• Aucun résultat trouvé

Computation of Greeks using Malliavin's calculus in jump type market models

N/A
N/A
Protected

Academic year: 2021

Partager "Computation of Greeks using Malliavin's calculus in jump type market models"

Copied!
35
0
0

Texte intégral

(1)

HAL Id: inria-00070525

https://hal.inria.fr/inria-00070525

Submitted on 19 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non,

Computation of Greeks using Malliavin’s calculus in jump type market models

Marie-Pierre Bavouzet, Marouen Messaoud

To cite this version:

Marie-Pierre Bavouzet, Marouen Messaoud. Computation of Greeks using Malliavin’s calculus in jump type market models. [Research Report] RR-5482, INRIA. 2005, pp.31. �inria-00070525�

(2)

ISRN INRIA/RR--5482--FR+ENG

a p p o r t

d e r e c h e r c h e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computation of Greeks using Malliavin’s calculus in jump type market models

Marie-Pierre Bavouzet and Marouen Messaoud

N° 5482

February, 1 2005

(3)
(4)

-

$

-

$&.! /0 2134 56 7 $!

8:9<;&=?>A@&BC=D>E;&;&>GFH9JILKNMOP>PQ

92RST8:92;&KNM>JRT8U>EVWVX9YKLMS

Z[]\&^`_acbCdfe gJhJikjl\&^`_&inmPo]^p!qlrtsJou_&i

vwqlxzyk_jCd{wZ(|c}~

n€‚]<xAqkj5ƒ]_%ql_&„…[u_&ql„…[u_†mY‡wˆŠ‰Œ‹ŒŽe }2_!]qlo]€‚qkh‚ ‘Š’A’Œˆ%e”“E‘]€‚•A_&i

–˜—™!šœ›z]ž‚šŒŸ   _¡o]ik_`jl[]_dŽ€‚¢t¢£r¤€œ¥Jr£mŽ„œ€‚¢t„&o]¢to]iC¦DxAq%v§x‚r£ilikxAmG]qlxJ„&_!ilil_!irtm3xAqlƒ]_!qj¨x

„&xA^`]oujl_Hil_!m]ilr©j¨rt¥Jr©j¨r£_!iª¦DxAqC«¬ouqlxA<_œ€‚m­xAEj¨r£x‚m]iª®(r©j¨[3o]m]ƒu_&ql¢©hJr£m]•˜¦DxA¢t¢£xW®(r£mu•)€yko]^`

j¯hE<_%ƒ]rt°Lo]ikr£xAm0±

Z[]_²^€‚rtm³<xArtmPj`rti¡jlx´ik_!jkj¨¢£_²€‚m³r£mŒj¨_!•Aq¨€zj¨r£x‚m³Œh³Y€‚qµj¨i¶¦DxAqk^Ho]¢¤€³·Dilr£^`r£¢£€‚qjlxGjl[]_

xAm]_r£mj¨[]_dŽ€Š¢£¢£r£€œ¥Ertm)„&€‚¢£„!o]¢£o]i¨¸¹¦DxAq€H•‚_&m]_!q¨€‚¢0^o]¢tjlr£ƒ]rt^_!m]ilrtxAmY€‚¢Yql€‚m]ƒ]xA^†¥Š€‚qlr£€‚]¢£_

®([]r£„…[`[Y€‚i¬€‚m`€‚uilxA¢touj¨_!¢thH„!xAmŒj¨rtmJouxAo]i¬¢¤€œ®³®(rtj¨[¡ƒ]r©°N_!ql_!mPjlr¤€‚u¢£_5ƒ]_!m]ilr©j¯hA±   _(•Art¥‚_(€‚m

_ºE]¢£rt„&r©j_ºE]ql_!ilikr£xAmHxŠ¦]j¨[]_¹ƒ]r©°N_!ql_&mŒjlr¤€‚¢ŒxA<_&ql€Šj¨x‚qlir£mŒ¥Ax‚¢t¥A_!ƒHr£m%j¨[ur£i ¦DxAql^o]¢¤€(€‚m]ƒj¨[]rti

L_!ql^`rtj¨i»j¨x¡ilrt^Ho]¢¤€zj¨_cjl[]_&^€‚muƒ„!xAm]ik_&sPo]_&mŒjl¢thj¨x¡qloumŽ€`d²xAmŒjl_¼5€Šql¢£x`€‚¢t•AxAqkrtj¨[u^²±

½²¾Œ¿NÀkÁHÂ

›z療Ÿ

dŽ€‚¢£¢tr¤€œ¥Jr£m„œ€‚¢t„&o]¢to]i&Jd²x‚mPjl_Ä,¼5€‚ql¢tx€Š¢£•AxAqkrtjl[]^²Š«wo]¢£_!qwil„…[]_!^_ŠE„!xA^¶Ä

LxAoum]ƒv§xArtililx‚m²]qkxE„!_&iki&2il_!m]ilr©j¨rt¥Jr©j¨r£_!i„&xA^`]ouj¨€Šj¨rtxAm0±

ÅDÆÇ ÅDÈɤÇʜËkÌ&ÍXεÏz˵ÊÍXÐÒÑkÓWÎkÔÕ×ÖÙØtÚ]ÔÕ×ÐÛÖÜεɣÝzÖÜÎkÐÒÐÛÎÞßzÕ¨àÊ!ÍXáµÎµÑ¯â§ÖÙÏXÐÛÖÙÕzÞãäÐ

ÅDÆÇ ÅDÈɤÇʜËkÌ&ÍXεÏz˵ÊÍXÐÒÑkÓWÎkÔÕ×ÖÙØtÚ]ÔÕ×ÐÛÊÍXÎkÏPÞÔåÎlæÒæÛÕ×Ê!ÍzçŠâ§ÖÙÏXÐÛÖÙÕzÞãäÐ

(5)

- - -

76$(. %

-

( ˜

™ Ÿ m`ouj¨rt¢£rtil_5¢t_n„&€‚¢£„!o]¢]ƒ]_cdŽ€‚¢t¢£r£€W¥JrtmHLx‚o]q¬ƒ]_&i¹]qlxJ„&_!iliko]iåƒ]_nvxAr£ikilxAm)€Ym

ƒ]_¶„œ€‚¢t„&o]¢t_&q¢t_&iil_!m]ilrt]r£¢trtjlp&icƒÜxAEj¨r£x‚m]i_&o]qkxA<p&_&mum]_&iƒ]xAmŒj¢£_HikxAo]i,Ätyl€‚„!_&mŒjilo]r©j%o]m]_

ƒ]rt°Lo]ilrtxAm¶i¨€‚oEj¨i&±

_¬<xAr£mŒj]qkr£m]„!r£Y€‚¢‚_&ikj§ƒp!j¨€‚]¢£rtq0o]m]_¬¦DxAqk^Ho]¢£_wƒÜrtmPjlp&•Aql€Šj¨rtxAm%Y€‚qY€‚qµj¨rt_&i»·?ik_&^H]¢£€‚]¢t_

„&_!¢£¢t_ƒ]o „&€‚¢£„!o]¢ƒ]_¶dŽ€Š¢£¢£r£€œ¥Ertm,ikj¨€‚m]ƒY€Šqlƒ,¸n<xAo]qnƒ]_&ic¥Š€‚qkr¤€‚u¢£_&iª€‚¢tpœ€ŠjlxAr£qk_&i(^Ho]¢©j¨r©Ä

ƒ]r£^`_&m]ikr£xAmum]_&¢t¢£_&i€‚uilxA¢to]^_!mŒjH„&x‚mPjlr£mPo]_!iHY€‚qHql€‚]<xAqkj ¢¤€^_!ilo]qk_˜ƒ]__!L_!il•Aou_‚

_!jƒ]x‚mPj5¢¤€ƒ]_!m]ilr©j¨pC_!ikj(ƒ]r©°Np!ql_!mPjlr¤€‚u¢£_‚±aªxAoui5ƒ]xAm]muxAm]io]m]__׺E]ql_!ililrtxAm_ºE]¢tr£„&r©j¨_nƒ]_

„…[Y€‚sPo]_xALp!q¨€Šjl_&o]qn€‚uY€‚q¨€Šr£ilil€‚mŒj(ƒY€‚m]i(„!_!jljl_¦Dx‚ql^Ho]¢t_‚±¹¼å_!¢¤€¶m]xAo]i(<_&qk^_jc€Š¢£xAqki5ƒ]_

¢£_&i»ilrt^Ho]¢£_!q»_j5ƒ]x‚m]„cƒ]_cLxAoE¥AxArtq»^`_!jkj¨ql_ª_&m xJ_&ou¥Jqk_Co]m €‚¢t•AxAqkrtj¨^`_ƒ]_%dxAmŒj¨_%¼5€‚qk¢£x]±

 šX™ À ž! ™%Ÿ „&€‚¢£„!o]¢Pƒ]_dŽ€Š¢£¢£r£€œ¥Ertm0X€‚¢t•AxAqlr©j¨[]^`_ ƒ]_5d²xAmŒj¨_×ĵ¼5€‚qk¢£x]Šil„…[]_!^)€ªƒÙ«wo]¢t_&q!

]qlxJ„&_!ililouiªƒ]_vxAr£ikilxAm„&xA^`<xAilpŠY„œ€‚¢t„&o]¢0ƒu_&i(il_!m]ilrt]r£¢trtj¨p!i&±

(6)

> ?

¡ §`7

-

!

~¯mj¨[u_c¢¤€Šikj¹hA_œ€Šqli&J¦DxA¢£¢txW®(r£m]•j¨[u_ª]rtxAm]_!_&qlrtm]•]€‚L_!qli

[@ ], [‹ ] €¢£xŠj»xŠ¦0®åx‚q/A¡„&xAmu„&_&qkmEÄ r£m]•%j¨[]_nmPo]^`_&qlrt„œ€‚¢2€Š]]¢£rt„œ€Šjlr£xAmuiwx‚¦0j¨[u_ªiµj¨xJ„…[Y€‚ikjlr£„(¥Š€‚qlr£€Šj¨rtxAmY€‚¢E„œ€‚¢t„&o]¢to]iC·ÒdŽ€‚¢t¢£r¤€œ¥Jr£m

„œ€‚¢t„&o]¢to]i…¸ª[]€‚iL_!_&mGƒ]xAm]_Š±HZ[]rti^)€‚rtm]¢th„!xAm]„&_!qlm]i€‚u]¢£rt„œ€Šjlr£xAm]iªr£m3^€Šj¨[u_&^€Šj¨rt„œ€‚¢

YmY€‚m]„!_B „!xA^`]ouj…€zj¨r£x‚m]iwx‚¦L„&xAm]ƒurtj¨rtxAmY€‚¢E_ºE<_&„!j¨€Šj¨rtxAm]ic·D®([]rt„…[)€Š]L_&€‚q¬r£m¶j¨[u_ª€Š^_!qlr©Ä

„œ€‚mxAuj¨rtxAmuqlr£„!r£m]•uX¦Dx‚q§_׺]€Š^]¢t_W¸€‚m]ƒx‚¦Yil_!m]ilr©j¨r©¥Er©j¨rt_&iå·Dj¨[u_»ikxC„œ€‚¢t¢£_!ƒDCql_!_<APi…¸×± Z[]_

^xJƒ]_&¢tiC€Šjc[Y€‚m]ƒG€‚qk_Ho]ikoY€‚¢£¢©h¢£xA•ŠÄ m]xAqk^)€‚¢0j¯hJ<_¶ƒ]rt°Lo]ikr£xAm]iC€‚m]ƒ j¨[u_&m­xAm]_H^€œhŽouil_

j¨[]_%ikj¨€‚m]ƒY€ŠqlƒŽdŽ€‚¢£¢tr¤€œ¥Jr£m˜„&€‚¢£„!o]¢£oui&±FEåoujnm]xW®å€‚ƒY€œhJiª<_&x‚]¢£_€‚qk_^xAqk_%€‚m]ƒ^x‚ql_r£mJÄ

j¨_&qk_&iµj¨_&ƒ`r£m(yko]^Hj¯hJ<_ƒ]rt°Lo]ikr£xAm]i·?il_!_

[ˆ ]¸ €‚muƒHj¨[]_!m`x‚m]_[Y€‚ijlxo]il_jl[]_ikjlxE„…[Y€Šikj¨rt„

¥‚€Šqlr¤€zj¨r£x‚mY€‚¢ „&€‚¢£„!o]¢£o]i%„!xAqlqk_&il<xAm]ƒur£m]•Žjlx vxAr£ikilxAm´LxArtmŒj]qkxE„!_&ikil_&i!±3gEou„…[ €Ž„œ€Š¢£„&oJÄ

¢£o]iH[]€‚i¶€‚¢tql_œ€Šƒuh+<_&_!m ƒ]_!¥‚_&¢£x‚L_!ƒ³rtm

[ ] „!xAm]„&_!qlm]rtm]• j¨[u_ m]xAr£ik_˜„&x‚^rtm]•Ž¦Dqlx‚^ jl[]_

€‚^u¢£rtjlo]ƒ]_%x‚¦¬j¨[u_nyko]^`]iC€‚muƒ3r£m

[‰ ] „!xAm]„!_&qlmur£m]•˜jl[]_nyko]^`Žj¨rt^_!i&±%dxAql_Hqk_&„!_&mŒj¨¢©h r£m [“ ] x‚m]_H•Ar©¥A_&i%€o]m]r]_&ƒG€‚]]qkxŒ€‚„…[3o]ikr£m]•˜jl[]_H¢£€‚m]•AoY€Š•A_x‚¦wjl[]_HGcrtqlr£„…[u¢£_!jª¦DxAql^`i&±

{cm]x‚jl[]_&q»Lx‚r£mŒj5x‚¦N¥Ert_!®%]]€‚il_!ƒ xAm˜„…[Y€‚x‚i5ƒ]_&„!xA^`LxAikrtjlr£xAm`^)€œh`<_ª¦DxAo]muƒ r£m

[I ] [‘ ] [‘X ] [‘œ‰ ] [‘A‘ ]±

Z[u_ €‚rt^ x‚¦Cx‚o]q]€‚L_!qrti`jlx´•‚rt¥A_²€´„!xAm]„!ql_!jl_ €‚u]¢£rt„œ€Šjlr£xAm x‚¦ªj¨[]_ dŽ€‚¢t¢£r¤€œ¥Jr£m

„œ€‚¢t„&o]¢to]i €‚]uqlxŒ€‚„…[ ¦DxAq ik_&m]ikrtjlrt¥Jrtjlr£_&i„&xA^`]ouj¨€Šj¨rtxAm ·Cql_!_<APi…¸¦Dx‚qyko]^ ƒurt°Lo]ilrtxAm

^xJƒ]_&¢ti&±   _•Ar©¥A_Cj¯®»x_׺]€Š^]¢t_&iJBwr£m˜j¨[u_ ]qlikj(x‚m]_‚]®»_%o]il_j¨[u_dŽ€‚¢£¢tr¤€œ¥Jr£m„œ€‚¢t„&o]¢to]i

®(rtj¨[Žql_&ikL_!„!jCjlx)j¨[u_nyko]^`3€‚^`]¢£r©j¨o]ƒ]_!i&±n~¯m j¨[]_il_!„&xAm]ƒ­xAmu_‚L®»_¡€‚ƒ]ƒ €KEåqlxW®(m]r£€‚m

Y€‚qkjH€‚m]ƒ ƒ]r©°N_!ql_!mPjlr¤€Šjl_`®(r©j¨[ qk_&il<_&„jHj¨x3<x‚jl[+j¨[]_%yko]^ €‚^u¢£rtjlo]ƒ]_!i€‚muƒ+j¨xŽjl[]_

  r£_&mu_&qr£mu„&ql_!^_!mŒj¨i&±

Z[u_cd²€‚¢£¢tr¤€œ¥Jr£mrtmŒj¨_&•‚q¨€Šjlr£xAmHŒh¶]€‚qkjli ¦DxAql^Hou¢¤€co]ik_&ƒ`r£mHjl[]r£iwY€ŠL_!qwr£iw€‚m¡_!¢£_&^`_&mJÄ

j…€‚qµh˜xAm]_Š±¹aªx‚jlr£„&_jl[Y€Šjn€‚mŒh mPo]^`_&qkr£„œ€Š¢0il„…[]_!^_o]ik_&ƒŽrtm€dxAmŒj¨_¼5€‚ql¢tx¡€‚¢£•Ax‚qlrtjl[]^

€‚]<_œ€‚qki€‚i€¦Do]m]„!jlr£xAmGx‚¦5€Ymurtj¨_¡mPo]^H<_&qx‚¦åq¨€‚m]ƒuxA^ ¥Š€‚qlr£€‚]¢£_!i

H1, . . . , Hn

±˜~ j

j¨o]qkm]i%xAouj%j¨[Y€zjœrt¦¹j¨[]_`¢¤€œ®x‚¦åjl[]_&ik_ql€‚m]ƒ]x‚^ ¥Š€‚qlr£€‚]¢£_!iCr£i€‚uilxA¢touj¨_!¢th „!xAmŒj¨rtmJouxAo]i

®(rtj¨[ql_!il<_&„!j§j¨xnj¨[]_ _!L_!il•Aou_å^`_œ€‚iko]ql_倂m]ƒ[]€‚i €nil^`xEx‚jl[ƒu_&m]ikrtj¯hAŠj¨[]_!mj¨[]_¹ikjlq¨€ŠjµÄ

_&•‚h ƒu_!¥A_!¢£xAuL_!ƒ r£m j¨[u_HdŽ€Š¢£¢£r£€œ¥Ertm˜„œ€Š¢£„&ou¢£o]i(^€Wh˜L_%r£^`]¢t_&^`_&mŒj¨_!ƒ¦Dx‚q

H1, . . . , Hn

€‚m]ƒ´€‚m+rtmPjl_&•Aql€Šj¨rtxAm3ŒhGY€‚qkjli¦DxAql^Hou¢¤€ r£i%xAuj¨€‚r£mu_&ƒ0±Z[]r£i%r£i%m]xŠjikL_!„&r Y„`¦Dx‚q%jl[]_

EåqlxW®(m]r£€‚m^x‚jlr£xAm x‚q5¦DxAq(€vxAr£ikilxAm<xAr£mŒj]qkxE„!_&ikiª]oEjªqk_&]qk_&ik_&mŒj¨ic€‚m²_!¢£_!^_!mPj¨€‚qkh

€‚]ikjlq¨€‚„jn„œ€‚¢t„&o]¢to]i&±

Z[u_˜Y€‚<_&qr£ixAql•Œ€Šm]r0L!_&ƒ €Ši¦DxA¢£¢txW®(i&±~¯m gE_!„!j¨rtxAmU‘`®å_˜uql_&ik_&mŒj¶j¨[u_)]qkxA]¢£_!^MB

®å_•Art¥‚_jl[]_iµj¨xJ„…[Y€‚ikjlr£„_&sPoY€Šjlr£xAm¥A_&qkrY_!ƒ Œhj¨[]_o]m]ƒ]_!ql¢£rtm]•€‚ilik_!jC®([]rt„…[ r£in€)x‚m]_

ƒ]r£^`_&m]ikr£xAm]€‚¢Pyko]^`ƒ]rt°Lo]ilrtxAmG·?x‚m]_^€œh˜„!xAm]ilrtƒ]_&qn^Ho]¢©j¨räįƒ]rt^_!m]ilrtxAmY€‚¢Yƒ]r©°Nouilr£x‚m]in€‚i

®å_!¢£¢2]ouj¬®»_A‚_!_&˜rtm`jl[]_nxAm]_nƒ]r£^`_&m]ikr£xAm]€‚¢]il_jljlr£m]•5yko]ikj¹j¨x€œ¥AxArtƒ`jl_&„…[]m]rt„œ€‚¢2ƒ]rON`„&o]¢äÄ

(7)

j¨r£_!i…¸×±Z[]_!m)®å_n]qk_&„&rtil_([]xW® €‚m`r£mŒjl_&•Aql€Šj¨rtxAm¶Œh¡Y€‚qkjli¹¦Dx‚ql^Ho]¢£€C^)€œh¶<_(o]il_!ƒ)rtm¡jl[]_

d²xAmŒj¨_¼5€‚qk¢£x¡€‚¢t•AxAqkrtj¨[u^†rtm xAqlƒu_&q5j¨x¡„!xA^uouj¨_Cik_&m]ikrtjlrt¥Jrtjlr£_&i!±w~¯m²gE_&„j¨r£x‚mH®»_%•Art¥‚_

j¨[]_%r£mŒjl_&•Aql€Šj¨rtxAm ŒhY€‚qkjli¦DxAql^Hou¢¤€u±w~¯mŽgE_&„j¨rtxAmŽ“¶®»_o]ik_j¨[]_dŽ€‚¢t¢£r¤€œ¥Jr£mÜi»„œ€‚¢t„&o]¢to]i

®(rtj¨[ qk_&ikL_!„!jnj¨xHj¨[u_€Š^]¢trtjlo]ƒ]_&i»x‚¦j¨[]_»yko]^`]irtm xAqlƒ]_!q5j¨x¡„&x‚^]oEj¨_il_!m]ilr©j¨r©¥Er©j¨rt_&i&±

~¯mik_&„!jlr£xAm

4Œ®»_(„&xAm]ikr£ƒ]_!qå€d²_!qkjlxAmi»^`xEƒu_&¢]rtm¡®([ur£„…[)iµj¨xJ„…[Y€‚iµj¨r£„(rtmPjl_&•Aql€‚¢£iƒ]qlr©¥A_&m

Ph²€ EåqlxW®(m]r£€‚mŽ^`x‚j¨rtxAm²€‚m]ƒŽŒhŽ€„!xA^<xAo]muƒ v§x‚r£ilikxAm ]qkxE„!_&iki€‚]<_œ€‚q!±   _[Y€œ¥A_

j¨[]_%„…[]xArt„&_%x‚¦o]ilrtm]•¶j¨[]_dŽ€‚¢t¢£r£€W¥JrtmÜi儜€‚¢t„&o]¢to]i5®(rtjl[²qk_&il<_&„jªjlx¶j¨[]_ EåqlxW®(m]r£€‚m^xzÄ

j¨r£x‚m0Aj¨xj¨[u_c€‚^`]¢trtj¨ouƒ]_&i xŠ¦Nj¨[u_ ykou^]i¬xAqwjlx<x‚jl[x‚¦Lj¨[]_!^²±

 

_n<_&qk¦Dx‚ql^ jl[]_j¨[]qk_&_

€‚¢£•Ax‚qlrtjl[]^`iC€‚m]ƒ3®»_„!xA^`Y€‚ql_Hjl[]_¡_&^`]r£qkr£„&€‚¢§¥Š€‚qkr¤€‚m]„!_¶x‚¦»_œ€‚„…[´x‚¦»jl[]_&^±¶~ j%j¨o]qkm]i

xAouj%j¨[Y€zjjl[]_`^xAiµjL_!qk¦DxAqk^)€‚mŒj€‚¢t•AxAqkrtj¨[u^ ·D®(r©j¨[­j¨[]_¡ik^)€‚¢t¢£_!ikj¥Š€‚qlr£€‚m]„!_W¸Cr£ij¨[]€Šj

Y€‚il_!ƒ²x‚m<x‚jl[jl[]_ EåqlxW®(m]r£€‚m^xŠj¨r£x‚m €‚m]ƒ j¨[u_€Š^]¢trtjlo]ƒ]_&iåx‚¦j¨[]_åyko]^`]i&±¹gJx¡jl[]_

mJou^_!qlr£„&€‚¢Œ_ºE<_&qkr£^`_&mŒj¨i5·Dj¨[u_&ql_¹r£im]x(j¨[]_!xAqlrt„œ€‚¢Pqk_&ilou¢tj׸0rtm]ƒ]r£„&€Šj¨_wjl[Y€Šj§xAm]_¹[Y€‚ij¨xcouil_

j¨[]_(r£mŒjl_&•Aql€Šj¨rtxAmHŒh¶Y€‚qµj¨iw¦DxAqk^Ho]¢¤€n®(rtj¨[¡qk_&il<_&„j»jlx€‚¢£¢Jj¨[]_(m]xArtil_5®([]rt„…[rtiw€œ¥Š€‚r£¢£€‚]¢£_

r£mŽjl[]_H^`xEƒ]_!¢Û±CZ[u_HmPo]^_!qlrt„œ€‚¢ql_!ilo]¢©j¨i%€‚qk_„&x‚mPj¨€‚r£mu_&ƒ3r£mŽil_&„j¨rtxAm

5±   _H„&x‚^Y€Šql_

j¨[]_²dŽ€‚¢t¢£r£€W¥Jrtm ^_j¨[]xJƒ ®(rtjl[ jl[]_ Ym]r©j¨_ ƒ]r©°N_!ql_&mu„&_^_j¨[]xJƒ0± }YxAq¡«wo]qlx‚L_&€‚m „&€‚¢£¢

xAuj¨rtxAm]i!Ej¨[u_Cql_!ilo]¢©j¨i(€‚qk_Cq¨€Šjl[]_&qåilr£^`r£¢£€‚q¬]ouj¦DxAq»ƒ]r£•‚rtj…€Š¢LxAEj¨r£x‚m]i&Pj¨[]_qk_&iko]¢tjli•Art¥‚_&m

Ph3jl[]_)dŽ€‚¢£¢tr¤€œ¥Jr£m ^`_!jl[]xJƒ+€‚qk_¡^Ho]„…[+<_!jkj¨_!q%jl[Y€‚mGj¨[]_¡xAm]„!_&i•Art¥‚_&mGPh3jl[]_ Ym]rtjl_

ƒ]rt°L_&qk_&m]„!_^`_!jl[]xJƒ0± Z[]rtin„&€‚mL__׺E]¢¤€‚rtm]_&ƒŒh˜jl[]_¦?€‚„!jjl[Y€Šjj¨[u_]€Wh‚x‚° ¦Do]mu„!j¨rtxAm

r£i^Ho]„…[^`xAql_rtqlql_!•Ao]¢£€‚q&±

§ $(

  _»„&xA^`]oujl_»j¨[u_åil_!m]ilr©j¨r©¥Er©j¨rt_&ix‚¦<€‚mxAuj¨rtxAm®(r©j¨[Y€œhAx‚°

φŠ®([u_&ql_»j¨[]_倂ilik_!j

(St)t≥0

¦DxA¢£¢txX®(i(€¶xAmu_įƒur£^`_&m]ikr£xAmY€Š¢Jyko]^`ƒurt°Lo]ilrtxAm]qlxJ„&_!ilinƒ]qlr©¥A_&m²Œh€`„!xA^<xAo]muƒ²vxAr£i,Ä

ilxAm]qlxJ„&_!ili!± _jªouinuql_&„!r£ik_x‚o]q(]qlxAu¢£_&^±

_j

N <_€„!xA^<xAo]muƒ²vxAr£ikilxAm²]qlxJ„&_!ili!±   _ƒ]_!m]x‚j¨_Œh

(Ti)i∈N

jl[]_ykou^j¨rt^_!i

x‚¦

t → Nt

¹€‚m]ƒ Œh

(Jt)t≥0

jl[]_˜„!xAqlqk_&il<xAm]ƒur£m]•­ikj¨€‚m]ƒY€Šqlƒ v§x‚r£ilikxAm ]qlxJ„&_!iliH®(r©j¨[

Y€‚q¨€Š^_j¨_&q

λ > 0jl[Y€Šjr£i

Jt

„!xAo]mŒj¨i%j¨[]_mPo]^H<_&qx‚¦yko]^`]io]´jlxj€‚m]ƒG¦DxAq€‚¢£¢

n≥1 Tn−Tn−1

[Y€‚i5_׺ELxAmu_&mŒj¨r£€‚¢Nƒ]rtikjlqlr£uouj¨rtxAm`®(r©j¨[˜^`_œ€Šm

뱬}YxAq»€‚¢t¢

i∈NE®»_

ƒ]_ Ymu_

i =NTi−NTi−1

Eilx

i

qk_&]qk_&ik_&mŒj¨i5jl[]_¬yko]^`˜€Š^]¢trtjlo]ƒ]_(€Šj»j¨r£^`_

Ti

±wZ[]_

q¨€‚m]ƒuxA^ ¥Š€‚qlr£€‚]¢t_&i

(∆i)i∈N

€‚qk_ªrtm]ƒ]_!L_!m]ƒ]_&mŒj倂m]ƒr£ƒ]_!mPjlr£„&€‚¢£¢©hƒ]rtikjlqlr£uouj¨_!ƒ0±   _c€‚i,Ä

ilo]^`_ªjl[Y€Šjåjl[]_c¢£€œ® x‚¦

i

r£i»€‚]ikxA¢£oEj¨_&¢©h¡„&xAmŒjlr£mPo]xAo]i»®(rtj¨[ql_!il<_&„!jjlxjl[]_ _&<_&ik•Ao]_

^_&€‚ilo]qk_¡€‚m]ƒ3®»_¶ƒ]_&m]xŠj¨_¡Œh

ρ rtjliƒ]_&m]ikrtj¯h‚0j¨[Y€Šj%rti

i ∼ ρ(a)daN¦DxAq€Š¢£¢

i ∈ N±

 

_®(r£¢t¢0ilou]Lx‚il_jl[Y€Šj

ρ r£i(ƒ]rt°L_&qk_&mŒj¨r£€‚]¢t_€‚m]ƒ¥‚€Šm]r£ik[]_&in€‚i

x→ ±∞ ·Dil_!_ik_&„!jlr£xAm

(8)

4¸±

  _ƒ]_œ€Š¢å®(rtjl[ j¯®»xG^xJƒ]_&¢ti&±´~¯m³jl[]_ Yqliµj¡xAm]_‚¬j¨[u_²€Šilil_j

St

rti¡€­uo]ql_yko]^`

ƒ]rt°Lo]ilrtxAm ilx‚¢£oujlr£xAm x‚¦j¨[u_gGC«

St =β+

Jt

X

i=1

c(Ti,∆i, ST i ) +

Z t

0

b(u, Su)du . ·,‘X¸

~¯mjl[]_%il_&„!xAm]ƒxAm]_Š]®å_€‚ƒ]ƒ²€HEåqlxW®(m]r£€‚mY€‚qkjB

St =β+

Jt

X

i=1

c(Ti,∆i, ST

i ) + Z t

0

b(u, Su)du+ Z t

0

σ(u, Su)dWu. ·ÒA¸

ouq»€Šr£^ rtiwj¨x„&xA^`]oujl_

βE(φ(ST))Jjl[Y€Šj¹r£i jl[]_Gª_&¢tj¨€xŠ¦ €‚m«wo]qlxA<_œ€Šm)xAujlr£xAm¡x‚¦

Y€œhAx‚°

φ±w~¯m il_¥A_!q¨€‚¢0]€‚L_!qli%·Dilo]„…[€‚i܋Ґ

@

Ґä‘W’¤¸ExAm]_cjlql_œ€zjåj¨[ur£i5]qkxA]¢t_&^ o]ilrtm]•

€d²€‚¢£¢tr¤€œ¥Jr£m˜„&€‚¢£„!o]¢£o]i(€Š]]qlxA€‚„…[0±   _®(rt¢£¢L¦Dx‚¢£¢£xW® €¶ilrt^rt¢¤€‚q¹ikjlq¨€Šjl_&•‚h rtmxAo]q¦Dq¨€‚^`_‚

o]ilrtm]•dŽ€‚¢£¢tr¤€œ¥Jr£m˜„&€‚¢£„!o]¢£oui5¦DxAq§yko]^`j¯hJ<_%ƒ]rt°Lo]ilrtxAm]i!±

 

_®(qlr©j¨_

∂βE(φ(ST)) = E

φ0(ST)∂ST

∂β

= E

φ0(ST)∂ST

∂β 1JT=0

+

X

n=1

E

E

φ0(ST)∂ST

∂β |σ(Ti, i∈N)

1JT=n

.

m

{JT = 0}jl[]_&qk_Cr£i»m]xnyko]^`)x‚m

]0, T]Pj¨[Po]i ST

€‚m]ƒ

∂ST

∂β

ilx‚¢t¥A_C€ƒ]_!jl_&qk^rtm]r£iµj¨r£„

r£mŒj¨_!•Aq¨€‚¢Y_!sPoY€Šj¨rtxAm0± ~¯mj¨[]_n_ºu€‚^`]¢£_!i¹jl[Y€Šj¹®å_ª„&xAmuilr£ƒu_&qårtm`jl[]r£i¹Y€‚<_&q!Jjl[]_nilxA¢touj¨rtxAm

x‚¦§jl[]_&ik__!sPoY€Šj¨rtxAm]i(€‚qk_%_ºE]¢£rt„&r©jœuikx`jl[Y€Šjjl[]r£i5jl_&ql^r£i_ºE]¢tr£„!rtj¨¢©h:APm]xW®(m0±

{ªiliko]^_nm]xW® jl[Y€Šj

JT =n 6= 0±Z[]_!m0Eouilr£mu•€‚m`r£mŒjl_&•Aql€Šj¨rtxAm¶Œh¡Y€‚qkjliw¦DxAql^Hou¢¤€

xAm {JT =n}]®»_®(qlrtjl_HB

E

φ0(ST)∂ST

∂β |σ(Ti, i∈N)

1JT=n

= E

φ(ST)Hn(ST,∂ST

∂β )|σ(Ti, i∈N)

1JT=n,

(9)

®([]_&qk_

Hn

rti¬€®»_&rt•A[Œj¹r£mŒ¥AxA¢©¥Jr£m]• µdŽ€‚¢£¢tr¤€œ¥Jr£mƒ]_&qkrt¥Š€Šj¨r©¥A_!i xŠ¦

ST

€‚m]ƒ`x‚¦

∂ST

∂β

± Z[]_!il_

ƒ]rt°L_&qk_&mŒj¨r£€‚¢¬xAL_!q¨€ŠjlxAqli€‚qk_)ilrt^rt¢¤€‚qCjlx²jl[]xAil_)r£m

[ ] ]oujj¨[]_`¦Dq¨€‚^`_`[]_&qk_˜r£i^Ho]„…[

^xAqk_5ilrt^u¢£_‚‚ilr£mu„&_j¨[]_!ql_(€‚qk_(m]x€‚„&„!o]^Ho]¢£€Šj¨rtxAmHx‚¦Lil^€‚¢£¢Wyko]^`]i&± gEx®å_®(r£¢t¢uƒ]_!qlr©¥A_

j¨[]rtir£mŒj¨_!•Aq¨€Šjlr£xAm Œh ]€‚qkjli(¦Dx‚ql^Ho]¢£€Ho]ilrtm]•¡_&¢t_&^`_&mŒj…€‚qµh €‚qk•Ao]^`_&mŒj¨i!±   _%xAuj¨€‚r£m

X

n=1

E

E

φ0(ST)∂ST

∂β |σ(Ti, i∈N)

1JT=n

= E

φ(ST)HJT(ST,∂ST

∂β )1JT≥1

.

~¯m xAqlƒ]_!qj¨xŽ_&^`]¢£xWh­j¨[]rti¦DxAqk^Ho]¢¤€r£m € d²xAmŒj¨_×ĵ¼5€‚qk¢£x­€‚¢t•AxAqlr©j¨[]^ ®å_ uqlxJ„&_&_!ƒ³€‚i

¦DxA¢£¢txX®(i!±   _Žilrt^Ho]¢£€Šj¨_ j¨[u_¡yko]^`³jlr£^`_&i

(Tni)n∈N



i = 1, . . . , M €‚m]ƒ jl[]_Hyko]^

€‚^u¢£rtjlo]ƒ]_!i

(∆in)n∈N



i= 1, . . . , M<€‚m]ƒ ®»_„!xA^uouj¨_Cjl[]_%„&xAqkql_&ikLx‚m]ƒ]r£mu•

JTi  STi

€‚m]ƒ

HJii T

±wZ[]_!m²®»_®(qlrtjl_

E

φ(ST)HJT(ST,∂ST

∂β )1JT≥1

' 1

M

M

X

i=1

φ(STi)HJii

T 1JTi≥1.

~¯mŽj¨[]_„œ€‚ik_Hx‚¦¹d_&qkjlxAmiC^`xEƒ]_!¢ ®å_HuqlxJ„&_&_!ƒ3€‚in¦DxA¢£¢txX®(i!±n}r£qkikjªx‚¦¬€‚¢t¢®»_ikr£^Hou¢¤€Šjl_

j¨[]_yko]^²j¨r£^`_&i

Ti, i ∈N± m]„!_j¨[]_h €Šql_uºE_!ƒ ®å_H„!xAm]iµj¨qlou„!j%€‚m­«wo]¢t_&qªil„…[]_!^_

r£m²®([ur£„…[Žjl[]_jlr£^`_&i

Ti, i∈ N €‚ql_r£m]„!¢£o]ƒ]_!ƒŽrtm²j¨[u_ƒ]rtil„&qk_!jlr0Lœ€zj¨r£x‚mŽ•Aqkr£ƒ0±(Z[]_!m ®å_

ilr£^o]¢¤€Šjl_`jl[]_€‚^`]¢£r©j¨o]ƒu_&ix‚¦(j¨[]_ykou^]iH€‚m]ƒ j¨[u_4EåqlxW®(m]r£€‚m r£mu„&ql_!^_!mŒj¨i¡€‚m]ƒ ®»_

L_!qk¦DxAqk^6j¨[u_dxAmŒj¨_Ä,¼5€‚ql¢tx`€‚¢£•Ax‚qlrtjl[]^±

# $$&(')!

-

$

-

$!.z% ! $! ‚

-

%$&

m€5]qkxAY€‚ur£¢£r©j¯hnilY€‚„!_

(Ω,F, P)®»_¬„&xAmuilr£ƒu_&q€il_!sJou_&m]„!_»x‚¦Er£muƒ]_&<_&m]ƒu_&mŒjq¨€‚m]ƒuxA^

¥‚€Šqlr¤€Š]¢£_!i

(Vn, n∈N)±   _%ilo]uLxAik_jl[Y€Šj

¿w š ¾ ™Ò™

* 35

n∈N

6 'O

Vn

0 '(# '(5 -6 )!6 1 !

6- K 6 /"6 :/ ; D 6 ;# ! 5

pn

#- 0 -6 !661 '(5

; 6 ))<'0D

R ;8 6-M ∀k∈N lim

y→±∞|y|kp(y) = 0! '=K #:

yln(p(y)) = ∂yp(y) p(y)

: 96'(5, )' "" #

(10)

I

  _(r£mŒjlqlxJƒ]o]„&_(ikxA^_mux‚j…€Šjlr£xAmN± }YxAq

k≥ 1   _(ƒ]_&m]xŠj¨_nPh

Ck(Rn) jl[]_(ilY€Š„&_nx‚¦Ljl[]_

¦Do]m]„!jlr£xAmui

f : Rn →R ®([]rt„…[Ž€Šql_A)j¨rt^_!i5ƒ]r©°N_!ql_&mŒjlr¤€‚]¢t_%€‚m]ƒilo]„…[j¨[Y€zj¦w€‚m]ƒr©j¨i

ƒ]_&qkrt¥Š€Šj¨r©¥A_!iªo]²j¨x)x‚qlƒ]_!qA [Y€œ¥A_H€Šjc^`xAiµjc<xA¢thJm]x‚^r£€‚¢0•AqkxX®jl[0±n}YxAqc€`^Ho]¢©j¨r©Ä r£m]ƒu_º

α = (α1, . . . , αk) ®»_²ƒ]_!m]x‚jl_

αkf = ∂k

α1. . . ∂αk

f±³~¯m³jl[]_„œ€‚ik_

k = 0 C0(Rn)

ƒ]_&ikr£•Am]i¬j¨[u_cil_jåxŠ¦0j¨[]_(¦Do]m]„j¨rtxAm]i

f : Rn→R®([]rt„…[˜€‚qk_ª„!xAmŒj¨rtmJouxAo]i»®(r©j¨[ql_&ikL_!„!j j¨x¡_œ€‚„…[²€‚qk•Ao]^`_&mŒjª€‚m]ƒ[Y€œ¥A_€Šj(^`xAikj(<xA¢thJm]x‚^r£€‚¢L•‚qlxW®j¨[0±

  _%ƒ]_ ]m]_muxX® j¨[]_%ikr£^`]¢£_c¦Doum]„!jlr£xAmY€Š¢£i€‚muƒjl[]_%ilr£^`]¢t_C]qlxJ„&_!ilik_&i&±

{ ql€‚m]ƒ]x‚^¥Š€‚qlr£€‚]¢£_

F r£i„œ€Š¢£¢£_!ƒ€`ikr£^`]¢£_c¦Doum]„!jlr£xAmY€Š¢ rt¦j¨[]_!ql_%_ºEr£iµj¨inilxA^`_

n ∈N

€‚m]ƒilxA^`_%^_&€‚ilouq¨€‚]¢t_C¦Do]m]„j¨r£x‚m

f : Rn→R iko]„…[²jl[Y€Šj

F =f(V1, . . . , Vn).

  _ƒ]_!m]x‚jl_Œh

S(n,k)

j¨[u_ikY€‚„!_xŠ¦jl[]_%ilrt^]¢t_ª¦Do]mu„!j¨rtxAmY€‚¢ti5ilou„…[²j¨[]€Šj

f ∈ Ck(Rn)±

{ ikr£^`]¢£_CuqlxJ„&_&iki(x‚¦¢t_&m]•Šj¨[

n r£i(€¡il_&sPo]_!m]„&_x‚¦§q¨€‚m]ƒuxA^6¥Š€‚qkr¤€‚]¢t_&i

U = (Ui)i≤n

iko]„…[²jl[Y€Šj

Ui =ui(V1(ω), . . . , Vn(ω)).

 

_ƒ]_&m]xŠj¨_˜Œh

P(n,k) jl[]_)ikY€‚„&_)x‚¦j¨[]_ilrt^]¢t_¡]qlxJ„&_!ilil_!i¶x‚¦¢t_&m]•‚jl[

n iko]„…[ j¨[]€Šj ui ∈ Ck(Rn), i= 1, . . . , n±¹aªx‚jl_Cj¨[Y€Šjnr©¦

U ∈P(n,k) jl[]_&m

Ui ∈S(n,k) i∈N

±

  _)ƒu_ Ym]_ muxX® jl[]_˜ƒ]r©°N_!ql_!mPjlr¤€‚¢¬xA<_&ql€Šj¨x‚qli%®([]r£„…[ €‚uL_&€‚qrtm´j¨[u_ dŽ€‚¢t¢£r£€W¥JrtmÜi

„œ€‚¢t„&o]¢to]i&±

Z[]_Hd²€‚¢£¢tr¤€œ¥Jr£m)ƒu_&qlr©¥Š€Šj¨r©¥A_

D:S(n,1) →P(n,0)B

rt¦

F =f(V1, . . . , Vn)]j¨[]_!m

DiF := ∂if(V1(ω), . . . , Vn(ω)) = (∂f

∂xi

)(V1(ω), . . . , Vn(ω)), DF := (DiF)i≤n∈P(n,0).

Z[]_Hg#A‚xAqkxA[]xJƒrtmŒj¨_&•‚q¨€‚¢

δ :P(n,1) →S(n,0)B δ(U) := −

n

X

i=1

(DiUii(Vi)Ui)

= −

n

X

i=1

∂ui

∂xi

(V1, . . . , Vn) +θi(Vi)ui(V1, . . . , Vn)

,

(11)

®(rtj¨[

θi(y) := ∂yln(pi)(y) = (pp0i

i)(y) rt¦ pi(y)>0,

:= 0 rt¦ pi(y) = 0.

˜¾ +]› * 35

F ∈S(n,1) ; * 5 p∈N , E

n

X

j=1

|DiF|2

!p

<∞ ; * 35 U ∈P(n,1)

E (|δ(U)|p)<∞

#0 '!'0" 3 6,J#- 9

E|Vi|p <∞ 7'!' !,- lim

x→±∞|y|kpi(y) = 0

; 3 6J#- . 9

ui

; ∂pi

pi

i = 1, . . . , n *: 7: 6'(5 , )'

"" #

Z[]_%xAL_!q¨€ŠjlxAq

δ r£i5jl[]_€‚ƒzykxArtmŒjx‚¦

D ·j¨[]rtir£ij¨[u_ql_œ€ŠilxAmx‚¦ <_&rtm]•¶x‚¦

θi

¸ B

› Â

™Dš

Â

9

F ∈S(n,1) ; U ∈P(n,1) #6

E(< DF, U >) =E(F δ(U)), ·?“Œ¸

6

< ., . > 0 #6%-/'O <;6- ! Rn › Â0 m]_®(qkrtj¨_!i

E(< DF, U >) =E

n

X

i=1

DiF ×Ui

!

=

n

X

i=1

E

ui

∂f

∂xi

(V1, . . . , Vn)

=

n

X

i=1

Z

Rn

ui

∂f

∂xi

(a1, . . . , an)p1(a1). . . pn(an)da1. . . dan

=−

n

X

i=1

Z

Rn

f(a1, . . . , an)

iui+ui

p0i pi

pi(ai) Y

j6=i

pj(aj)da1. . . dan,

j¨[]_¡¢¤€Šikj%_&sPoY€Š¢£rtj¯hŽL_!r£m]•xAEj…€‚rtm]_&ƒGŒh3r£mŒj¨_!•Aq¨€zj¨r£x‚m3Ph­]€‚qkjli&±  _`_&^`]¢£xWhŽ[]_&qk_¡jl[]_

¦?€‚„!j%j¨[]€Šj¦Dx‚q€Š¢£¢

k ∈ N

 lim

y→±∞|y|kpi(y) = 0 p0i pi

∈ C0(Rn) €‚muƒ´¦, ui ∈ C1(Rn)±

(12)

@

¼åxA^rtm]•¶Y€‚„Aj¨x`_ºEL_!„!j¨€Šj¨rtxAm]i®å_%xAEj…€‚rtm+·?“A¸×±

  _¡r£mŒj¨qkxEƒuo]„&_¶m]xW® j¨[]_¡ikx„&€‚¢£¢t_&ƒ qlmuikj¨_!r£mGbª[u¢£_&mP<_&„A3xA<_&ql€Šj¨x‚q

L = δ(D) : S(n,2) →S(n,0) :

LiF := DiDiF +θiDiF , ¦DxAq i= 1, . . . , n

LF := −

n

X

i=1

LiF

= −

n

X

i=1

(∂i(∂if)(V1, . . . , Vn) +θi(Vi) (∂if)(V1, . . . , Vn)) . ·D‰P¸

˜¾ +]› !,-

θi

f ∈ C2(Rn) , E|LF|p <∞ '!'

gEo]]<xAil_¶jl[Y€Šj

F, G∈S(n,2)

j¨[]_!m0€‚i%€‚m­r£^`^_!ƒ]r¤€zj¨_„!xAm]ik_&sPo]_&mu„&_)xŠ¦¹jl[]_¡ƒ]oY€‚¢trtj¯h

ql_&¢£€Šj¨rtxAm­·?“Œ¸åxAm]_%xAuj¨€‚r£mui

E(F LG) =E(< DF, DG >) =E(G LF). ·ÛˆA¸

d²xAql_!xW¥A_&q!Ejl[]_(ikj…€Šm]ƒY€‚qkƒ)ƒ]r©°N_!ql_&mŒjlr¤€‚¢Y„&€‚¢£„!o]¢£o]i¬qko]¢£_!i¹•‚rt¥A_jl[]_n¦Dx‚¢£¢£xW®(rtm]•„…[Y€‚rtmqko]¢£_Š±

¹¾

9

φ ∈ Cb1(Rd) ;4'0 F = (F1, . . . , Fd), Fi ∈ S(n,1). 6 φ(F)∈S(n,1) ;

Dφ(F) =

d

X

k=1

kφ(F)DFk, · ¸

!

9

F, G∈S(n,2)

#6

L(F G) = F LG+G LF −2 < DF, DG > . · I ¸

}r£mY€Š¢£¢th‚•Art¥‚_&m

F = (F1, . . . , Fd), Fi ∈ S(n,1)®»_˜r£mŒj¨qkxEƒuo]„&_¡j¨[]_˜dŽ€‚¢t¢£r¤€œ¥Jr£m­„!xŠÄ

¥‚€Šqlr¤€Šm]„&_^€Šj¨qkr©º

σFij=< DFi, DFj >=

n

X

p=1

pfipfj

(V1, . . . , Vn),

®([]_&qk_

Fi =fi(V1, . . . , Vn)±

  _€‚qk_m]xW®T€‚]¢t_Cj¨x`ikj¨€Šj¨_Cjl[]_%r£mŒj¨_!•Aq¨€Šjlr£xAm ŒhY€Šqkj¨i5¦Dx‚ql^Ho]¢£€u±

(13)

¾J › ¾ 9

F = (F1, . . . , Fd)∈S(n,2)d G∈S(n,1)

:% 6

8 3

σF

0 !6* 3 )<'0 ;K;# ,

γF :=σ−1F

'=D 16

E (detγF)4

<∞. ·?‹Œ¸

6 * 35H : #%3#,-

φ:Rd →R

* 5

i= 1, . . . , d

E(∂iφ(F)G) =E(φ(F)Hi(F, G)), · @ ¸

!

Hi(F, G) =

d

X

j=1

E G γjiF LFj −γFji < DFj, DG > −G < DFj, DγFji >

.

·µ‘œ’Œ¸

› Â0 ±¹bnilr£mu•¡jl[]_%„…[Y€‚rtmqko]¢£_C®»_xAuj…€Šr£m˜¦DxAq_&€‚„…[

j = 1, . . . , d

< Dφ(F), DFj > =

n

X

r=1

< Drφ(F), DrFj >

=

n

X

r=1 d

X

i=1

iφ(F) < DrFi, DrFj >

=

d

X

i=1

iφ(F)σijF ,

ilx¡j¨[Y€Šj

iφ(F) =

d

X

j=1

< Dφ(F), DFj > γFji±»d²x‚ql_&xW¥‚_&q&2o]ikr£m]•²·

I ¸

< Dφ(F), DFj >= 1

2 −L(φ(F)Fj) +φ(F)LFj +FjL(φ(F)) .

(14)

Z[]_&mj¨[]_%ƒ]o]€‚¢£r©j¯h˜ql_!¢¤€Šjlr£xAm)•Art¥‚_&i

E(∂iφ(F)G)

=1 2E

G

d

X

j=1

−L(φ(F)Fj) +φ(F)LFj+FjL(φ(F)

!!

γFji

!

=

d

X

j=1

1

2E φ(F) −FjL(γFjiG) +G γFjiLFj +L(G FjγFji)

=

d

X

j=1

E φ(F) G γFjiLFj−< DFj, D(G γFji)>

,

€‚m]ƒ j¨[]_%]qkxExŠ¦rti„&xA^`]¢£_j¨_!ƒ0±

?

¡"%% ¡1 §×

§( 3

- 4

T/

$!×7(

~¯m j¨[ur£i`il_&„j¨rtxAm ®»_ o]ik_²j¨[u_²rtmPjl_&•Aql€Šj¨rtxAm³Ph³Y€Šqkj¨i¡¦DxAqk^Ho]¢¤€³·

@

¸¶®(r©j¨[ ql_&ikL_!„!jj¨x

i ∼ ρ(a)da i ∈ N

n®([]r£„…[ €‚ql_ jl[]_+€Š^]¢trtjlo]ƒ]_&i)x‚¦jl[]_)yko]^`]ix‚¦

(Nt)t≥0

ilxA¢touj¨rtxAm x‚¦j¨[]_g GC«

St =β+

Jt

X

i=1

c(Ti,∆i, STi) + Z t

0

b(r, Sr)dr . ·,‘A‘X¸

  _®»xAq/A˜oum]ƒ]_&qjl[]_¦DxA¢£¢txX®(rtm]•H[ŒhJLxŠj¨[]_!ilr£i!±

¿w š ¾ ™Ò™

ρ 0-6 )!66 '(5&; 6 ))<'0 ρ0 ρ

: 6'(5, )'

"" #

R

;7 '!'

k∈N

y→±∞lim |y|kρ(y) = 0

¿wÂ

š

¾

™Ò™

63,- )

(a, x) → c(t, a, x) ; x → b(t, x) -

-6 !66 '(5K; 6 )<'0 ;: #6 H 0 DM- 6

K > 0 ; α ∈N 6-

(15)

i)|c(t, a, x)| ≤K(1 +|a|)α(1 +|x|)

|b(t, x)| ≤K(1 +|x|) ii)|∂xc(t, a, x)|+

x2c(t, a, x)

+|∂ac(t, a, x)| ≤K(1 +|a|)α

|∂xb(t, x)|+

x2b(t, x) ≤K

¿w š ¾ ™Ò™

|∂ac(t, a, x)| ≥η >0.

!"#$

 

_%r£mŒjlqlxJƒ]o]„&_Cjl[]_¦DxA¢£¢txW®(r£m]•Hƒu_!j¨_!ql^`r£m]rtikjlr£„C_!sJo]€Šj¨rtxAm0±

  _uºikxA^_

0< u1 < . . . < un < T2€‚m]ƒ®å_ƒ]_!m]x‚j¨_

u= (u1, . . . , un)±   _€‚¢£ikx

a= (a1, . . . , an)∈Rn±¬Z§x u €Šm]ƒ a]®»_€‚ilikxE„!r¤€Šjl_Cj¨[]_%_!sJo]€Šj¨rtxAm

st =β+

Jt(u)

X

i=1

c(ui, ai, su i ) +

Z t

0

b(r, sr)dr, 0≤t≤T , ·µ‘XA¸

®([]_&qk_

Jt(u) = k r©¦ uk≤t < uk+1±

 

_¹o]il_¹j¨[]rti§ƒu_!j¨_!ql^`r£m]rtikjlr£„w_&sPoY€zj¨r£x‚mr£mxAqkƒ]_&qj¨xª_ºE]ql_!ili

St

€‚i€nilrt^]¢t_ ¦Do]m]„j¨r£x‚mY€‚¢B

xAm {Jt =n} xAm]_%[Y€‚i

St = st(T1, . . . , Tn,∆1, . . . ,∆n),

iSt = ∂aist(T1, . . . , Tn,∆1, . . . ,∆n),

2j,∆iSt = ∂a2j,aist(T1, . . . , Tn,∆1, . . . ,∆n),

βSt = ∂βst(T1, . . . , Tn,∆1, . . . ,∆n).

gEx)rtm²xAqkƒ]_&q(j¨x„&xA^`]oujl_jl[]_ƒ]_&qkrt¥Š€Šj¨r©¥A_!iªx‚¦

St

<®»_[]€W¥‚_jlx)„&x‚^]oEj¨_%j¨[]xAik_x‚¦

st

±

bªm]ƒ]_!q[ŒhE<x‚jl[]_&ikr£i‰]±ÙEN®»_¡^)€œh²L_!qk¦DxAqk^ jl[]_&ik_¶„&xA^`]ouj¨€Šj¨rtxAm]iCŒh ƒurt°L_&ql_!mŒj¨r¤€zj¨r£mu•

®(rtj¨[qk_&il<_&„jªjlx

aj



j = 1, . . . , n rtm´·µ‘XA¸×±   _%xAuj¨€‚r£m

(16)

}YxAq

i≤Jt(u), ∂aist

il€Šj¨rti Y_!injl[]__&sPoY€Šjlr£xAm

aist =∂ac(ui, ai, su

i ) +

Jt(u)

X

j=i+1

xc(uj, aj, su

j )∂aisu

j

+ Z t

ui

xb(r, sr)∂aisrdr . ·µ‘œ“Œ¸

a2ist =∂2ac(ui, ai, su

i ) +

Jt(u)

X

j=i+1

x2c(uj, aj, su

j )

aisu

j

2

+

Jt(u)

X

j=i+1

xc(uj, aj, su

j )∂a2isu

j +

Z t

ui

xb(r, sr)∂a2isrdr

+ Z t

ui

x2b(r, sr) (∂aisr)2 dr . ·µ‘&‰P¸

}YxAq

i < j

a2j,aist =∂a,x2 c(uj, aj, su j ) +

Jt(u)

X

k=j+1

x2c(uk, ak, su

k)∂aisu

kajsu k

+

Jt(u)

X

k=j+1

xc(uk, ak, su

k)∂a2j,aisu

k +

Z t

uj

xb(r, sr)∂a2j,aisrdr

+ Z t

uk

2xb(r, sr)∂aisrajsrdr , ·µ‘WˆA¸

€‚m]ƒ ¦DxAq

i > ju®»_xAuj…€Šr£m

a2j,aist

Œh iµhE^`^`_!j¨qµhA±

βst

r£i„&x‚^]oEj¨_&ƒŒh

βst = 1 +

Jt(u)

X

i=1

xc(ui, ai, su

i )∂βsu

i +

Z t

0

xb(r, sr)∂βsrdr . ·,‘ ¸

(17)

¹¾ 663#,-

(a1, . . . , an) → st(u1, . . . , un, a1, . . . , an) ∈ C2(Rn)

;

(a1, . . . , an) → ∂βst(u1, . . . , un, a1, . . . , an) ∈ C1(Rn)

!

|∂anst|2 ≥η2e−T K >0

› Â0 ·?r¸§v¬qkxE„!_&_!ƒ)Œh¡ql_!„&o]qkql_&mu„&_couilr£mu•[ŒhJ<x‚j¨[]_!ilrti»‰]±Ùr£m²·µ‘XŠ¸L·µ‘œ“A¸L·,‘œ‰P¸<·,‘XˆA¸×

€‚m]ƒr£m´·µ‘ ¸±

·?r£r¤¸»bnilr£mu•Ž·,‘W“Œ¸×

ansT =∂ac(tn, an, st n) +

Z T

tn

xb(r, sr)∂ansrdruilx

|∂ansT|=

ac(tn, an, st

n) exp

Z T

tn

xb(r, sr)dr

≥η e−T K.

!"#$ ! #$ !

  _„!xA^_]€‚„A˜j¨x¶j¨[u_]qlxAu¢£_&^6r£mil_!„!jlr£xAm

1 €‚m]ƒ®»_ƒu_œ€‚¢0®(r©j¨[˜j¨[u__!sPoY€Šj¨rtxAm´·

@

¸×±

  _®(qlr©j¨_

E

φ0(ST)∂ST

∂β 1JT=n

=E

E

φ0(ST)∂ST

∂β |σ(Ti, i∈N)

1JT=n

=E(hn(T1, . . . , Tn)1JT=n) ,

®(rtj¨[

hn(t1, . . . , tn)

=E

φ0(sT(t1, . . . , tn,∆1, . . . ,∆n))∂sT

∂β (t1, . . . , tn,∆1, . . . ,∆n)

.

  _uº

n≥1 €‚muƒ t1, . . . , tn

€Šm]ƒ ®å_€‚]]¢©h˜Z[]_!xAql_!^“u±©‘%®(r©j¨[

F =sT(t1, . . . , tn,∆1, . . . ,∆n) €‚m]ƒ G=∂βsT(t1, . . . , tn,∆1, . . . ,∆n)±

E»h _!^^€‰u±t‘A<®å_ AJmuxX® jl[Y€Šj

F ∈ S(n,2) €Šm]ƒ G ∈ S(n,1)<ilx˜®»_H[Y€œ¥A_Hjlx¥A_!qlr©¦h j¨[Y€Šj

σF

r£irtmŒ¥A_&qµj¨rt]¢£_€Šm]ƒjl[Y€Šj·?‹Œ¸5[]xA¢£ƒui5j¨qlou_€Šm]ƒ j¨[]_!m®»_„!xA^`]ouj¨_

Hn(F, G) = G γFLF −γFhDF, DGi −GhDF, DγFi. ·µ‘ I ¸

(18)

  _%[Y€œ¥A_

σF =

n

X

i=1

|∂aisT(t1, . . . , tn,∆1, . . . ,∆n)|2

≥ |∂ansT(t1, . . . , tn,∆1, . . . ,∆n)|2 ≥η2e−2T K,

gExC®å_(„&€‚m¡o]il_Z[]_!xAql_!^ “u±©‘(€‚m]ƒ¶®»_nx‚uj…€‚rtmj¨[u_r£mŒj¨_!•Aq¨€Šjlr£xAmPhHY€‚qkjli¦DxAqk^Ho]¢¤€H·

@

¸×±

}2x‚qåj¨[]_%„!xA^uouj…€Šjlr£xAm xŠ¦§jl[]_j¨_&qk^i(rtmP¥‚xA¢t¥‚_&ƒr£m j¨[u_qkr£•A[Œj[]€‚m]ƒilr£ƒu_xŠ¦·,‘

I

¸×

®å_%o]ik_·µ‘W“‚¸»¦DxAq

DF €‚muƒ γF

·µ‘ ¸»¦DxAq

G·µ‘W“‚¸5€‚m]ƒ´·µ‘œ‰Œ¸»¦DxAq

LF·µ‘W“A¸×·µ‘&‰P¸

€‚m]ƒ´·µ‘WˆA¸»¦DxAq

F



®å_%ƒ]r©°N_!ql_!mPjlr¤€Šjl_C®(rtjl[qk_&ikL_!„!jnj¨x

aj

r£m´·µ‘ ¸»j¨x¡xAuj¨€‚r£m

DG±

# §

-

(67 $5

-

(

~¯mjl[]r£iik_&„!jlr£xAm ®»_ƒu_œ€‚¢0®(r©j¨[ j¨[]_d²_!qkjlxAm²^`xJƒ]_&¢B

St =β+

Jt

X

i=1

c(Ti,∆i, ST

i ) + Z t

0

b(u, Su)du+ Z t

0

σ(u, Su)dWu,

®([]_&qk_

ρ´€‚m]ƒ­„¡i¨€zj¨r£iµ¦hŽjl[]_¡]ql_¥ErtxAo]i[ŒhJLxŠj¨[]_!ilr£i‰]±©‘‚‰]±Ù€Šm]ƒ­‰]±Ù“E±¡d²xAqk_&xW¥A_!q&

®å_€‚ikilo]^`_

¿w š ¾ ™Ò™

63,- )

x→σ(u, x) 0 -7-6 !661 '(5; 6 )<'0

; 6 0 ! - 6

C >0 6-

i)|σ(u, x)| ≤C(1 +|x|), ii)|∂xσ(u, x)|+

x2σ(u, x) ≤C , iii)|σ(u, x)| ≥η .

  _C®(rt¢£¢<]ql_!il_&mŒjnj¯®åx`€‚¢©j¨_!qlmY€Šjlrt¥‚_C„œ€‚¢t„&o]¢to]iå¦DxAq5jl[]r£iå^xJƒ]_&¢Ò± Z[]_ YqkikjnxAm]_rti5Y€‚ik_&ƒ

xAmj¨[]_ EåqkxX®(mur¤€‚m%^`x‚j¨rtxAmCxAm]¢©h€‚muƒ%jl[]_¬il_!„&xAm]ƒxAm]_wrti Y€‚il_!ƒx‚m<x‚jl[%jl[]_ EåqlxW®(m]r£€‚m

^x‚jlr£xAm€‚m]ƒj¨[]_¹ykou^)€‚^u¢£rtjlo]ƒ]_!i&±¬gEou]Lx‚il_cjl[Y€Šjåjl[]_¬ykou^)jlr£^`_&i

T1 < . . . < Tn

€‚ql_n•Art¥‚_&m­·Dr£m`j¨[]_Cd²xAmŒj¨_×ĵ¼5€‚qk¢£xH€Š¢£•AxAqkrtjl[]^jl[]r£i»^_&€‚m]i¬j¨[Y€Šj»®å_ª[Y€œ¥A_€Š¢£ql_&€‚ƒuh`ilrt^¡Ä

o]¢¤€Šjl_&ƒ

T1, . . . , Tn

¸×±   _rtm]„&¢to]ƒ]_Cj¨[u_&^.rtm˜j¨[]_ƒ]rtil„!ql_!jlr0L&€Šj¨rtxAm •Aqlrtƒ B ikx¡®»_„&xAm]ikr£ƒ]_!q

Références

Documents relatifs

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334