• Aucun résultat trouvé

OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY

N/A
N/A
Protected

Academic year: 2021

Partager "OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223302

https://hal.archives-ouvertes.fr/jpa-00223302

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY

I. Mcdermid, C. Webster

To cite this version:

I. Mcdermid, C. Webster. OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY. Journal

de Physique Colloques, 1983, 44 (C7), pp.C7-461-C7-466. �10.1051/jphyscol:1983745�. �jpa-00223302�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, suppl6ment au n o l l , Tome 44, novembre 1983 page C7-461

O P T O G A L V A N I C PHOTODETACHMENT SPECTROSCOPY

I . S . McDermid and C.R. Webster*

J e t PropuZsion Laboratory, CaZifornia I n s t i t u t e o f TechnoZogy, 4800 Oak Grove Drive, Pasadena, Cazifornia 91109, U.S.A.

Resum6 - La s p e c t r o s c o p i e o p t o g a l v a n i q u e a S t S Stendue 2 une t e c h n i q u e nouvel- l e dans l a q u e l l e d e s e l e c t r o n s s o n t dEtachEs des i o n s n e g a t i f s formSs dans l a dScharge e t o b s e r v e s e n f o n c t i o n de l a longueur d'onde du l a s e r . La determina- t i o n des a f f i n i t e s e l e c t r o n i q u e s d e s i o n s atomiques I- e t Cl- e s t d S c r i t e . Les p o s s i b i l i t g s de c e t t e methode pour E t u d i e r l a s p e c t r o s c o p i e d e s i o n s n g g a t i f s m o l E c u l a i r e s s o n t a u s s i p r e s e n t e e s .

A b s t r a c t

-

A new e x t e n s i o n t o o p t o g a l v a n i c s p e c t r o s c o p y , i n which e l e c t r o n s d e t a c h e d from n e g a t i v e i o n s formed i n t h e d i s c h a r g e a r e observed a s a f u n c t i o n o f i n c i d e n t l a s e r wavelength, h a s been developed. The d e t e r m i n a t i o n of t h e e l e c t r o n a f f i n i t i e s of

r

and C l - a t o m i c i o n s i s described. The p o t e n t i a l of t h e t e c h n i q u e f o r s t u d y i n g t h e s p e c t r o s c o p y of molecular n e g a t i v e i o n s i s a l s o d i s c u s s e d .

1. I n t r o d u c t i o n

The o p t o g a l v a n i c e f f e c t h a s p r o v e n p a r t i c u l a r l y s u i t a b l e f o r t h e d e t e c t i o n o f u n s t a b l e , r a d i c a l and i o n i c , a t o m i c and m o l e c u l a r s p e c i e s /l-3/, e s p e c i a l l y s i n c e t h e s e c a n o f t e n be g e n e r a t e d by t h e d i s c h a r g e i t s e l f . I n a new e x t e n s i o n t o t h e o p t o g a l v a n i c t e c h n i q u e /4/ w e have shown t h a t t h e r a d i a t i o n i n d u c e d detachment of e l e c t r o n s from n e g a t i v e i o n s i n t h e d i s c h a r g e c a n be used t o s t u d y t h e s p e c t r o s c o p y of t h e s e n e g a t i v e i o n s , I n t h i s paper w e w i l l review t h e technique and i t s f i r s t a p p l i c a t i o n t o t h e measurement of t h e e l e c t r o n a f f i n i t y of I-. New d a t a c o n c e r n i n g t h e e l e c t r o n a f f i n i t y of Cl' w i l l a l s o be presented a s w i l l a planned a p p l i c a t i o n t o s t u d y t h e s p e c t r a of m o l e c u l a r n e g a t i v e ions.

The dc d i s c h a r g e c e l l and a s s o c i a t e d c i r c u i t r y have been d e s c r i b e d i n a p r e v i o u s paper i n t h i s e d i t i o n (Webster and Menzies). I n t h i s s t u d y t h e c e l l windows were o f q u a r t z a n d a p u l s e d d y e l a s e r pumped by e i t h e r a n i t r o g e n o r a XeCl e x c i m e r l a s e r was u s e d u s e d a s t h e e x c i t a t i o n s o u r c e . F o r t h e s t u d i e s o f 'I a n d C l ' t h e c e l l was o p e r a t e d i n a f l o w i n g mode w i t h t h e c e l l p r e s s u r e and f l o w r a t e c o n t r o l l e d by n e e d l e v a l v e s on b o t h t h e r e a g e n t i n l e t a n d vacuum pump. T y p i c a l o p e r a t i n g p r e s s u r e w a s

-

l 0 0 mTorr w h i c h , w i t h a d c v o l t a g e o f 400

-

700 V a c r o s s t h e c e l l , g a v e d i s c h a r g e c u r r e n t s i n t h e r a n g e 1 0

-

40 uA. A 0.1 U F c o u p l i n g c a p a c i t o r a l l o w e d l a s e r - i n d u c e d a c changes i n t h e d i s c h a r g e impedance t o be monitored w i t h a p r e a m p l i f i e r (PARC 113) connected t o a boxcar i n t e g r a t o r (PARC 162/165).

E l e c t r o n detachment from halogen n e g a t i v e i o n s (X") i s observed, a c c o r d i n g t o

Although t h e c o n c e n t r a t i o n of n e g a t i v e i o n s i n t h e d i s c h a r g e i s g r e a t e r t h a n t h a t o f f r e e e l e c t r o n s / 5 / t h e d i s c h a r g e c u r r e n t i s c a r r i e d a l m o s t e n t i r e l y by t h e s e e l e c t r o n s because of t h e i r much g r e a t e r m o b i l i t y . S t u d i e s of t i m e and s p a t i a l l y r e s o l v e d o p t o g a l v a n i c s i g n a l s show t h a t i t i s p o s s i b l e t o d i s t i n g u i s h very c l e a r l y

* ~ r . Webster was u n f o r t u n a t e l y u n a b l e t o come t o t h e Colloquium b e c a u s e o f a r e - s c h e d u l i n g of a n a i r b a l l o o n experiment b u t h a s s e n t t h e p a p e r h e would have p r e - s e n t e d and which i s p u b l i s h e d i n t h e P r o c e e d i n g s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983745

(3)

JOURNAL DE PHYSIQUE

CATHODE RV (-1

CATHODE DARK SPACE NEGATIVE GLOW FAPADAY DARK SPACE QOSlTlVE COLUMN ANODE GLOH ANODE C l

Figure 1. Typical time-resolved p r o f i l e s f o r L O G s i g n a l s generated a t discharge l o c a t i o n s i d e n t i f i e d t o t h e l e f t of t h e f i g u r e . S i g n a l s h a v e b e e n n o r m a l i z e d t o t h e same peak height.

o ~ r n m a o m r m

TIME AFlER LASER PULSE (CS)

the photodetac;unent s i g n a l from o t h e r optogalvanic s i g n a l s a r i s i n g , f o r example, f r o m a b s o r p t i o n by t h e n e u t r a l d i a t o m i c h a l o g e n m o l e c u l e s . F i g u r e 1 shows t h e time-resolved p r o f i l e s of t h e LOG s i g n a l generated by a b s o r p t i o n i n t h e B-X system of I a t d i f f e r e n t l o c a t i o n s i n t h e d i s c h a r g e /6/. It s h o u l d be n o t e d t h a t e v e n f o r %he f a s t e s t of t h e s e s i g n a l s t h e r i s e t i m e i s o n t h e o r d e r o f 50 VS. By c o n t r a s t , f i e r e 2 shows t h e s i g n a l caused by photodetachment of e l e c t r o n s from I-.

The pulse corresponds t o a n i n c r e a s e i n discharge c u r r e n t and r i s e s w i t h t h e l a s e r p u l s e ( d u r a t i o n

-

1 0 n s ) , t h e o b s e r v e d r i s e and f a l l t i m e of t h e s i g n a l b e i n g l i m i t e d by c i r c u i t response time constants. Therefore, by c a r e f u l adjustment of t h e a p e r t u r e w i d t h and d e l a y a f t e r t h e l a s e r p u l s e i t i s p o s s i b l e t o m o n i t o r uniquely t h e s i g n a l s due t o t h e photodetachment.

PHOTODETACHMENT SIGNAL AT 402 nrn

F i g u r e 2. The t i m e - r e s o l v e d o p t o g a l v a n i c s i g n a l f o r p h o t o d e t a c h m e n t f r o m 1- a t 4 0 2 nm. The photodetachment s i g n a l showed no s i g n i f i c a n t s p a t i a l v a r i a t i o n , except a s m a l l delay a s s o c i a t e d w i t h e l e c t r o n mobility.

(4)

The optogalvanic-electron s i g n a l observed a s t h e l a s e r wavelength was scanned i n t h e r e g i o n 402.50 t o 406.00 nm i s shown i n f i g u r e 3. The p o t a s s i u m L I F s p e c t r u m i n c l u d e d i n t h i s t r a c e w a s used, t o g e t h e r w i t h e t a l o n f r i n g e s , t o c a l i b r a t e t h e a b s o l u t e wavelength scale.

LASER WAVELENGTH (nm:Air)

Figure 3. The i o d i n e photodetachment optogalvanic spectrum near t h e 405 nm threshold. The potassium L I F spectrum used f o r wavelength c a l i b r a t i o n i s shown i n t h e l o w e r t r a c e , which i s o f f s e t f r o m z e r o t o s e p a r a t e t h e two s p e c t r a The e t a l o n f r i n g e s have been o m i t t e d from t h i s f i g u r e s i n c e they

W e r e t o o c l o s e l y spaced f o r c l e a r r e p r e s e n t a t i o n

Near t h e photodetachment t h r e s h o l d t h e optogalvanic s i g n a l was observed t o r i s e i n accordance w i t h t h e Wigner law /7/. However, a t s h o r t e r wavelengths t h e i n c r e a s e i n t h e optogalvanic s i g n a l was s m a l l e r than expected from t h e p r e d i c t e d i n c r e a s e i n t h e detachment c r o s s s e c t i o n I n o r d e r t o i d e n t i f y t h e threshold we used t h e semi- e m p i r i c a l method of Berry e t a 1

/a/,

i.e., the point of i n f l e c t i o n of t h e observed

Figure 4. Schematic p l o t of t h e photode tachment s i g n a l near t h e t h r e s h o l d . T h e t h r e s h o l d behavior r e d i c t e d by t h e Wigner (E-Bthr)f/2 dependence i s shown by t h e c i r c l e s . The b r o k e n l i n e s i l l u s t r a t e t h e method of Berry and co-workers /8/ used t o d e t e r m i n e t h e t h r e s h o l d e n e r g y Ethr shown by t h e arrow.

404.8 405.0 405.2 405.4 LASER WAVELENGTH (nm:Air)

(5)

C7-464 JOURNAL DE PHYSIQUE

curve was taken a s t h e upper l i m i t (E, and t h e tangent t o t h e curve a t t h e point of i n f l e c t i o n defined t h e lower l i m i t The threshold energy was then taken a s t h e mean of these two l i m i t s a s shown s c h e m a t i c a l l y i n f i g u r e 4. The threshold wavelength was thus determined t o be 405.18 2 0.02 nm corresponding t o a threshold energy f o r photodetachment of 3.0591 2 0.0001 eV.

4. m e C l - Photodetachment Soectrum

Preliminary s t u d i e s of t h e photodetachment from Cl' and Br' atoms have been made.

The primary mechanism f o r t h e production of t h e atomic halogen negative i o n s i n t h e low p r e s s u r e discharge i s through d i s s o c i a t i v e attachment of t h e diatomic n e u t r a l ,

The c r o s s s e c t i o n s f o r t h i s process a r e much lower f o r C 1 and Br2 than f o r I /5/

and t h u s t h e X- c o n c e n t r a t i o n s a r e much lower. Figure 5 &ows t h e photodetaciment s p e c t r u m of C l ' r e c o r d e d a s t h e l a s e r w a v e l e n g t h w a s s c a n n e d f r o m 344.0 t o 341.5 nm. Although t h i s s p e c t r u m r e p r e s e n t s p r e l i m i n a r y d a t a i t i s c l e a r t h a t t h e signal-to-noise r a t i o i s much lower than i n t h e i o d i n e spectrum. Nonetheless, t h e s p e c t r u m i n d i c a t e s t h e o n s e t of d e t a c h m e n t a t 342.55 f 0.25 nm. These e r r o r l i m i t s a l s o r e f l e c t some u n c e r t a i n t y i n t h e a b s o l u t e w a v e l e n g t h s i n c e a f u l l c a l i b r a t i o n h a s n o t y e t been made. T h i s c o r r e s p o n d s t o a n e n e r g y t h r e s h o l d o f 3.6184 2 0.0025 eV.

344 0 343.5 343.0 342.5 342.0 341.5 LASER WAVELENGTH (nm)

Figure 5. The c h l o r i n e photodetachment optogalvanic spectrum.

A t f i r s t i t would seem t h a t o t h e r compounds w i t h l a r g e r e l e c t r o n attachment c r o s s s e c t i o n s , such a s halogenated polyatomic molecules, might provide b e t t e r sources of C l ' i o n s . I t h a s been n o t e d , f o r example, t h a t m u l t i p l e h a l o g e n s u b s t i t u t i o n g r e a t l y i n c r e a s e s t h e d i s s o c i a t i v e attachment c r o s s s e c t i o n and t h u s t h e l a r g e s t c r o s s s e c t i o n s a r e f o u n d f o r m o l e c u l e s s u c h a s C C 1 4 /g/. However, n e a r t h e t h r e s h o l d p h o t o d e t a c h e d e l e c t r o n s h a v e no e x c e s s k i n e t i c e n e r g y and s i n c e t h e m a g n i t u d e of t h e d i s s o c i a t i v e a t t a c h m e n t c r o s s s e c t i o n f o r C C 1 4 f o r e l e c t r o n e n e r g i e s

<

1 eV i s very l a r g e , these e l e c t r o n s a r e e f f i c i e n t l y scavenged and t h u s cannot c o n t r i b u t e t o t h e optogalvanic signal.

.

.

5. P o s s i b l e F i e l d a n d E n v i r o n m e n t a l E f f e c t s o n t h e E l e c t r o n A f f i n l k y De t e r m i n a t i o m

I n t h e l a s e r o p t o g a l v a n i c t e c h n i q u e r e p o r t e d h e r e t h e s i m p l e , compact, and i n e x p e n s i v e d i s c h a r g e t u b e r e p l a c e s t h e complex i o n g e n e r a t i o n , h a n d l i n g and d e t e c t i o n apparatus of t h e crossed-beam method. However, t h e energy r e s o l u t i o n i n

(6)

t h e optogalvanic measurements could be blurred due t o t h e i n f l u e n c e s of t h e complex d i s c h a r g e e n v i r o n m e n t . C o n t r i b u t i o n s t o t h e inhomogeneous l i n e w i d t h i n a d c d i s c h a r g e i n c l u d e b o t h t h e Doppler e f f e c t , due t o t h e m o t i o n o f t h e i o n s i n t h e e l e c t r i c f i e l d , and S t a r k b r o a d e n i n g e f f e c t s due t o t h e p r e s e n c e o f f l u c t u a t i n g microfields. I n a d d i t i o n t o broadening, t h e photodetachment t h r e s h o l d energy may be s h i f t e d by b o t h Doppler a n d f i e l d e f f e c t s . The i n f l u e n c e of t h e s e f a c t o r s i l l

determining t h e e l e c t r o n a f f i n i t y of I- i n t h i s work i s now considers,.

The e s t i m a t e d p o t e n t i a l g r a d i e n t i n t h e d i s c h a r g e , away f r o m t h e c a t n o d e f a l l r e g i o n , i s

..

10 V cm'l and t h u s t h e m o b i l i t y o f I' i o n s i n a n e n v i r o n m e n t of 0.1 Torr I2 i s c a l c u l a t e d t o be o n the o r d e r o f 105 cm S-'. While t h i s d r i f t v e l o c i t y i s almost a n o r d e r of magnitude l a r g e r than t h e average molecular v e l o c i t i e s i n t h e discharge, t h e t r a n s v e r s e geometry of t h e l a s e r probe e n s u r e s t h a t t h e component of t h e d r i f t v e l o c i t y i n t h e l a s e r beam d i r e c t i o n i s very s m a l l . The Doppler e f f e c t t h e r e f o r e h a s a n e g l i g i b l e e f f e c t o n t h e p o s i t i o n of t h e t h r e s h o l d , and i t s a p p a r e n t w i d t h , which i s c a l c u l a t e d t o be

-

0.02 cm", i s much s m a l l e r t h a n t h e l a s e r l i n e w i d t h of 0.6 cm'l. I t i s p e r t i n e n t t o compare t h e Doppler s h i f t s e x p e c t e d i n t h e o p t o g a l v a n i c e x p e r i m e n t w i t h those observed i n t h e crossed-beam e x p e r i m e n t s i n which t h e i o n s a r e a c c e l e r a t e d t o h i g h k i n e t i c e n e r g i e s . While, l i k e t h e t r a n s v e r s e g e o m e t r y of t h e o p t o g a l v a n i c e x p e r i m e n t , t h e crossed-beam geometry minimizes the s h i f t , t h e angular divergence of t h e beams ( i o n and l a s e r ) i s u s u a l l y s u f f i c i e n t t o i n t r o d u c e s i g n i f i c a n t Doppler s h i f t s t o t h e o b s e r v e d photodetachment threshold.

I n t h e low p r e s s u r e discharge used i n t h e optogalvanic experiment t h e negative i o n s under study a r e not i n a n i d e a l f i e l d - f r e e environment. Rather, i n a d d i t i o n t o t h e discharge f i e l d discussed above, each i o n i s surrounded by an atmosphere of charged s p e c i e s described by t h e Debye-Hiickel p o t e n t i a l /TO/. The motions of t h e s e s p e c i e s c a u s e t h i s p o t e n t i a l t o f l u c t u a t e t h e r e b y c a u s i n g a b r o a d e n i n g o f t h e p h o t o d e t a c h m e n t t h r e s h o l d due t o t h e S t a r k e f f e c t . The c o n t i n u u m l i m i t i s more s e n s i t i v e t o S t a r k e f f e c t s t h a n t h e ground s t a t e . Such b r o a d e n i n g h a s been o b s e r v e d i n a b s o r p t i o n s t u d i e s of shock-produced p l a s m a s / l l / , e v i d e n c e d by t h e o b s e r v a t i o n o f a 1 5 cm" + e d t a i l n t o t h e t h r e s h o l d . The m a g n i t u d e of t h e S t a r k b r o a d e n i n g i n t h e dc d i s c h a r g e employed h e r e c a n be e s t i m a t e d f r o m a c o m p a r i s o n w i t h t h e shook-plasma experiments. The c r i t i c a l f a c t o r governing t h e i n t e n s i t y of t h e m i c r o f i e l d s i s t h e i o n number d e n s i t y n. Electron d e n s i t i e s of 1

o7

and a negative i o n t o e l e c t r o n r a t i o of 102 have been measured /12/ i n t h e Faraday dark s p a c e and p o s i t i v e column o f a n i o d i n e glow d i s c h a r g e under c o n d i t i o n s c l o s e 1 s i m i l a r t o those used i n t h i s sork. The negative i o n c o n c e n t r a t i o n of n

=

l o g cm'

3

i s s i x o r d e r s of magnitude l e s s than t h a t e s t i m a t e d f o r t h e shock-produced plasma.

The e f f e c t o f S t a r k b r o a d e n i n g i n t h e o p t o g a l v a n i c d i s c h a r g e i s t h e r e f o r e s m a l l compared t o o t h e r broadening mechanisms.

For photodetachment (photoionization) of a n e u t r a l species, f i e l d enhancement can cause l a r g e s h i f t s i n t h e threshold energy. This is because t h e photodetachment continuum i s bounded by Rydberg l e v e l s which c a n be e f f e c t i v e l y f i e l d i o n i z e d . T h i s i s n o t t h e c a s e f o r a n e g a t i v e i o n s i n c e t h e Rydberg s t a t e s a r e a b s e n t . Furthermore, t h e Debye-Hiickel p o t e n t i a l a f f e c t s a l l s t a t e s by t h e same, constant amount and t h e r e f o r e w i l l not change t h e threshold energy.

The method of a n a l y s i s employed i n c l u d e s t h e wavelength c a l i b r a t i o n uncertainty, and t h e (semiempirical) procedure used f o r t h e t h r e s h o l d d e t e r m i n a t i o n i n c o r p o r a t e s a l l b r o a d e n i n g f a c t o r s . The s h a r p r i s e o b s e r v e d i n t h e p h o t o d e t a c h m e n t c r o s s s e c t i o n (see Figs. 3 & 5) a t t e s t s t o t h e absence of s i g n i f i c a n t broadening effects.

The e l e c t r o n a f f i n i t y of i o d i n e was t h e r e f o r e determined t o be,

and f o r c h l o r i n e we f i n d

(7)

C7-466 JOURNAL D€ PHYSIQUE

The agreement between t h e s e v a l u e s and those from previous s t u d i e s /9,13/ s u g g e s t s t h a t t h e m a g n i t u d e o f t h e e r r o r s o u r c e s i n t h e o p t o g a l v a n i c method have been a s s e s s e d correctly.

6. Photodetac&ncnt SDectroscoDv f o r t h e Studv of Molecular Negative Ion9

I n a r e c e n t p a p e r /14/ S c h u l z e t a 1 have d e s c r i b e d t h e a p p l i c a t i o n o f t h r e s h o l d photodetachment spectroscopy t o t h e study of ON- and OD-. We suggest t h a t t h e i o n beam s o u r c e i n t h i s t y p e o f e x p e r i m e n t c o u l d be r e p l a c e d by a n o p t o g a l v a n i c d i s c h a r g e c e l l . I n t h e s t u d i e s of OH' t h e p h o t o d e t a c h m e n t w a s a s i n g l e p h o t o n p r o c e s s . The s p e c t r u m a p p e a r s a s a s e r i e s o f a b r u p t r i s e s o n t o p o f a g e n e r a l l y r i s i n g s i g n a l and r e f l e c t s t h e i n c r e a s e s i n t h e photodetachment c r o s s s e c t i o n w i t h both i n c r e a s i n g photon energy and t h e opening of new detachment channels. Apart from the c o n s t a n t l y r i s i n g background, t h e d i f f e r e n t i a l of t h e observed spectrum c o r r e s p o n d s t o t h e a b s o r p t i o n s p e c t r u m o f t h e n e g a t i v e i o n and i n f o r m a t i o n r e g a r d i n g t h e r o t a t i o n a l and v i b r a t i o n a l s t r u c t u r e can be e x t r a c t e d i n t h e normal way.

Many molecular negative i o n s have s t a b l e and a c c e s s i b l e e l e c t r o n i c s t a t e s below t h e photodetachment threshold. For example t h e 0-0 band of t h e

~~c - x2z+

t r a n s i t i o n of C: l i e s n e a r 18450 cm". A s e c o n d p h o t o n w i t h t h i s e n e r g y i s s u $ f i c i e n t t o p h o t o d e t a c h t h e e l e c t r o n f r o m t h e B s t a t e a n d t h u s t h e B-X t r a n s i t i o n c a n be s t u d i e d by means of two-photon resonant detachment /15/. I n t h i s case t h e spectrum w i l l appear a s a normal s e r i e s of peaks r a t h e r than s t e p s a s i n t h e s i n g l e photon p r o c e s s . Also, i n a n a n a l o g o u s t e c h n i q u e t o m u l t i - c o l o u r r e s o n a n t i o n i z a t i o n spectroscopy two o r more photons of d i f f e r e n t e n e r g i e s can be used.

S i n c e p h o t o d e t a c h e d e l e c t r o n s c a n be m o n i t o r e d unambiguously i n a n optogalvanic e x p e r i m e n t , a n d s i n c e t h e l o w p r e s s u r e d c d i s c h a r g e can produce s i g n i f i c a n t c o n c e n t r a t i o n s of n e g a t i v e i o n s , o p t o g a l v a n i c photodetachment spectroscopy holds g r e a t p r o m i s e f o r t h e s p e c t r o s c o p i c s t u d y o f both a t o m i c and m o l e c u l a r n e g a t i v e ions.

The r e s e a r c h d e s c r i b e d i n t h i s p a p e r w a s p e r f o r m e d a t t h e J e t P r o p u l s i o n Laboratory, C a l i f o r n i a I n s t i t u t e of Technology, under c o n t r a c t w i t h t h e National Aeronautics and Space Administration.

7. References

GREEN R. B., KELLER R. A., LUTHER G. G., SCHENCK P. K. and TRAVIS J. C., IEEE J. Quantum E l e c t r o n .

W,

( 1 977) 63.

GOLDSMITH J. E. M. and LAWLER J. E., Contemp. Phys.

a,

(1981) 235, and r e f e r e n c e s t h e r e i n .

WEBSTER C. R. and RETTNER C. T., L a s e r Focus 19(2)( 1 983) 41, and r e f e r e n c e s t h e r e i n .

WEBSTER C. R., M C D E R M I D I. S. and RETTNER C. T., J. Chem. Phys.

D,

(1983)

646.

MASSEY H., m a t i v e

m,

3 r d Ed., Cambridge University Press, 1976.

HANER D. A., WEBSTER C. R., FLAMANT P. H. and MCDERMID I. S., Chem. Phys.

L e t t . (1983) 302.

WIGNER E. P,, Phys. Rev.

11

(1948) 1002.

BERRY R. S., REIMANN C. W. and SPOKES G. N. J. Chem. Phys. 31 (1962) 2278.

CHRISTOPHOROU L. G., A t o m i c

and

M o l e c u l a r R a d i a t i o n P h v s i c s , Wiley- I n t e r science, 197 1.

DEBYE P. and HUCKEL E., Phys. 2. 24 (1923) 185.

BERRY R. S. and REIMANN C. W., J. Chem. Phys.

38

(1963) 1540.

SPENCER-SMITH J. L., P h i l o s Mag. (1935) 806.

STEINER 9., SEMAN M. L. and BRANSCOMB L. M., J. Chem. Phys.

XL

(1962) 1200.

SCHULZ P. A., MEAD R. D., JONES P. L. and LINEBERGER W. C., J. Chem. Phys. 13_

(1982) 1153.

LmEBERGER W. C. and PATTERSON T. A., Chem. Phys. Lett. (1972) 40.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to