• Aucun résultat trouvé

MÖSSBAUER SPECTROSCOPY AND COMPLEMENTARY TECHNIQUES : EXAFS AND µSR

N/A
N/A
Protected

Academic year: 2021

Partager "MÖSSBAUER SPECTROSCOPY AND COMPLEMENTARY TECHNIQUES : EXAFS AND µSR"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00219572

https://hal.archives-ouvertes.fr/jpa-00219572

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MÖSSBAUER SPECTROSCOPY AND

COMPLEMENTARY TECHNIQUES : EXAFS AND µSR

J. Chappert

To cite this version:

J. Chappert. MÖSSBAUER SPECTROSCOPY AND COMPLEMENTARY TECHNIQUES : EXAFS AND µSR. Journal de Physique Colloques, 1980, 41 (C1), pp.C1-9-C1-16. �10.1051/jphyscol:1980102�.

�jpa-00219572�

(2)

JOURNAL DE PHYSIQUE

Colloque

C l

, supplc5ment au n

O

1 , Tome 41, janvier 1980, page

(21-9

!~SSBAUER SPECTROSCOPY AND COMPLEMENTARY ECHNIQUES : EXAFS AND PSR

J. Chappert

Centre drEtudes NucZe'aires de GrenobZe, D.R.F./Laboratoire d l I n t e r a c t i o n s Hyperfines, 85 X

-

38042 GrenobZe Cgdex, France.

ABSTRACT

An i n t r o d u c t i o n t o t h e p r i n c i p l e s o f t h e EXAFS and uSR techniques i s pre- sented f o l l o w e d by a review of v a r i o u s a p p l i c a t i o n s w i t h t h e h e l p o f t y p i c a l exam- p l e s t a k e n h m t h e r e c e n t l i t e r a t u r e . Comparison i s made w i t h r e s u l t s from o t h e r techniques, Massbauer spectroscopy i n p a r t i c u l a r .

Most o f t h e i n t e r n a t i o n a l conferences are one must "peel t h e onion", i . e . e l i m i n a t e t h e t o p i c s o r i e n t e d . Very few meetings a r e l i m i t e d p a r t s r e l e v a n t t o t h e technique. This i s more t o the a p p l i c a t i o n s o f a p a r t i c u l a r technique e a s i l y done i f one uses d i f f e r e n t approaches t o and when t h i s happens i t i s u s u a l l y o n l y d u r i n g describe o r t o apply these concepts.

t h e f i r s t years o f development. S t i l l meetings

F i n a l l y t h e danger o f such meetings may devoted t o t h e a p p l i c a t i o n s o f t h e MSssbauer e f f e c t

r e s i d e i n t h e l a c k o f challenge from s c i e n t i s t s Continue t o be organized twenty years o r so a f t e r

working i n o t h e r f i e l d s . One may q u e s t i o n t h e t h e b i r t h d a y o f t h i s spectroscopy. I t i s there-

system o f " i n t e r n a l " referees i n which t h e c r i t i - fore necessary t o be aware o f t h e p o t e n t i a l dangers

c a l e v a l u a t i o n o f t h e papers remains i n the same r e s u l t i n g e s s e n t i a l l y from t h e p o s s i b l e "confine-

s c i e n t i f i c community.

ment" o f MSssbauer s p e c t r o s c o p i s t s t o " t h e i r "

technique. For a l l these reasons, i t i s a s i n e qua non

Any s i n g l e technique, no m a t t e r how powerful, c o n d i t i o n f o r progress t h a t t h e MSssbauer spectros- gives o n l y a p a r t i a l view o f t h e s t r u c t u r e o r of

t h e p r o p e r t i e s o f m a t t e r . c o l l e c t i n g huge amounts Of data w i t h t h e h e l p o f o n l y one technique may then be s u b j e c t t o t h e law o f d i m i n i s h i n g r e t u r n s

or

even be mi'sleading w h i l e a s i n g l e a d d i t i o n a l piece of i n f o r m a t i o n provided by a complementary source may be p r i c e l e s s .

Also a s i n g l e technique deals o n l y w i t h a T i m i t e d number o f concepts. Moreover these concepts are o f t e n adapted t o t h i s technique. I n o r d e r t o r e a l l y understand t h e physics behind them,

c o p i s t s avoid g e t t i n g stuck i n a r u t and keep abreast o f any new idea. I t i s t h e r e f o r e the purpose o f t h i s t a l k t o b r i n g t o t h e i r a t t e n t i o n new techniques such as EXAFS (Extended X-ray Absorption F i n e S t r u c t u r e ) and uSR (muon Spin R o t a t i o n ) which are r a p i d l y developing and which may be complementary t o Missbauer spectroscopy.

The p r i n c i p l e s o f each technique

-

EXAFS i n t h e l e f t column, uSR i n t h e r i g h t one

-

w i l l be presen- ted, i l l u s t r a t e d w i t h t y p i c a l examples o f a p p l i c a - t i o n s taken

from the recent literature.

A

-

PRINCIPLES OF THE EXAFS AND pSR TECHNIQUES

EXAFS us R

X-rays are absorbed by m a t t e r according t o The p o s i t i v e muon

( v + )

i s a p a r t i c l e which,

the formula f o r t h e s o l i d s t a t e p h y s i c i s t , may be regarded as a

I = I exp(-ux)

0 l i g h t p r o t o n (mu = 0.11 m ) . B u t t h e p' i s n o t s t a - P

where I and I. are t h e i n c i d e n t and t r a n s m i t t e d b l e , decaying a f t e r a mean l i f e t i m e , .r = 2.2 micro- u

X-ray i n t e n s i t i e s r e s p e c t i v e l y ,

u

i s t h e 1 i near seconds, t o form a p o s i t r o n and two n e u t r i n o s :

+ + -

absorption c o e f f i c i e n t and x i s t h e absorber 1-1 + e + v + v

u e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980102

(3)

C1-10 JOURNAL DE PHYSIQUE thickness. The a b s o r p t i o n spectrum as a f u n c t i o n

o f t h e i n c i d e n t photon energy i s c h a r a c t e r i z e d by several absorption edges which correspond t o sharp increases o f 11 when t h e X-ray energy matches e x a c t l y t h e energy necessary f o r e x t r a c t i n g an i h n e r e l e c t r o n from an atom.

When U' a r e stopped i n a t a r g e t , t h e p o s i t r o n count r a t e as a f u n c t i o n o f t h e t i m e t elapsed i s given by

N = No e x p ( - t h U )

T h i s i s represented i n f i g . 2a. If however a p e r t u r - b a t i o n acts upon t h e u+ ( e x t e r n a l magnetic f i e l d ,

Fig.

1

AbbatrpxXan npecXum

LU

a ~ u n c t i a n o d i n - c i d e n t photon enehgy.

'

a / d i l a t e d a t o m ( n o EXAFS)

b/ atam w d h n e a h w t n e i g h b o w ( E X A F S

@ l g . e u 1

The absorption curve represented i n f i g . l a i3 t h a t o f a system where t h e e f f e c t of t h e neighbours can be neglected (monoatomic gas).

I n most cases however ( d i a t o m i c gas, l i q u i d , s o l i d ) the gradual decrease a t photon energies above the edge i s modulated by the Kronig o s c i 1 la t i o n s ClJ, r e c e n t l y renamed EXAFS [21 ( f i g . l b ) .

Fig.

2

T h e dependence od t h e p a o f i n count

ha-

t e e m i t t e d b y pooLtLve muom otopped i n a b o r n .

a / i n t h e aboence 06 petttwrbation b / i n

t h e p x u e n c e

04 a m a g n d c d i d d .

Vamped oobcieeatiom m e obomved [DR

opecthuml

magnetic t a r g e t )

,

osci 11 a t i o n s modulate t h e exponen- tl'al curve ( f i g . 2b). I n a d d i t i o n a damping o f these o s c i l l a t i o n s i s o f t e n observed. These f e a t u r e s c o n s t i t u t e t h e b a s i s f o r t h e new uSR spectroscopy developed i n t h e 'last few y e a r s Ill.

B

-

PHYSICAL ORIGIN OF THE SPECTRUM EXAFS

During t h e a b s o r p t i o n process, a photon w i t h energy hu disappears and a photoelectron of

ki'netic energy E i s e j e c t e d f r o m an atomic core s t a t e according t o t h e energy conservation law

E = hv

-

EK

where EK i s $he i n i t i a l b i n d i n g energy o f t h e e l e c t r o n ( f i g . 3a). I f t h e absorbing atom i s i s o l a - ted, t h e f i n a l s t a t e i s an outgoing e l e c t r o n wave and decreases monotonically w i t h energy ( f i g . l a ) except f o r a f i n e s t r u c t u r e o f complicated atomic o r i g i n observed i n t h e f i r s t 50 eV above E,. If the absorbing atom i s surrounded w i t h nearest neigh- bours, t h e outgoing wave i n t e r f e r e s w i t h t h e

backscattered e l e c t r o n waves. When t h e amplitudes o f t h e two waves add a t t h e absorbing atom s i t e ,

a maximum o f t h e X-ray a b s o r p t i o n p r o b a b i l i t y i s observed ( f i g . 3h) w h i l e f o r a s m a l l e r X-ray ener- gy, t h e p h o t o e l e c t r o n wavelength i s longer and t h e waves i n t e r f e r e d e s t r u c t i v e l y w i t h a r e s u l t i n g mi-

nimum i n t h e absorption.

Two important parameters have t o be c o n s i d e w d f o r e x p l a i n i n g t h e appearance o f o s c i l l a t i o n s . F i r s t th'e .u+ beams are h i g h l y p o l a r i z e d ( a 80 %)

,

i .e.

t h e i r spins Sp = 1/2 are p o i n t i n g i n t h e same d i r e c - t i o n , opposite t o t h e muon momentum. Second t h e emission o f t h e p o s i t r o n i s n o t i s o t r o p i c i n space b u t i s c o r r e l a t e d w i t h t h e s p i n d i r e c t i o n according t o the p r o b a b i l i t y f u n c t i o n W(e) = 1 + acose,where 8 i s t h e angle between Su and t h e p o s i t r o n d i r e c t i o n and a = 1/3 ( f i g . 4 ) . I n t h e presence o f an e x t e r - na1,magnetic f i e l d BeXt, t h e spins SU precess i n a plane perpendicular t o t h i s f i e l d w i t h a frequency w = y B where y i s t h e P

+

gyromagnetic r a t i o

P V U u

(13.55 MHz/kG) and BU i s t h e magnetic f i e l d seen by t h e ut. I t i s i m p o r t a n t t o r e a l i z e t h a t Bu i$

g e n e r a l l y d i f f e r e n t from Bext because t h e n u c l e i of t h e s o l i d c a r r y a magnetic moment and produce an a d d i t i o n a l magnetic f i e l d a t t h e P+ s i t e v i a the dip01 a r i n t e r a c t i o n . Since these moments a r e random- l y o r i e n t e d , t h e s i n g l e precession frequency w i s

u

(4)

Therefore w h i l e X-ray d i f f r a c t i o n i n v o l v e s replaced by a spectrum o f very c l o s e l y spaced f r e - interference between X-rays, EXAFS may be v i z u a l i - quencies r e s u l t i n g i n t h e damping of t h e o s c i l l a t i o n s zed as e l e c t r o n d i P f r a c t i o n where t h e source o f because o f the d e p o l a r i z a t i o n o f t h e muon ensemble.

e l e c t r o n s i s w i t h i n t h e s t u d i e d m a t e r i a l .

excited 9'

lb

bound' a' polarized

I Bma;l

I e+ detector "stop.

nea

magnetic field

F+g.

3

a/ S~henu&.Lc heptuentati.on 0 6 t h e & a ~ i -

son

occwLing when a bound demon A Fig. 4 Simptidied PSR n &-up i n a ;Dram venn e excited .to a conCinuwn b M e . m a g n d c d i d d . The $etecXoh " n ~ iden- "

b/ Intetrdehence pattehn b m e e n t h e o u t - Z i d i e h an incqming 11

,

t h e detectoh "ntop"

going ( A ofid f i n e n ) and 6 c a w e d an oLLtgoing e

.

C

-

DATA ANALYSIS

EXAFS PSR

The EXAFS, ( k )

,

i s defined by x ( k )

=

) u ( k )

-

u 0 ( k ) l / u o ( k )

where k i s t h e p h o t o e l e c t r o n wave vector, u ( k ) i s the experimental a b s o r p t i o n c o e f f i c i e n t and po(k) i s i t s smooth m ~ n o t o n i c a l l y decreasing p a r t . A s i m p l i f i e d expression f o r ~ ( k ) i s 131 :

e x p ( - Z ~ ; k ~ ) s i n [ 2 k R ~ + ~ ~ ( k )

1

i = No. o f

I

d i s t i n c t distances

I

Ri

fi ( k ) = b a c k s c a t t e r i n g amp1 i tude

A i e l e c t r o n mean f r e e path P + = r o o t mean square f l u c t u a t i o n

The p o s i t r o n counting r a t e detected i n a given d i r e c t i o n as a f u n c t i o n o f t h e time t a f t e r stopping of t h e muons i n t h e substance i s given by [11 :

No = n o r m a l i s a t i o n constant r,,=p

+

l i f e t i m e

A = e f f e c t i v e decay asymmetry

P ( t ) = transverse r e 1 a x a t i o n f u n c t i o n d e s c r i b i n g t h e e v o l u t i o n o f t h e p o l a r i z a t i o n

w = Larmor precession frequency u

4 = phase constant determined by t h e p o s i t i o n of t h e p o s i t r o n d e t e c t o r

I f t h e muons d i f f u s e i n t h e s o l i d d u r i n g t h e i r l i f e t i m e , t h e damping f u n c t i o n P ( t ) i s w e l l appro- ximated by t h e ABRAGAM formula 121 :

Ri = distances between atoms

P ( t ) = exp[-02r:Cexp ( - t / - c C )

- 1 +

t / r c I l Ci ( k ) = phase s h i f t depending on t h e k i n d o f where T~ i s a c o r r e l a t i o n t i m e p r o p o r t i o n a l t o t h e

n e i ghbours

muon residence time a t a g i v e n s i t e and u2 i s t h e We see t h a t t h e EXAFS s i g n a l i s p r o p o r t i o n a l second moment o f t h e w,, d i s t r i b u t i o n . TWO regimes of t p t h e number o f neighbours Ni a t Ri and i n v e r s e l y d i f f u s i o n can be d i s t i n g u i s h e d -:

(5)

c1-12 JOURNAL DE PHYSIQUE

p r o p o r t i o n a l t o Ri 2

.

Each c o o r d i n a t i o n sphere con-

-

f a s t d i f f u s i o n : 0'~: << 1 and P ( t ) % e x p ( - ~ ~ ~ ~ t ) t r i b u t e s a s i n e l i k e term of p e r i o d 2kRi

-

The Debye-

-

frozen muons : a 2 r $ 2, 1 and P ( t ) exp(-02t2/2).

K a l l e r type term, exp(-20!k2), i n c l u d i n g both t h e r -

b

I n t h e f i r s t case t h e damping i s L o r e n t z i a n ma1 and s t a t i c d i s o r d e r , i s responsible f o r t h e dam-

w h i l e i t i s Gaussian i n t h e second type o f regime.

p i n g o f t h e s i g n a l .

D -

APPLICATIONS EXAFS

1. Absorption edge and chemical changes

Nuclear energy l e v e l s are measurably a f f e c t e d by chemical changes i n .the valence e l e c t r o n d i s t r i - b u t i o n ; t h i s gives r i s e t o t h e w e l l known MFssbauer isomer s h i f t . I n n e r e l e c t r o n i c l e v e l s are s e n s i t i v e t o t h e chemical environment as w e l l , r e s u l t i n g i n a "chemical s h i f t " o f t h e absorption edge which r e f l e c t s t h e n e t charge o f an atom and which there- f o r e , l i k e the isomer s h i f t , can be used t o charac- t e r i z e t h e charge s t a t e of elements. As an example t h e absorption edge o f two Fe oxides i s shown i n . f i g . 5 L41. I t i s c l e a r t h a t t h e edge i s displaced towards h i g h energies when t h e charge s t a t e o f Fe increases. This has been a p p l i e d a t LURE (Orsay)

Fig. 5 S k i d t od t h e -&on K-edge t h e n h o l d doh

*wo &on oXide,b [4].

f o r t h e c h a r a c t e r i z a t i o n o f Fe i m p u r i t i e s i n glasses 151. CRAMER eJ

s.

[61 have observed a c o r r e l a t i o n between theMo K-edge p o s i t i o n and t h e c a l c u l a t e d c o o r d i n a t i o n charge o f a s e r i e s of Mo compounds. An approximately 1 i near r e l a t i o n s h i p has been

e s t a b l i s h e d which i s used t o determine t h e chemi- c a l s t a t e o f Mo i n t h e r e s t i n g nitrogenase. Such c o r r e l a t i o n s a r e a l s o w e l l known i n Mossbauer spec- troscopy [71.

I t i s worth n o t i n g t h a t t h e EXAFS method i s

also

element s p e c i f i c . STERN

g a.

[81 f o r example have examined b o t h t h e L edges of t h e r a r e e a r t h and t h e K-edge o f t h e i r o n i n a s t r u c t u r a l study of amorphous RFe2 compounds.

1. Location o f t h e muon

The i n t e r p r e t a t i o n o f most o f t h e d a t a p r o v i - ded by the vf a c t i n g as a probe necessitates the knowledge o f i t s p r e f e r e n t i a l l o c a t i o n i n t h e matter. Moreover since a f r u i t f u l analogy between 1

1

' and proton i s made by people i n t e r e s t e d i n hydro- gen d i f f u s i o n 131 i t i s a l s o o f g r e a t t e c h n o l o g i c a l i n t e r e s t t o know t h e f a t e o f t h e u

+

i n metals.

F i r s t o f a l l because o f i t s charge, t h e U+

is,expected t o remain between atoms a t i n t e r s t i t i a l S i t e s . Determination o f t h e t y p e o f i n t e r s t i t i a l s i t e i s p o s s i b l e i f one s t u d i e s t h e d e p o l a r i z a t i o n r a t e o f p+ stopped i n a s i n g l e c r y s t a l substance subjected t o an e x t e r n a l magnetic f i e l d . L e t us f o r example consider copper which has octahedral and t e t r a h e d r a l i n t e r s t i t i a l s i t e s . HARTMAW [41 has c a l c u l a t e d t h e d i p o l a r f i e l d s seen by t h e muon when BeXt i s a p p l i e d along [100], [110] o r 11111.

He found d i f f e r e n t values f o r the d e p o l a r i z a t i o n r a t e f o r t h e two types o f s i t e s . The experiments by CAMANI

9 2.

151 f i t q u i t e w e l l w i t h these c a l c u l a t i o n s i f one assumes an octahedral s i t e . L e t us note t h a t f o r such an i d e n t i f i c a t i o n Bext must be l a r g e enough i n o r d e r t o d e f i n e a quanti,- z a t i o n axis. T h i s i s because t h e pf d i s t o r t s t h e l a t t i c e and creates an e l e c t r i c f i e l d g r a d i e n t a t the nearby h o s t n u c l e i C41. Then t h e d i p o l a r f i e l d s a t t h e U+ s i t e must be c a l c u l a t e d by.assuming a Combined e l e c t r i c and magnetic i n t e r a c t i o n 163.

2. D i f f u s i o n o f t h e muon

The U+ i s g e n e r a l l y n o t s t a t i c b u t diffuses from s i t e t o s i t e v i a mechanisms which are i n many cases s i m i l a r t o those encountered i n hydrogen d i f f u s i o n [7]. However because t h e muon mass i s approximately one t e n t h t h a t o f t h e proton, quantum e f f e c t s are expected. This behaviour, t o g e t h e r w i t h t h i p o s s i b i l i t y o f d i f f u s i o n s t u d i e s a t low tempe- r a t u r e s and i n f i n u t i s i m a l concentrations, e x p l a i n s t h e surge o f i n t e r e s t from hydrogen s p e c i a l i s t s

towards uSR.

(6)

Not only i s the position of the absorption edge of i n t e r e s t but a l s o i t s shape which may r e f l e c t the presence of several charge s t a t e s .

A

promising f i e l d of i n t e r e s t in t h a t respect i s the study of the anomalies observed in a number of rare earth compounds and which are interpreted i n terms of intermediate valency 191. Such a method was a1 ready proposed f i f t e e n years ago by VAINSHTEIN & 2. El01 who analyzed the L-absorption spectra of Sm in SmB6 and concluded the presence of two valence s t a t e s sm2' and sm3+, the r e l a t i v e content of Sm 2+

representing 35 + 5 I . B o t h charge s t a t e s a r e observed because the EXAFS measuring time i s very short (%lo-15s) while a motional l y narrowed s i n g l e l i n e corresponding t o an intermediate valen- ce of 2.7 i s indicated

hy

the "longer" Miossbauer technique (lo-' sec) [ I l l . Using the same method but with the aid of high i n t e n s i t y X-ray synchrotron radiation, LAUNOIS g g. [12] have recently studied the LIiI-absorption edge i n a s e r i e s of compounds based on Ce,

Tm

and Tb. The accuracy of the valence determination i s about 1

%,

indicating f o r example

2.65 + 0.03 f o r Yb i n YbInAu2

2, Structural information

EXAFS i s a very s e n s i t i v e tool f o r measuring the local environment of the absorbing atom. Eva-

luation of the distances Ri with an accuracy of

0

(1.01

A i s

obtained via the sinusoidal interference term while the amplitude of the signal has informa- tibn on the n.n. number

N i ,

the nature of the atoms involved and t h e local disorder.

I t must be realized t h a t the accuracy on d i s - tances R i i s inherently limited by the accuracy t o which the phase s h i f t s 6i(k) are known. Fortunately CITRIN a. [13] have introduced the very impor-

.

t a n t concept of chemical transferabi 1 i t y

:

phase s h i f t s are s u f f i c i e n t l y i n s e n s i t i v e t o chemical environment so as t o be transferable from one system t o the next. Therefore, in s t r u c t u r e studies, phase s h i f t s are determined f o r an atom p a i r of known d h t a n c e s and then used t o determine the interatomic diktances i n another compound containing the same stoms but i n a d i f f e r e n t chemical environment [131.

One major f i e l d of application i s biology since many of t h e large biological molecules have a unique heavy atom which governs t h e properties of the mole- cule and which may be used as a central absorbing atom i n EXAFS studies [14]. For example in rubredo- xin, it was deduced from conventional X-ray diffrac-

Two parameters, the temperature and the impu- r t t y concentration, may influence strongly the

'p

diffusion i n a metal. In a c l a s s i c a l picture the muons appear t o be frozen a t low temperature. Muons located a t d i f f e r e n t s i t e s feel d i f f e r e n t magnetic f i e l d s and t h e i r spins precess a t d i f f e r e n t frequen- c i e s . This gives r i s e t o a strong depolarization.

A t higher temperature,the muons sample a much larger

-

fast

-

C (D L a

-

0

al 0

u

temperature

FLg.

6 CLannicd pi.icWre 06 .the !J+ diddunion i n a o f i & . A change 06 hcZghe d h 0 m aLow 20 dant di6dunion L e d 20

a

demesne

06

depoLa4ization ( m o ~ o d nmolcLing)

.

volume of s o l i d because of f a s t diffusion. Therefore they see only 3n average f i e l d and the depolariza- t i o n i s smaller ( f i g . 6). This i s the familiar motional narrowing e f f e c t well knownnot only i n

NMR

but a l s o i n Mtssbauer spectroscopy,which i s also a useful tool f o r diffusion studies

[8,91.

One knows t h a t two s i t u a t i o n s can occur depending on whether i t i s the Mossbauer nucleus which i s diffusing or not. In the f i r s t case a l i n e broadening i s observed (Au -

57

Fe [ 8 ] ) , while i n the second case motional narrowing takes place (G

H

[ l o ] ) resulting i n a narrower 1 inewidth.

The c l a s s i c a l picture described above f o r uSR does not hold a t very low temperature in ultra-pure metals where coherent tunnelling diffusion can take place

;

the muons are delocalized i n the form of a band s t a t e and depolarization i s very weak.

This i s the case i n pure aluminium 1111.

Impurities may also strongly a f f e c t diffusion since they a c t l i k e a t r a p f o r the muon. As a r e s u l t the depol a r i zation r a t e i s c h a r a c t e r i s t i c of the impurity, not of the

b u l k

material.

A

typical example i s provided by niobium [12,13]. The tempe- rature dependence of the depolarization r a t e presents a complex shape due t o successive capture

snd

release of the

!J+

by the impurities.

3 .. Hyperfi ne magnetic f i e l d

In the above studies the physical information

was e s s e n t i a l l y provided by the damping of the

osci 1 la t i o n s , i .e. the depolarization r a t e re1 ated

(7)

C1-14 JOURNAL DE PHYSIQUE

ti'on measurements t h a t t h e i r o n atom was surrounded by f o u r s u l f u r atoms a t an average d i s t a n c e of

0

2.24 A b u t w i t h one d i s t a n c e anomalously s h o r t 2..05

i.

I n f a c t EXAFS r u l e s o u t t h i s s h o r t bond l e n g t h by p u t t i n g l i m i t a t i o n s on t h e d i s t r i b u t i o n s of pos- s i b l e Fe-S distances. The d a t a are o n l y compatible w i t h bonds p r e s e n t i n g a spread i n distances of

0

0.05 A 1151. T h i s r e s u l t i s extremely i m p o r t a n t s i n c e i t was argued t h a t t h e s h o r t bond was i n v o l v e d i n a mechanism by which t t i e p r o t e i n affected t h e e l e c t r o n t r a n s f e r f u n c t i o n o f t h e molecule.

Since b i o l o g i s t s are always concerned t h a t t h e c r y s t a l l i z e d o r f r o z e n samples may n o t be iden- t i c a l t o t h e b i o l o g i c a l l y a c t i v e form, EXAFS measu- rements on l i q u i d s are w e l l s u i t e d . For example EXAFS has been used t o determine t h e s t r u c t u r e of t h e Fe-containing core o f f e r r i t i n i n s o l u t i o n C161.

Considerable s t r u c t u r a l d i s t o r t i o n appears when the sample s o l u t i o n i s frozen. T h i s d i s t o r t i o n , which does n o t seem t o have .been noted p r e v i o u s l y , leads t o reconsider t h e i n t e r p r e t a t i o n o f t h e previous '

M'dssbauer and X-rays measurements performed on C r y s t a l l i z e d m a t e r i a l s .

The EXAFS technique i s a very u s e f u l t o o l f o r t h e study o f any p r o p e r t y r e l a t e d t o a change o f h t e r a t o m i c distances such as t h e c o n t r a c t i o n of bond l e n g t h induced by an e x t e r n a l pressure. INGALLS e t a l . [17] have r e c e n t l y demonstrated t h e a b i l i t y

--

of

t h e technique i n t h e study o f t h e c o m p r e s s i b i l i t y o f p y r i t e up t o 64 kbar. The Fe-S bond i s shown t o be considerably l e s s compressible than t h e u n i t - c e l l edge, r e f l e c t i n g s t r o n g c o v a l e n t character.

C o n t r a c t i o n o f nearest neighbour distances can a l s o be observed i n small p a r t i c l e s which a r e used as c a t a l y s t s . An EXAFS study by MORAWECK

g

a l .

[ l a ]

shows t h a t i n p l a t i n u m p a r t i c l e s having

-

0

a mean diameter o f 12 A,the P t - P t d i s t a n c e i s shor- t.ened by.0.12 w i t h r e s p e c t t o i t s value i p t h e h u l k metal. Such a c o n t r a c t i o n agrees q u a l i t a t i v e l y w i t h c a l c u l a t i o n s of GORDON f o r small n o n - c r y s t a l - l o g r a p h i c p a r t i c l e s 1191. The same c o n t r a c t i o n i s a l s o observed by APAI

&s.

1201 f o r Ni and Cu c l u s t e r s ( f i g . 8 ) . The changes i n n.n. separations e x h i b i t a c l o s e correspondence t o t h e changes i n K e d g e threshold. T h i s i s e x p l a i n e i by t h e i n c r e a - s i n g surface-to-volume r a t i o as t h e c l u s t e r s i z e decreases r e s u l t i n g i n

a

more free-atom-1 i ke confi

-

g u r a t i o n o f t h e metal atoms.

t o t h e d i s t r i b u t i o n o f f i e l d s A B ~ . But t h e value o f t h e f i e l d i t s e l f ( y w ) i s a l s o o f i n t e r e s t ,

11 1-1

e s p e c i a l l y i n magnetic m a t e r i a l s [141. The f i e l d seen by t h e muon is_,

-C -e -D

-

-v

Bp = B e x t + Bdem + B~ + B d i p + B h f

f . f t t \

e x t e r n a l demagne- Lorentz dip01 a r hyperfine t i z i n g

Several remarks must be made :

i

.

The muon measures t h e f i e l d a t i n t e r s t i t i a l s i t e s w h i l e most o f t h e o t h e r spectroscopies (NMR, Massbauer) t e s t t h e s u b s t i t u t i o n a l s i t e s , ii. The experimental values o f B are very small

l '

( a few kG) compared w i t h most o f n u c l e a r hyper- f i n e f i e l d s .

iii .As a consequence, BL and Bdip (from e l e c t r o n i c moments) p l a y an i m p o r t a n t r o l e and t h e i r pre- c i s e e v a l u a t i o n i s e s s e n t i a l 1151.

i v . Bhf e x i s t s o n l y i n m e t a l l i c samples. I t o r i g i - nates from t h e p o l a r i z e d conduction e l e c t r o n s Since t h e muon does n o t possess an e l e c t r o n i c core. This p o l a r i z a t i o n i s due e i t h e r t o Bext (Knight s h i f t ) o r t o t h e l o c a l magnetization i n magnetic m a t e r i a l s

.

v. The s i g n o f B can be determined by comparing t h e phase constants

v o

o f several p o s i t r o n detectors placed around the sample.

Several s t u d i e s of magnetic s o l i d s have a l r e a - dy been performed. L e t us quote f o r example a-Fe2O3, w e l l known t o MSssbauer s p e c t r o s c o p i s t s . I n t h i s m a t e r i a l By = Bdip i n t h e absence o f Bext. T h i s

0 100 1000

temperature

Fig. 7 Tempehatwre dependence 0 6 hypm6ine b i d o h i n hematite.

a / 57Fe M6ni64baueh n p e a o n e o p y : t h e chan- ge

06

8 4 4

at

t h e Mohin

on

TU

O

batrdy v O i b l e because

B

<<

B

&P

e6d

(8)

9020 9420 9820

e n e r g y (eV

8 Coppm K-edge EXAFS npc&a doh a doil and

-

a hehies od couertages. kt umy

l o w

coue- hage Ahe EXAFS 6Lgna.t d i n a p p m (AoLa- Zed atom]

.

Sm& nhow conthaotion od nemuZ-n&ghboum.

The mean f r e e p a t h o f t h e e1ect;on waves i n t h e s o l i d being o f t h e o r d e r o f 5-10 A, t h e p e r i o d i - c i t y o f t h e l a t t i c e does n o t p l a y an i m p o r t a n t r o l e and EXAFS can be used e q u a l l y w e l l f o r systems i n c r y s t a l l i n e o r n o n - c r y s t a l l i n e forms [4,221 .SAYERS a1

.

[ Z l ] were t h e f i r s t t o demonstrate t h e p o s s i b i l i t y

-

Of t h e technique i n Ge02 glass. T h e i r r e s u l t s r u l e Out t h e proposed m i c r o c r y s t a l l i n e model and are i n agreement w i t h a random network model i n which t h e s t r u c t u r e i s b u i l t from Ge02 t e t r a h e d r a connected by oxygen w i t h d e v i a t i o n about bond angles d e s t r o y i n g t h e long-range p e r i o d i c i t y .

L i m i t a t i o n s o f t h e EXAFS technique f o r t h e study o f disordered m a t e r i a l s must however be consi- dered because of incomplete t h e o r e t i c a l treatment of averaging t h e s p e c t r a and o f t h e l a c k o f low momen- tum t r a n s f e r i n f o r m a t i o n 1231.

a l l o w s a p r e c i s e study o f t h e Morin t r a n s i t i o n ( f i g . 7 )

[I61

since BU changes by a f a c t o r 2 a t t k e t r a n s i t i o n , 1 i ke t h e quadrupole i n t e r a c t i o n i n Mdssbauer spectroscopy. Another e x t e n s i v e l y s t u d i e d m a t e r i a l i s c o b a l t where b o t h Bdip and Bhf p l a y an i m p o r t a n t r o l e [17,181.

Since Bhf o r i g i n a t e s o n l y from t h e polarsized conduction e l e c t r o n s a t t h e i n t e r s t i t i a l s i t e , i t i s i n t e r e s t i n g t o compare Bhf i n ferromagnetic me- t a l s w i t h t h e l o c a l i n t e r s t i t i a l magnetization Mint, measured by p o l a r i z e d neutrons, o r w i t h t h e b u l k magnetization Ms. Several observations can be made

PI81

i. Bhf cannot be scaled by the b u l k magnetization.

ii. Bhf i s always n e g a t i v e i n agreement w i t h t h e negative Mint v z l ues

.

i ii

.

No p r o p o r t i o n a l i t y constant holds between Bhf and +int 8 : f o r example i n Fe t h e muon f e e l s a s t r o n g l y enhanced f i e l d . T h i s enhancement i's g e n e r a l l y a t t r i b u t e d t o screening o f t h e muon b y t h e conduction e l e c t r o n s .

i v . The temperature dependence o f Bhf does n o t f o l l o w t h a t o f t h e b u l k magnetization.

Some p o s s i b l e o r i g i n s f o r these d e v i a t i o n s have been proposed :. d i s t o r t i o n o f the l a t t i c e by t h e muon, f i n i t e s i z e of t h e muon l o c a t i o n , scree- n i n g by conduction e l e c t r o n s 1181, volume expansion e f f e c t 1191. No d e f i n i t e conclusion has however been drawn since i t i s l i k e l y t h a t a l l o f them c o n t r i b u t e more o r l e s s simultaneously. One can conclude however t h a t the pi i s n o t an "innocent"

probe. It i s t h e r e f o r e important t o understand t h e mechanism of t h e response o f t h e conduction e l e c - t r o n s t o t h e p e r t u r b a t i o n o f t h e p o s i t i v e muon.

COMPARISON OF THE TECHNIQUES

f

samp e o m

I

materiallli:itations (

( element s p e c i f i c : ( i m p u r i t y s e n s i t i v e : ( c h a r a c t e r i s t i c time : ( t y p i c a l sample s i z e :

f

need o f a b i g machine :

I

MOSSBAUER

s o l i d l i m i t e d number o f

n u c l e i

no 10'7-10-9 sec

100 mg

EXAFS

PC-

s o l i d , l i q u i d , gas : s o l i d , l i q u i d , gas ) ) almost any element : elements w i t h l a r g e ) : n u c l e a r o r e l e c t r o n i c ) : magnetic moments )

Yes no

1

no yes

1 0 - l 5 sec 10-6 sec

j

100 mg 10-30 g )

p r e f e r a b l y Yes

1

1

(9)

C1-16 JOURNAL DE PHYSIQUE E

-

CONCLUSION

I t may be wondered, i f EXAFS and pSR a r e i n - deed such u s e f u l t o o l s f o r t h e study of condensed matter, why have they n o t been developed l o n g ago.

As e a r l y as the 19301s, EXAFS had been observed and q u a l i t a t i v e l y e x p l a i n e d by KRONIG

.

I n 1957

GARWIN, LEDERMAN and WEINRICH (Phys. Rev.

105

(1957) 1415) conceived t h e p r i n c i p l e s o f D R . But, because o f t h e o r e t i c a l and experimental d i f f i- c u l t i e s , i t i s o n l y i n t h e e a r l y 1970's t h a t b o t h techniques s t a r t e d t o develop r a p i d l y . U n t i l t h a t time EXAFS lacked q u a n t i t a t i v e understanding and i n t e n s e photon beams, l a t e r p r o v i d e d by synchro-

REFERENCES EXAFS

E l l K r ~ n i g , R. de L., Z. Phys. 70 (1931) 317.

121 Sayers, D.E., L y t l e , F.W. and Stern, E.A., l n Advances i n X-ray Analysis, ed. Henke, B.L., Newkirk, J.B. and M a l l e t t , G.R. (Plenum, N.Y.) 1970, v o l

.

13.

131 Stern, E.A., Phys. Rev. B10 (1974) 3027.

141 Raoux, D., Petiau, J., BoEiot, P., Calas, G., Fontaine, A., Lagarde, P., L e v i t z , P., Loupias, G. and Sadoc, A.; Rev. Phys. Appl., t o be Published.

151 Bondot, P., Calas, G., L e v i t z , P., Loupias, G., and Petiau, J., Colloquium o f the French Physi- c a l Society, Toul ouse (1979)

.

161 Cremer, S.P., Eccles, T.K., K u t z l e r , F.W. and Hodgson, K.O., J. Am. Chem. Soc. 98 (1976) 1287 171 Herber, R., Adv. Chem. Ser. 68 (1%7) 8.

C81 Stern, E.A., R i n a l d i , S., CaTfen, E., Heald, S.

and Bunker, B., J . Magn. Magn. Mat.

1

(1978) 188.

191 Hewson, A.C., J . Magn. Magn. Mat.

12

(1979) 83.

[ I 0 1 Vainshtein, E.E., Blokhin, S.M. and Paderno, Yu.B., Sov. Phys. Sol. S t a t e 6 (1965) 2318.

C111 Cohen, R.L., Eibschutz, M. ana West, K., Phys.

Rev. L e t t . 24 (1970) 353.

El21 Launois, ~.,Raviso, M., Holland-Mari t z , R., P o t t , R., Sereni, J. and Wohlleben, D., I n t e r n . Conf. Magnetism, Munich (1979).

1131 C i t r i n , P.H., Eisenberger, P. and Kincaid, B.M., Phys. Rev. L e t t . 36 (1976) 1346.

C141 Eisenberger, P. a x Kincaid, B.M., Science

200

(1978) 1441.

C'151 Sayers, D.E., Stern, E.A. and H e r r i o t t , J.R., J. Chem. Phys. 64 (1976) 427.

1161

Heald, S.M., Stern, E.A., Bunker, B., H o l t , E.M. and H o l t , S.L., J. Am. Chem. Soc.

101

(1979) 67.

[ I 7 1 I n g a l l s , R., Garcia, G.A. and Stern, E.A., Phys. Rev. L e t t .

40

(1978) 334.

El81 Moraweck, B., Clugnet, G. and Renouprez, A.J., S u r f . Sci

.

8 1 (1979) L631.

C191 Gordon, M.B: Thesis, U n i v e r s i t@ de Grenoble (1978) ; Gordon, M. B.

,

Cyrot-Lackmann

,

F

. ,

Desjonqueres, M.C., Surface S c i .

68

(1977)

359.

1201 Apai

,

G.

,

Hami 1 ton, J. F.

,

~ t i i i r , J

.

and

Thompson, A., Phys. Rev. L e t t .

43

(1979) 165.

1211 Sayers, D.E., Stern, E.A. and L y t l e , F.W., Phys. Rev. L e t t . 35 (1975) 584.

E221 Hayes, T.M., J. N c Cryst. S o l i d s 3 1 (1978) 57 [23] Eisenberger, P. and Brown, G.S., S T . S t a t e

Commun.

2

(1979) 481.

t r o n r a d i a t i o n , w h i l e h i g h energy p h y s i c i s t s were i n t e r e s t e d i n t h e muon i t s e l f , n o t i n

USR

and s o l i d s t a t e e f f e c t s considered as a nuisance.

These two techniques, using now e s s e n t i a l l y b i g machines such as dedicated storage r i n g s f o r EXAFS, synchrocyclotrons o r meson f a c t o r i e s f o r pSR, have c e r t a i n l y a b r i g h t f u t u r e i n t h e study o f con- densed matter. L e t us hope t h a t Missbauer spectros- c o p i s t s w i l l s t r o n g l y c o n t r i b u t e t o t h e i r development

G.N. RAO i s g r a t e f u l l y acknowledged f o r a c r i t i c a l reading o f t h e manuscript.

REFERENCES uSR

[I] B r e ~ e r ,

J,H,

and Crowe, K.M.. Ann. Rev. Nucl.

P a r t . Sci'. 28 (1978) 239,

[21 Abragam,

he

P r i n c i p l e s o f Nuclear Magne- t i sm (Oxford, London) 1971.

C31 Seeger, A., i n Hydrogen i n Metals I, ed.

A l e f e l d , G. and VSlkl, J . (Springer, B e r l i n ) 1978.

E41 ~ a r t m a n n , O., Phys. Rev. L e t t .

2

(1977) 832.

C51 Camani, M., Gygax, F.N., Ruegg, W. ,Schenck, A,, a n d s c h i l l i n g , H., Phys. Rev. L e t t .

2

(1977)

Q 9 c U J O

.

161 Matthias, E., Schneider, W. and Stefen, R.M., Phys. Rev.

125

(1962) 261.

171 Kehr, K.W., i n Hydrogen i n Metals I, ed.

A l e f e l d , G. and V o l k l , J. (Springer, B e r l i n ) 1978.

C81 Mullen, J.G. and Knauer, R.C., i n MBssbauer E f f e c t Methodology, ed. Gruverman, I. J . (Plenum N.Y.) 1970, v o l . 5.

[91 Janot, Ch., J. de Phys. 37 (1976) 253.

C l O l Heidemann, A., Kaindl, G T Salomon, D., Wipf, H. and Wortmann, G., Phys. Rev. L e t t .

36

(1976)

213.

El11 Hartmann, O., Karlsson, E., N o r l i n , L.O., R i c h t e r , 0. a n d N i i n i k o s k i , T.O., Phys. Rev.

L e t t . 4 1 (1978) 1055.

[ I 2 1 Borghiii'f, M., N i i n i k o s k i

,

T.O., Souli@, J.C., Hartmann, O., Karlsson, E., N o r l i n , L .O., Pernestal, K., Kehr, K.W., R i c h t e r , D. and Walker, E;

,

phys. Rev. L e t t .

40

(1978) 1723 ; HYD. I n t e r . 6 (1978) 229.

El31 ~ j r n b a u m ,

H . X . ;

~ a n i a n i , M., F i o r y , A.T., Gygax, F.N., Kossler, W.J., Ruegg, W., Schenck, A.

and S c h i l l i n g , H., Phys. L e t t . 65A (1978) 435.

1141 Yamazaki

,

T., Physica 86-88B ( 1 3 7 ) 1053.

[ I 5 1 Kronmuller, H., H i l z i n g e r , H.R., Monachesi, P.

and Seeger, A., Appl. Phys.

18

(1979) 183.

C161 Graf, H., Hofmann, W., Kiindig, W., Meier, P.F., Patterson, B.D. and Rodriguez, A., Sol. S t a t e Comnun. 25 (1978) 1079.

1171 Graf, H.,Kindia. - . W . , Patterson, B.D., Reichart, W., Rogg"il let-,-P., ~ a m a n i

,

M., - ~ ~ ~ a x j F.N., - Schenck, A. and S c h i l l i n g , H., Phys. Rev. L e t t . 37 (1976) 24.

C181 m s h i d a , N., Nagamine, K., Hayano, R.S., Yamazaki

,

T., Fleming, D.G., Duncan, R.A., Brewer, J.H., Ahktar, A. and Hasnoka, H., J. Phys. Soc. Japan

44

(1978) 1131.

1191 Butz, T., Chappert, J., Dufresne, J.F., Hartmann, O., Karlsson, E., Lindgren, B., Longobardi

,

R., N o r l i n , L.O., P e z e t t i , J.P and Yaouanc, A., I n t e r n . Conf. Magnetism, Munich (1979).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to