l u t i o n a l o n g a composite superconductor, based on t h e h e a t e q u a t i o n , e n a b l e s t h e e f f e c t s of s p a t i a l and temporal d i s t r i b u t i o n s on c r i t i c a l energy t o be i n v e s t i g a t e d . F i g u r e 1 r e p r e - s e n t s t h e c r i t i c a l energy f o r a g i v e n c o n d u c t o r ( 8 ) as a f u n c t i o n o f t h e h a l f - l e n g t h upon which energy i s d e p o s i t e d i n s t a n t a n e o u s l y and homogeneously. F o r l a r g e l e n g t h s ( g r e a t e r t h a n 10 cm i n o u r case) t h e c h a r a c t e r i s t i c parameter i s no l o n g e r t o t a l energy, b u t energy p e r u n i t l e n g t h o f conductor. The s e m i - l e n g t h s c o n s i d e r e d s h o u l d be compared w i t h t h e c h a r a c t e r i s t i c thermal l e n g t h X = 2 cm and t h e MPZ s e m i - l e n g t h : xMpZ = 3.5 cm. F i g u r e 2 i l l u s t r a t e s t h e b e h a v i o r o f a c o n d u c t o r

exposed t o h e a t p u l s e s o f t h e same energy b u t o f d i f -

12 . T,=L 2K 1 = 5 0 0 ~ 0.51 f e r e n t d u r a t i o n s as w e l l as t h e v a r i a t i o n s i n t h e c r i t i c a l energy w i t h

11 - -

d u r a t i o n . For l o n g t i m e i n t e r v a l s ( i n o u r case

. t > 30 ms), t h e charac- t e r i s t i c parameter i s power. The e n e r g y o f t h e c r i t i c a l p e r t u r b a t i o n i s p r a c t i c a l l y c o n s t a n t f o r p u l s e d u r a t i o n t i m e s i n - t h e 0 t o 1 ms i n t e r v a l .

-

& -

#- U

7 .

6

5

j 1 k b

lo c a t e d b y a more general

Half-lenght of conductor subjected t o the d~sturbance X, lcml a n a l y s i s o f t h e dependence o f c r i t i c a l energy on F i g . 1 - C r i t i c a l e n e r g y v e r s u s t h e l e n g t h c u r r e n t , c o o l i n g c o n d i t i o n s

o f t h e temperature d i s t u r b a n c e and t h e n a t u r e o f t h e p e r t u r b a t i o n s ( 9 ) . .

-

These d u r a t i o n s should be compared w i t h t h e thermal r e l a x a t i o n t i m e o f t h e c o n d u c t o r

2 / Dth = CA/hp= 2.5 ms- S i m i l a r t r e n d s a r e i n d i -

(5)

C1-506 JOURNAL DE PHYSIQUE

I V

-

NORMAL STABLE

Ec PC ' STATIONARY ZONES

.

m

-

Tb:L 2K 1=500A B=ST STABILITY DEGRADATION

3 E X,=O Scm

-,

30 . 15 Normal s t a b l e s t a t i o -

-

n a r y zones have been obser-

a= ved b y v a r i o u s experimen-

L

0 .

3 t e r s . The reasons p u t

0 a

-

f o r w a r d f o r t h i s b e h a v i o r

rT a r e changes i n c o o l i n g

:

20 - '3

L c o n d i t i o n s a l o n g t h e conduc-

t o r : non c o o l e d r e g i o n s underneath i n s u l a t i n g spacers d e f i n i n g t h e h e l i u m channels ( l o ) , l e n g h t s n o t immersed i n t h e l i q u i d ( l l ) , v o i d s

I between t h e m a t r i x and s o l d e r e d s t a b i 1 iz e r (12,13),

L v a r i a t i o n s i n t h e depths

" 0 - 1

.

o f t h e channels ( 1 4 ) .

o 1 10 20 30 LO I t i s p r o b a b l e t h a t

Heat pulse durat~on Oirnsl parameters o t h e r t h a n

F i g . 2

-

C r i t i c a l energy versus t h e d u r a t i o n exchange can i n d u c e such o f t h e h e a t d i s t u r b a n c e phenomena, f o r example a

v a r i a t i o n i n maametic i n d u c t i o n a l o n g - t h e l e n g t h o f t h e c o n d u c t o r ( 1 5 ) o r a change i n r e s i s t i v i t y .

The s t a b i l i t y o f such normal s t a t i o n a r y zones has been shown f o r t h e case o f a c o o l e d r e g i o n ( 1 6 ) and f o r t h e case o f a h e t e r o g e n e i t y , which can be t r e a t e d as a s t e a d y p o i n t h e a t source (17,18, 19, 6 ) , s i m u l a t i n g , f o r example a b r e a k i n super- c o n d u c t i n g f i l a m e n t s o r t h e j u n c t i o n between two composites. The consequences o f t h e e x i s t e n c e o f such s t a b l e zones a r e , f i r s t l y , a r e d u c t i o n i n t h e c o l d end r e c o v e r y c u r r e n t and, secondly, a r e d u c t i o n i n t h e MPZ and t h e r e f o r e i n t h e energy o f t h e c r i t i c a l p e r t u r b a t i o n s .

An example o f such r e d u c t i o n s i s i l l u s t r a t e d i n F i g u r e 3 o f r e f e r e n c e ( 1 6 ) which shows how t h e c o l d end r e c o v e r y c u r r e n t v a r i e s as a f u n c t i o n o f t h e l e n g t h o f a non cooled zone. Another example o f s t a b i l i t y d e g r a d a t i o n i s i l l u s t r a t e d i n f i g u r e 3 o f r e f e r e n c e ( 1 8 ) which shows t h e v a r i a t i o n s o f t h e c r i t i c a l energy w i t h t h e power o f a s t e a d y p o i n t h e a t source.

V

-

TRANSIENT STABILITY

Design t r e n d s o f l a r g e h i g h c u r r e n t d e n s i t y magnets towards c o n f i n e d geometries u s i n g f o r c e d cooled c a b l e s , c o n d u c t o r s i n t e r n a l l y c o o l e d by s a t u r a t e d h e l i u m a t 4. 2 K o r c o n d u c t o r s c o o l e d b y a l i m i t e d amount o f s u p e r f l u i d helium, lead, as a l r e a d y mentioned t o a new concept o f s t a b i l i t y . I n these c o n f i g u r a t i o n s , t h e h e l i u m f l o w s a l o n g t h e c o n d u c t o r and does n o t e a s i l y communicate w i t h a l a r g e

r e s e r v o i r . Only p a r t o f t h e h e l i u m a d j a c e n t t o t h e c o n d u c t o r p a r t i c i p a t e s i n c o o l i n g . I t i s t h e r e f o r e necessary t o f i r s t analyze t h e c o o l i n g medium i n o r d e r t o e s t a b l i s h a r e l a t i o n between t r a n s i e n t t r a n s f e r , u s a b l e e n t h a l p y and t h e temporal d i s t r i b u t i o n o f t h e thermal p e r t u r b a t i o n . The dynamics o f t h e s u p e r c o n d u c t i n g system can t h e n be s t u d i e d , account b e i n g t a k e n o f t h e e n t h a l p y r e s e r v o i r l i m i t e d i n such a way as t o c h a r a c t e r i z e t h e s t a b i l i t y o f t h e c o n d u c t o r by i t s c r i t i c a l p e r t u r b a t i o n s .

1

.

Forced-cooled-cable?

The s t a b i l i t y q f c a b l e - i n - c o n d u i t t y p e c o n d u c t o r s c o o l e d by s u p e r c r i t i c a l h e l i u m i s s t u d i e d from b o t h e x p e r i m e n t a l and t h e o r e t i c a l p o i n t s o f v i e w i n r e f e r e n c e ( 2 0 ) . The s t a b i l i t y margin, .i .e. t h e h i g h e s t energy p e r u n i t volume o f m e t a l f r o m which t h e c o n d u c t o r can r e c o v e r , has, under c e r t a i n c o n d i t i o n s , s e v e r a l values.

F i g u r e 3 i s a . t y p i c a l r e p r e s e n t a t i o n o f t h e s t a b i l i t y m a r g i n ,as a f u n c t i o n o f t r a n s p o r t c u r r e n t . I t i s suggested t h a t r e c o v e r y i n a l o n g t u b e m i g h t be enhanced by t r a n s i e n t h e l i u m f l o w due t o thermal expansion induced b y t h e i n i t i a l h e a t i n g of t h e h e l i u m . T r a n s i e n t f l o w c o n s i d e r a b l y i n c r e a s e s h e a t t r a n s f e r i n t h e subsequent

(6)

A 5 0 0 power induces a h i g h e r h e l i u m f l o w and i n c r e a s e s h e a t t r a n s f e r . The c o n d u c t o r can t h u s more r a p i d l y r e c o v e r even i f t h e i n i t i a l h e a t p u l s e i s l a r g e r . A q u a l i t a t i v e model i s developed f r o m these c o n s i d e r a t i o n s ; t h i s model c o r r e c - t l y e x p l a i n s t h e m u l t i v a l u e d beha- 200 v i o r o f t h e s t a b i l i t y m a r g i n .

I n p r a c t i c e , t h e u s e f u l opera-

-

t i n g c u r r e n t s a r e l e s s t h a n t h e

l i m i t i n g c u r r e n t , 1 lim, below OE

.

u

which o n l y t h e upper boundary

-,

between r e c o v e r y and non r e c o v e r y

-

E (00 e x i s t s . T h i s upper s t a b i l i t y I

a

m a r g i n i s 1 im i t e d because t h e quan- t i t y o f h e l i u m a v a i l a b l e i n a .- C g i v e n c r o s s s e c t i o n o f c o n d u c t o r i s l i m i t e d . The he1 ium and t h e conduc- E t o r must t e n d a t r e c o v e r y towards 50 a temperature l o w e r t h a n t h e .

- -

c u r r e n t s h a r i n g t h r e s h o l d tempera- 5

t u r e T c S The h e a t a b s o r p t i o n capa- N b T i SINGLE TRIPLEX c i t y o f he1 i um between t h e b a t h t e n

+,,,

= 4.0rnm. pob, = 5.0orrn

p e r a t u r e and Tcsdetermines t h e t o t a l

T , , = 46.7 i n s , v,, = 0 q u a n t i t y o f h e a t (sum o f t h e i n i t i a l

h e a t p u l s e ~ H and o f J o u l e h e a t A H j = 3.8 rn 8 = 6.OT qenerated d u r i n q r e c o v e r y ) t h a t 7

-

n

-

can be absorbed-during r e c o v e r y . 340 3 6 0 3 8 0 4 0 0 4 2 0 4 4 0

It should be n o t e d , t h a t i n o r d e r

t o b e n e f i t f r o m t h i s upper l i m i t , C u r r e n t IS ( A i t i s necessary t o ensure a s u f f i -

ciently high heat transfer rate so F i g . 3

-

S t a b i l i t y b e h a v i o u r o f a c a b l e i n t h a t a l l t h e h e l i u m i n t h e v i c i n i - a c o n d u i t , a f t e r ( 2 1 )

-~ ~

t y o f t h e heated s e c t i o n p a r t i c i p a t e s

i n t h e r e c o v e r y o f t h e superconducting s t a t e .

2

. Irenstent-stab~llt~-0f~ca!1e1-~001eIr~!~~~~~!~aL~Ir-~sl~!~-~!-~~-~-5

The t r a n s i e n t s t a b i l i t y o f superconducting c a b l e s c o o l e d by s t a t i c b o i l i n g h e l i u m i s d e s c r i b e d i n r e f e r e n c e ( 2 2 ) . The aim o f t h e work i s t o improve h e a t t r a n s - f e r between t h e c o n d u c t o r and t h e l i q u i d , i n p a r t i c u l a r , by i n c r e a s i n g t h e s u r f a c e c o o l e d p e r u n i t volume o f m e t a l , so as t o t a k e advantage of t h e h i g h energy absorp- t i o n c a p a c i t y o f l i q u i d h e l i u m a t 4. 2 K. S t a b i l i t y w i t h r e s p e c t t o p e r t u r b a t i o n s o f s h o r t d u r a t i o n a f f e c t i n g a l a r g e volume o f c o n d u c t o r i s s t u d i e d .

Conductor r e c o v e r y must t a k e p l a c e b e f o r e t h e t r a n s i t i o n o f h e l i u m i n t o f i l m b o i l i n g . T h i s t r a n s i t i o n o c c u r s when s u f f i c i e n t energy Ef i s absorbed t o v a p o r i z e t h e h e l i u m i n t h e l i q u i d d i f f u s i o n l a y e r a d j a c e n t t o t h e s u r f a c e o f t h e c o n d u c t o r . I t i s shown t h a t t h e i n s t a n t when t h e t r a n s i t i o n o c c u r s i s i n v e r s e l y p r o p o r t i o n a l t o t h e square o f t h e h e a t f l u x t r a v e r s i n g t h e i n t e r f a c e ( 2 3 ) . Conductor r e c o v e r y t h u s depends on two parameters : t h e t o t a l q u a n t i t y o f h e a t E t h a t must be t r a n s - f e r r e d t o t h e l i q u i d ( e n e r g y o f t h e i n i t i a l p e r t u r b a t i o n and J o u l e energy) and t h e t o t a l t r a n s f e r t i m e ( d u r a t i o n o f p e r t u r b a t i o n + r e c o v e r y t i m e ) . The t r a n s i e n t h e a t e q u a t i o n i s s o l v e d by a numerical method. I f t h e E ( t ) > E ( t ) c o n d i t i o n o c c u r s p r i o r t o r e c o v e r y o f t h e superconducting s t a t e , i t i s assuXed t h a t t h e c o n d u c t o r cannot r e c o v e r . I t should be n o t e d t h a t t h e Ef ( t ) f u n c t i o n i s o n l y known f o r t h e s t e p power changes, whereas i t i s used, here, f o r h e a t t r a n s f e r w i t h two power l e v e l s which a r e , a p r i o r i , d i f f e r e n t : t h e p e r t u r b a t i o n and t h e J o u l e e f f e c t .

S t a b i l i t y measurements were c a r r i e d o u t ; t h e r e s u l t s a r e i n good agreement w i t h t h e t h e o r e t i c a l model ( f i g u r e 4 ) .

(7)

JOURNAL DE PHYSIQUE

3

. ---

S t a b i l i t y of superconductors cooled by a limited g u a n t i t y of

--- ... --- --- ---

s u p e r f l u i d helium

-- ---

The s t a b i l i t y of a superconductor cooled by a l i m i t e d volume of s u p e r f l u i d helium a t a pressure of 1 atmosphere i s studied in reference ( 2 4 ) . The p e r t u r b a t i o n s considered a f f e c t a l a r g e length of conductor.

As long a s t h e temperature of the f l u i d a t t h e conductor i n t e r f a c e i s l e s s than T A , heat t r a n s f e r i s governed by t h e conductance of t h e interface.The heat f l u x d i f f u s e s i n t h e f l u i d , t h e helium temperature increasing u n t i l Th i s reached near t h e heated s u r f a c e . The q u a n t i t y of energy absorbed by t h e s u p e r f l u i d helium up t o Th was determined both experimentally and t h e o r e t i c a l l y a s a function of the heat f l u x a p p l i e d . A f t e r the occurence Of

TA,

and a s a r e s u l t of the formation of a normal helium l a y e r heat t r a n s f e r diminishes considerably. In g e n e r a l , a thermal runaway occurs f o r t h e heated s u r f a c e ( i f the f l u i d remains a t atmospheric pressure).

The f l u x e x t r a c t e d by the helium I1 i s c a l c u l a t e d using a mathematical model t o solve t h e t r a n s i e n t heat t r a n s f e r equations f o r the s u p e r f l u i d h e l i u

.

In the t r e a t e d c a s e , the p e r t u r b a t i o n i s assumed t o be

07

l a r g e amplitude and s h o r t d u r a t i o n , i . e . t o d e p o s i t a l a r g e q u a n t i t y of energy i n a time which i s s h o r t i n comparison with the c h a r a c t e r i s t i c heat t r a n s f e r process time. A mathema- t i c a l r e p r e s e n t a t i o n of t h i s hypothesis i s given in ( 2 4 ) . The temperature of the helium a t t h e i n t e r f a c e s e p a r a t i n g the l i q u i d from the conductor exposed t o such a p e r t u r b a t i o n reaches T A almost instantaneously. Recovery occurs when the time i n t e g r a t e d cooling f l u x becomes equal t o t h e i n t e g r a t e d heat f l u x generated by t h e Joule e f f e c t . The l i m i t i n g c a s e occurs when t h e cooling f l u x equals t h e Joule f l u x a t t h e time of recovery. The f r a c t i o n of t h e t o t a l energy a v a i l a b l e in t h e helium 11, which i s a c t u a l l y used by t h e Joule e f f e c t and the p e r t u r b a t i o n diminishes with i n c r e a s i n g t r a n s p o r t c u r r e n t , a s a r e s u l t of a reduction in t h e volume of helium p a r t i c i p a t i n g in the exchange process.

The agreement obtained between theory and experiment i n r e f e r e n c e (25) i s shown i n f i g u r e 5

.

I t appears t o confirm t h e v a l i d i t y of t h e exchange model used.

I t should be noted t h a t t h i s s t a b i l i t y c r i t e r i o n a p p l i e s to, very severe p e r t u r b a t i o n s . I f the conductor i s subjected t o p e r t u r b a t i o n s of t h e same energy, but of longer d u r a t i o n , heat exchange may remain in t h e Kapitza regime and be very e f f i c i e n t . A higher s t a t i l i t y can thus be obtained, e s p e c i a l l y with low c u r r e n t s f o r which t h e t o t a l energy a v a i l a b l e i n t h e helium I1 can be completely used.

I I I I I 8 I 4 I I I I I I I

5.87 -

0=54Ops-

c and + : m w w r m h

1 0 ' ~ 3 4 + ~ ~ ~ 8 ! 1 ~ ~ ~ ~ ~

n

'E -a

0

-

n e ~ - x

- -

- ~ i m i t = x-x- =

-

x MeaSw33 T*=120psec -Corrprted LC * 1450A

1 0 ~ ~ ~ ~ ~ ~ ~ ~ ' ~ " ~ ' ~ ~ '

500 1000 I500 0 500 1000 1500

CONOUCTCR CURRENT AMPS Transport current I, (A1

Fig. 4

-

Transient s t a b i l i t y of NbTi Fig. 5

-

S t a b i l i t y of a superconductor conductor cooled by helium a t cooled by a l i m i t e d volume

4. 2 K, a f t e r ( 2 2 ) of s u p e r f l u j d h e l i u m , a f t e r ( 2 5 )

(8)

The t r a n s i e n t s t a b i l i t y o f t h e t h r e e c o n f i g u r a t i o n s p r e v i o u s l y s t u d i e d depends on two parameters : h e a t t r a n s f e r a t t h e c o n d u c t o r

-

l i q u i d i n t e r f a c e and t h e h e a t absorpt,on c a p a c i t y o f f l u i d a d j a c e n t t o t h e c o n d u c t o r .

When h e a t i n g begins, h e a t t r a n s f e r i s o n l y l i m i t e d by t h e r e s i s t a n c e o f t h e i n t e r f a c e . The temperature o f t h e s u r f a c e remains l o w as t h e h e a t t r a n s f e r c o e f f i - c i e n t i s l a r g e . A f t e r a s h o r t t i m e ( t a k e o f f t i m e ) , i f t h e f l u i d i s b o i l i n g t h e s u r f a c e goes o v e r t o f i l m b o i l i n g and t h e s u r f a c e temperature i n c r e a s e s . When t h e h e l i u m i s s u p e r c r i t i c a l , a l o w d e n s i t y h e l i u m f i l m o c c u r s i n s t e a d o f t h i s vapor f i l m and when t h e h e l i u m i s i n t h e s u p e r f l u i d s t a t e , a l a y e r o f normal h e l i u m i s formed when t h e f l u i d temperature reaches TA

.

The t i m e f o r t h e t e m p e r a t u r e t o t a k e o f f depends on t h e h e a t f l u x a t t h e i n t e r f a c e . . T h e t o t a l energy t h a t must be

absorbed b y t h e l i q u i d i s t h e sum o f t h e p e r t u r b a t i o n energy and t h e J o u l e energy generated d u r i n g r e c o v e r y . I f a l l t h i s energy can be t r a n s f e r r e d b e f o r e t h e t a k e o f f t i m e , t h e s t a b i l i t y w i l l depend on t h e t o t a l h e a t a b s o r p t i o n c a p a c i t y o f t h e f l u i d volume a d j a c e n t t o t h e heated conductor, as t h e h e l i u m cannot be r e p l a c e d w i t h i n t h e t i m e necessary f o r r e c o v e r y . T h i s s i t u a t i o n i s r e a l i z e d i n p r a c t i c e f o r l o w c u r r e n t s and energy p e r t u r b a t i o n s , which may be l a r g e , b u t o f l o n g d u r a t i o n . I n o r d e r t o i n c r e a s e t h e c r i t i c a l energy, i t i s n e c e s s a r y t o improve t h e h e a t t r a n s f e r a t t h e i n t e r f a c e ( b y i n c r e a s i n g , f o r example, t h e p/A r a t i o ) so as t o d i m i n i s h r e c o v e r y t i m e . F o r h i g h c u r r e n t s o r e n e r g i e s o f h i g h power, t a k e o f f t i m e g e n e r a l l y o c c u r s b e f o r e r e c o v e r y t i m e . S t a b i l i t y i s t h u s reduced because o n l y a s m a l l percen- tage o f t h e l i q u i d i s i n v o l v e d i n s t a b i l i z a t i o n . The f r a c t i o n o f t h e l i q u i d p a r t i - c i p a t i n g i n t h e process can be determined f r o m h e a t t r a n s p o r t i n t h e l i q u i d . I n o r d e r t o i n c r e a s e t h e c r i t i c a l energy, i t i s t h u s necessary t o improve t h e h e a t t r a n s p o r t i n t h e f l u i d ( u s i n g f o r example s u p e r f l u i d helium].

V I

-

STUDIES REQUIRING FURTHER WORK

A l t h o u a h t h e work c a r r i e d o u t UD t o t o d a y c o v e r s a v e r y l a r a e f i e l d o f

appl i c a t i o n s - a c t u a l 1 y encountered i n supercond;ctor technology, ii i s n o t e x h a u s t i v e . I t i s w o r t h w h i l e s u g g e s t i n g f u t u r e areas i n which work i s necessary, w h i l e a t t h e same t i m e emphasizing t h e d i f f i c u l t i e s i n v o l v e d .

1

. Work-townr~?-e-generalltheorr-of- ?:?if 1 I t ~

The thermal s t a b i l i t y o f a superconductor i n a g i v e n c r y o g e n i c system must a l m o s t always be t r e a t e d as a s p e c i a l case. I t i s n o t t h e r e f o r e p o s s i b l e , today, t o e n v i s a g e a g e n e r a l t h e o r y f o r t h e s t a t e o f a s u p e r c o n d u c t i n g system s u b j e c t e d t o an u n d e f i n e d p e r t u r b a t i o n . However, i t i s perhaps u s e f u l t o c o n s i d e r g e n e r a l methods f o r t r e a t i n g s t a b i l i t y problems and t o s t u d y concepts employed f o r o t h e r systems, b u t as y e t , n o t employed f o r superconductors. I n t h i s way, t h e o r i e n t a t i o n o f f u t u r e work can be e s t a b l i s h e d t o g e t h e r w i t h t h e t y p e o f s o l u t i o n most appro- p r i a t e t o t h e problems s t u d i e d .

An example, i s r e s e a r c h i n t o upper and l o w e r s o l u t i o n s e n a b l i n g s t a b l e s o l u t i o n s t o be found f o r t h e e q u a t i o n g o v e r n i n g t h e e v o l u t i o n o f systems ; a p p l i c a t i o n s t o e s t i m a t i n g t h e s i z e o f t h e a t t r a c t i v e r e g i o n f o r s t a b l e s o l u t i o n s a r e f o r e s e e n ( 2 6 ) .

The second method o f Liapunov enables t h e s t a b i l i t y o f a system t o be d e t e c t e d i n d i r e c t l y u s i n g a Liapunov f u n c t i o n V ( T ) b e g i n n i n g w i t h t h e d i f f e r e n t i a l e q u a t i o n d e s c r i b i n g t h e e v o l u t i o n o f t h e system, and t h u s non d i r e c t l y f r o m a knowledge o f t h e s o l u t i o n s (1, 2). Such a f u n c t i o n a l s o enables p a r t o f t h e a t t r a c t i v e r e g i o n o f t h e s t a b l e s t a t e c o n s i d e r e d t o be e s t a b l i s h e d , s i n c e t h e r e g i o n bounded by t h e l a r g e s t s u r f a c e V ( T ) = c o n s t a n t l i e s i n s i d e t h e a t t r a c t i v e r e g i o n . The d i f f i c u l t y i s t o f i n d t h e Liapunov f u n c t i o n s . However, a much more complete i d e n t i f i c a t i o n o f t h e a t t r a c t i v e r e g i o n o f t h e superconductor can be e s t a b l i s h e d once t h e y a r e found.

2

!omosenl~etfon-of-t!!e~so!!_~_ctor-an!-coI1

The c o n d u c t o r ( o r c o i 1 ) i s , i n g e n e r a l , c o n s i d e r e d t o be a homogeneous medi um. Homogenization o f t h e thermal c o n d u c t i v i t y , s p e c i f i c h e a t and e l e c t r i c a l r e s i s t i v i t y i s achieved u s i n g mean v a l u e s t a k i n g t h e d e s i g n l a y o u t n f t h e d i f f e r e n t components of t h e c o n d u c t o r i n t o c o n s i d e r a t i o n . Mathematical homogenization t e c h -

(9)

C1-510 JOURNAL DE PHYSIQUE

n i q u e s e x i s t s which would p r o b a b l y enable t h e v a l u e s o f t h e p t y s i c a l parameters o f a homogenized c o n d u c t o r t o be r e f i n e d ( 2 7 ) . Furthermore, such t e c h n i q u e s would p e r m i t more general a p p l i c a t i o n s o f c e r t a i n r e s u l t s ( f o r example, t h e r e d u c t i o n i n s t a b i 1 i t y due t o t r a n s v e r s e e l e c t r i c a l and thermal r e s i s t a n c e ) t o c o n d u c t o r s f o r which i t i s d i f f i c u l t t o determine e q u i v a l e n t t r a n s v e r s e thermal c o n d u c t i v i t i e s and e l e c t r i c a l r e s i s t i v i t i e s ( f o r example, c o n d u c t o r s e x h i b i t i n g r e s i s t i v e b a r r i e r s ) .

A t t e n t i o n i s a l s o drawn t o t h e f a c t t h a t c e r t a i n t y p e s o f c o n d u c t o r cannot be homogenized : c o n d u c t o r s welded t o l a r g e s t a b i l i z e r s . I n such cases, i t i s necessary t o t a k e t h e t r a n s v e r s e d i f f u s i o n o f c u r r e n t d u r i n g t h e t r a n s i t i o n i n t o account. A f i r s t approach t o such s t u d i e s has been undertaken b y d e c o u p l i n g t h e thermal and e l e c t r o m a g n e t i c e q u a t i o n s ( 2 8 ) .

As d e s c r i b e d i n p a r t V, t h e a b s o r p t i o n o f a p e r t u r b a t i o n b y h e l i u m s i t u a t e d i n t h e immediate v i c i n i t y o f a heated c o n d u c t o r has been e x t e n s i v e l y s t u d i e d . When t h e s u p e r c o n d u c t i n g r e c o v e r y s t a t e t e r m i n a t e s , t h e temperature o f t h e conduc- t o r and t h e h e l i u m d i f f e r s f r o m t h e i n i t i a l o p e r a t i n g temperature. The a b s o r p t i o n o f a second p e r t u r b a t i o n o f t h e same a m p l i t u d e i s o n l y p o s s i b l e a f t e r t h e e n e r g y d e p o s i t e d by t h e f i r s t p u l s e has been removed. Very l i t t l e work has been c a r r i e d o u t on t h i s second phase, which c o n s i s t s o f t r a n s f e r r i n g energy t o t h e c o l d

sourc% and which as a r e s u l t o f t h e c o i l geometry can l a s t s e v e r a l seconds o r even a few minutes, whereas t h e r e c o v e r y t i m e i s cf t h e o r d e r o f a few m i l l i s e c o n d s .

REFERENCES

1

-

LA SALLE J. P. and LEFSCHETZ S . , Academic Press (1961) 2

-

PONTRIAGUINE L . , E d i t i o n s M i r (1962)

3

-

STEKLY Z. J . J . and ZAR J.L., IEEE Trans. Nucl. Sc. -2 (1965) 367 4

-

MADDOCK B.J., JAMES G. B. and NORRIS W.T., Cryogenics

9

(1969) 261 5

-

WILSON M.N. and 1WASAY.Cryogenics

3

(1978) 17

6 - WIPF S.L., LA-7275 (1978)

7

-

MARTINELL1 A.P. and WIPF S.L., Proc. A p p l i e d Sup. Conf. IEEE 72CH 06825 TABSC (1972) 331

8

-

MEURIS C., These Docteur 6s Sciences Physiques (1982) 109 9

-

KEIVIN V.E.and ROWNOVKY V.R. ,Cryogenics

22

(1982) 313

10 - CLAUOET G., MEURIS C . , PARAIN J. and TURCK B., IEEE Trans. Magn. MAG-15 (1979) 340

11 - WILLIG R.L. and HILAL M.A., Proc. o f 6 t h Symp. on Eng. Prob. o f Fusion Res.

IEEE 75 CH 1097-5-NPS (1976) 128

12 - HILAL M.A., WILLIG R.L. and THOME R.J., IEEE Trans. Ma n. MAG-17 (1981) 1040 13 - HUANG Y. and WANG S.T., IEEE Trans. Magn. MAG-17 (19817 1 0 F

14

-

TUROWSKI P., I I F Commission A1/2 1981-6 (1981) 151 15

-

TURNER L.R., IEEE Trans. Magn. M4=1981)463

16

-

MEURIS C . , I I F Commission A1/2 1981-6 (1981) 161 17

-

MINTS R.G., S O V . P ~ Y S . O O ~ I . 2 4 m ) 757 18

-

DRESNER L., ORNL/TM-8394 ( 1 9 8 r

19

-

KEILlN V.E., KLIMENKO E.Y., KREMLEV M.G. and SAMOILOV B.N., Les Champs M a g n e t ~ q u e s In t e n s e s , E d i t i o n s CNRS (1967) 231

20

-

LUE J.W., MILLER J.R. and DRESNER L., J . Appl. Phys.

51

(1980) 772 2 1

-

MILLER J.R., CEC San Diego (1981)

22

-

BAYNHAM D.E., IEEE Trans. Magn. MAG-19 (1983) 676 23 - SCHMIDT C . , Appl

.

Phys. L e t t e r s z(1978) 827

24 - MEURIS C . , TURCK B., SEYFERT P. and CLAUDET G., I I F Commission A1/2 1981-6 (1981) 215

25 -

MEURIS

C., IEEE Trans. Magn. MAG-19 (1983) 272 26 - SATTINGER D.H., Ind. U n i v . Math. J .

2

(1972) 979

27

-

SAINT JEAN PAULIN J., These D o c t e u r 6s Sciences M a t h h a t i q u e s (1981) 28

-

HILAL M.A. and BOOM R.W., Proc. o f 9 t h Symp. on Fus. Tech.(1976) 87

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to