• Aucun résultat trouvé

An identity for the infinite sum $\sum_{n=0}^\infty\frac{1}{(n!)^3}$

N/A
N/A
Protected

Academic year: 2021

Partager "An identity for the infinite sum $\sum_{n=0}^\infty\frac{1}{(n!)^3}$"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-01858817

https://hal.archives-ouvertes.fr/hal-01858817

Preprint submitted on 21 Aug 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An identity for the infinite sum _n = 0 (n!) 1 3

Hassan Jolany

To cite this version:

Hassan Jolany. An identity for the infinite sum _n = 0

(n!)13

. 2018. �hal-01858817�

(2)

Mathematical Assoc. of America American Mathematical Monthly 121:1 August 11, 2018 9:32 p.m. main.tex page 1

An identity for the infinite sum

X

n=0

1 (n!) 3

Hassan Jolany

Abstract.

In this short note, we give an identity for the alpha function

α(x, s) =

X

n=0

xn (n!)s,

where

s∈N, x∈R

, in the case

s= 3.

1. INTRODUCTION We know that when s = 1 , then the alpha function is the ex- ponential function α(x, 1) = e

x

. The question is that what about when s ≥ 2 ?. We have the following nice differential equation for the alpha function [2]. In fact, it is known that the alpha function is the solution of the following differential equation.

s

X

k=1

σ

sk

x

k−1

y

(k)

− y = 0

where σ

ks

is the Stirling numbers of the second kind which satisfies in the following generating function,

1

k! (e

x

− 1)

k

=

X

s=k

σ

ks

x

n

n!

Hence by using the language of generalized hypergeometric function, we get [3],

X

n=0

1

(n!)

3

=

0

F

2

(; 1, 1; 1) =∼ 2.1297

To deal with this question, we first give the following theorem which is the direct consequence of Bessel-Parseval identity[1].

Theorem 1. Let we have the two following entire series, with real the coefficients, f (x) =

X

n=0

a

n

x

n

and g(x) =

X

n=0

b

n

x

n

January 2014]

SUBMISSION

1

(3)

Mathematical Assoc. of America American Mathematical Monthly 121:1 August 11, 2018 9:32 p.m. main.tex page 2

with respectively non-zero radius R and R

0

. Take h(x) =

X

n=0

a

n

b

n

x

n

, then if −R < u < R and −R

0

< v < R

0

, then we have

h(uv) = 1 2π

Z

0

f (ue

it

)g(ve

−it

)dt

In the Theorem 1, if we take f (x) = g(x) = e

x

, and u = x, v = 1 , then we get the following amazing identity,

X

n=0

x

n

(n!)

2

= 1

2π Z

0

e

(x+1) cost

cos((x − 1) sin t)dt

Hence by taking x = 1 we get

X

n=0

1

(n!)

2

= 1 2π

Z

0

e

2 cost

dt

But we know,

1 2π

π

Z

−π

e

(acosx+bsinx)

dx = I

0

a

2

+ b

2

, (1)

where I

0

is the modified Bessel function of the first kind.

2. THE MAIN RESULT In this section we give an integral identity for the al- pha function when s = 3 . We take f (x) = e

x

, g(x) =

1

R

0

e

(x+1) cost

cos((x − 1) sin t)dt , and u = x, v = 1 . Hence, from Theorem 1, we have

A =

X

n=0

x

n

(n!)

3

= 1 4π

2

Z

0

Z

0

e

xeis

e

(e−is+1) cost

cos (e

−is

− 1) sin t dsdt

But, we have

e

xeis

e

(e−is+1) cost

= e

xcoss+cosscost+cost

(cos(x sin s − sin s cos t) + i sin(x sin s − sin s cos t)) and also,

cos (e

−is

− 1) sin t = cos(cos s sin t − sin t) cosh(sin s sin t) + i sin(cos s sin t − sin t) sinh(sin s sin t) Hence

2 c

THE MATHEMATICAL ASSOCIATION OF AMERICA

[Monthly 121

(4)

Mathematical Assoc. of America American Mathematical Monthly 121:1 August 11, 2018 9:32 p.m. main.tex page 3

A = 1 4π

2

Z

0

Z

0

(e

xcoss+cosscost+cost

)(cos(x sin s − sin s cos t)) cos(cos s sin t − sin t) cosh(sin s sin t)dsdt

− 1 4π

2

Z

0

Z

0

e

xcoss+cosscost+cost

sin(x sin s − sin s cos t) sin(cos s sin t − sin t) sinh(sin s sin t)dsdt

and this gives an identity for the alpha function in the case s = 3 .

REFERENCES

1. Knopp, Konrad,Theory and Application of Innite Series. Dover Publications.(1990) 2. Gerard Eguether,Nombres de Stirling et Nombres de Bell.

http://www.iecl.univ-lorraine.fr/ Gerard.Eguether/zARTICLE/BF.pdf 3. Wolfram Alpha,

http://www.wolframalpha.com/

January 2014]

SUBMISSION

3

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to