• Aucun résultat trouvé

FURTHER RESULTS ON THE INITIATION AND GROWTH OF ADIABATIC SHEAR BANDS AT HIGH STRAIN RATES

N/A
N/A
Protected

Academic year: 2022

Partager "FURTHER RESULTS ON THE INITIATION AND GROWTH OF ADIABATIC SHEAR BANDS AT HIGH STRAIN RATES"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224772

https://hal.archives-ouvertes.fr/jpa-00224772

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FURTHER RESULTS ON THE INITIATION AND GROWTH OF ADIABATIC SHEAR BANDS AT

HIGH STRAIN RATES

T. Wright, R. Batra

To cite this version:

T. Wright, R. Batra. FURTHER RESULTS ON THE INITIATION AND GROWTH OF ADIA-

BATIC SHEAR BANDS AT HIGH STRAIN RATES. Journal de Physique Colloques, 1985, 46 (C5),

pp.C5-323-C5-330. �10.1051/jphyscol:1985541�. �jpa-00224772�

(2)

J O U R N A L DE PHYSIQUE

Colloque C5, supplirnent au n08, Tome 46, aoOt 1985 page C5-323

FURTHER RESULTS ON THE INITIATION AND GROWTH OF ADIABATIC SHEAR BANDS AT HIGH STRAIN RATES

T.W. Wright and R.C. ~ a t r a *

~ a Z Z i s t i c Research Laboratory, Aberdeen Proving Ground, MD. 21005, U.S.A.

U n i v e r s i t y o f Missouri-RoZZa, RoZZa, MO. 65401, U.S.A.

Resume

-

Par un calcul aux elements f i n i s on a etudie l a croissance de per- turbations dans l a deformation par cisaillement simple d'un solide thermo- visco-plastique avec adoucissement. On a trouve que l e s t r e s p e t i t e s pertur- bations croissent lentement au debut mPme s i l e pic de contrainte de l a courbe contrainte-deformation homogene a

@te

franchi mais qu'une croissance explosive peut avoir l i e u par l a s u i t e . Durant l a phase de croissance l e n t e , l a contrainte s u i t de trPs prPs l a reponse homogene mais dans l a phase ex- plosive l a contrainte chute precipi tamment. Les grandes perturbations crois- sent

a

une vitesse i n i t i a l e plus importante e t a c d l P r e n t rapidement mGme avant l e pic de contrainte de l a dsformation homogene. L'introduction d'un e f f e t plastique dipolaire semble P t r e s t a b i l i s a n t e .

A b s t r a c t , - Growth of perturbations in the simple shearing deformation of a softening thermo-visco-plastic solid have been examined by means of a f i n i t e element technique. I t has been found t h a t very small perturbations grow slowly a t f i r s t , even though the underlying homogeneous s t r e s s - s t r a i n response has passed peak s t r e s s , but t h a t eventually explosive growth occurs. During the slow growth phase, the s t r e s s follows the homogeneous response q u i t e closely, but in the explosive phase, the s t r e s s drops precipitously. Large perturbations grow a t a larger i n i t i a l r a t e , and accelerate rapidly even before peak homogeneous s t r e s s . Inclusion of a dipolar p l a s t i c e f f e c t appears to be s t a b i l i z i n g .

I - INTRODUCTION AND BASIC EQUATIONS

Adiabatic shear banding i s a localization phenomenon t h a t occurs during high r a t e p l a s t i c deformation in many materials. Since t h e heat generated by p l a s t i c flow usually tends t o lower the flow s t r e s s , the response curve f o r adiabatic homogeneous deformation will f a l l below t h e isothermal response. If t h i s thermal softening i s stronger than both work and r a t e hardening together, then eventually a peak s t r e s s occurs a t a c r i t i c a l value of s t r a i n , followed by decreasing s t r e s s f o r f u r t h e r increments of s t r a i n . Such a s i t u a t i o n i s generally unstable and presents an opportunity f o r s t r a i n localization t o occur. In recent years there has been con- siderable i n t e r e s t in developing a quantitative, dynamical theory of adiabatic shear banding. Pluch of the recent l i t e r a t u r e , a s well as some of the pioneering works have been l i s t e d and discussed b r i e f l y by Clifton, e t a l . / I / . In t h i s paper we present f u r t h e r calculations of the kind given previously by Mright and Batra / 2 / . In partic- u l a r , we show the e f f e c t of changing the c o n s t i t u t i v e r a t e response and the magnitude of the perturbation. We also examine the e f f e c t of adding a gradient or dipolar response to the c o n s t i t u t i v e equations, a t l e a s t f o r early times.

In order t o concentrate on fundamentals, consider one dimensional shearing of a block of material t h a t l i e s between the boundaries y = + h . The deformation i s assumed to be given completely by horizontal shearing. Thus-the velocity f i e l d may be written

x

= V ( j , f ) ;

y

= 0 ;

z

= 0. (1

As used in / 2 / , the balance and c o n s t i t u t i v e laws f o r t h i s case a r e given here in

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985541

(3)

JOURNAL DE PHYSIQUE

nondimensional form.

blomen t u m : s = p v

.

'Y

Energy:

e

= ke,yy + s i p

E l a s t i c Response:

i

= e(v,,

- up)

Reference P l a s t i c Response: K = ( 1 +

:ln

= O '

Work Hardening: K $ = S Y ~

Yield Surface: Is1 = ( 1

-

a e ) ( l + b l ; p l ) m ~

Boundary conditions a r e v ( + l , t ) =

5 , e,,

( + l , t ) = 0. In these equations the shear s t r e s s i s s , mass density i s p, p a r t i c l e velocity I s v , temperature r i s e i s e , thermal conductivity i s k , p l a s t i c s t r a i n r a t e i s y p , shear modulus i s p , work hard- ening parameter i s K , and p l a s t i c s t r a i n in a reference t e s t i s

+.

The comma denotes partial d i f f e r e n t i a t i o n with respect to the s p a t i a l coordinate y , and t h e superimposed dot denotes p a r t i a l d i f f e r e n t i a t i o n with respect to time t . In the energy equation p l a s t i c working a c t s a s a source term. A l i n e a r e l a s t i c response i s assumed as well as the additive decomposition of shear s t r a i n into e l a s t i c and p l a s t i c parts. The reference p l a s t i c response i s intended t o be simply a curve f i t t o a slow isothermal t e s t . The work hardening parameter i s assumed t o depend only on the p l a s t i c work no matter what the r a t e of the t e s t . Finally, the yield surface i s taken to depend o n p l a s t i c s t r a i n r a t e , a s well as s t r e s s and temperature. When ( 2 ) 6 i s solved f o r y p as a function of s , e , and K , t h i s l a s t condition i s seen t o be simply an overstress r u l e f o r p l a s t i c flow when the stress-temperature point l i e s outside the s t a t i c yield surface. The form chosen here i s similar to one due to Litonski / 3 / . Note t h a t the thermal softening depends only l i n e a r l y on temperature.

In ( 2 ) the nondimensional variables and parameters a r e related to t h e i r dimensional (barred) counterparts a s follows:

K = K / K ~

y = Y $ = ;L p = (ph2;;)/~, k = K/(PcViOh2)

u = ;/K, a = ( ~ K ~ ) / ( P c ~ ) b = 6+,

;,

=

Yp/;,

where ;o = v(h,E)/h i s the average applied s t r a i n r a t e between

y

=

kh,

K~ i s the

i n i t i a l y i e l d s t r e s s in the reference t e s t , cV i s the s p e c i f i c heat a t constant volume, and

a, 6 ,

$,, m and n a r e material constants.

I1

-

HOMOGENEOUS SOLUTIONS AND PERTURBATIONS

If we s e t v = y and assume t h a t s , e , and K a r e independent of y , then equations ( 2 ) reduce to a s e t of ordinary d i f f e r e n t i a l equations in time with s , e , and K as depen- dent variables. For i n i t i a l conditions we assume s ( 0 ) = 1, e ( 0 ) = 0, and ~ ( 0 ) = 1 , so t h a t yielding begins a t the i n i t i a l time. For the assumed v i s c o / p l a s t i c flow law, the s t r e s s / s t r a i n response i s a smooth curve, which r i s e s a t the e l a s t i c slope i n i t i a l l y and then, as p l a s t i c flow increases and the temperature r i s e s , the curve bends over, passes through a s i n g l e maximum, and f i n a l l y decreases with f u r t h e r increments of s t r a i n . This type of calculated behavior i s well known in the l i t e r - a t u r e , eg. / 4 , 5, 6 , 7/. Figure 1 shows typical r e s u l t s . For curve A the nondimen- sional parameters a r e

(4)

and f o r c u r v e B a l l t h e numbers a r e t h e same except b = 5 x

l o 5

and m = 0.02. A l s o shown i n t h e f i g u r e a r e t h e r e f e r e n c e s t r e s s / s t r a i n c u r v e (a = 0, b = 0 ) and t h e i s o t h e r m a l response (a = 0 ) c o r r e s p o n d i n g t o A (case B i s s i m i l a r ) .

CASE A

s so thermal

V) a = O )

(Reference a =

b =

0)

9 I

-0 0.1 0.2

Y

F i g . 1 - Homogeneous response curves. The r e f e r e n c e c u r v e , t h e i s o t h e r m a l c u r v e f o r case A, and t h e a d i a b a t i c c u r v e s f o r b o t h cases A and B a r e shown.

P e r t u r b a t i o n s t o t h e homogeneous response have been i n t r o d u c e d i n t h e f o l l o w i n g manner. J u s t p r i o r t o t h e occurance o f peak s t r e s s , t h e t e m p e r a t u r e was m o d i f i e d

by adding a symmetric bump a t t h e c e n t e r . Two cases have been c o n s i d e r e d as shown ir:

F i g u r e 2, t h e l a r g e r p e r t u r b a t i o n b e i n g f i v e t i m e s h i g h e r and b r o a d e r t h a n t h e s m a l l e r one, b u t s i m i l a r i n shape. W i t h t h e new t e m p e r a t u r e d i s t r i b u t i o n g i v e n , t h e s t r e s s was r e c a l c u l a t e d so t h a t (2)6 i s s t i l l s a t i s f i e d , a l l o t h e r v a r i a b l e s b e i n g h e l d f i x e d . Then t h e f u l l problem u s i n g a l l o f ( 2 ) and t h e s t a t e d boundary c o n d i t i o f i s was r e s t a r t e d w i t h t h e new f i e l d v a r i a b l e s a s i n i t i a l d a t a . A f t e r c a s t i n g t h e

e q u a t i o n s i n t o weak form, c a l c u l a t i o n s were made u s i n g t h e f i n i t e element method, eg. see Becker, e t a l . /8/.

Y

F i g 2.

-

Temperature p e r t u r b a t i o n s added t o t h e homogeneous response a t I .

Case B w i t h t h e s m a l l e r t e m p e r a t u r e bump as a p e r t u r b a t i o n was p r e v i o u s l y d e s c r i b e d i n some d e t a i l i n /2/. F i g u r e s 3 t h r o u g h 7 i l l u s t r a t e and compare t h e main f e a t u r e s o f t h e response f o r a l l cases c o n s i d e r e d t o date. Because o f t h e c o n s t a n t v e l o c i t y m a i n t a i n e d a t t h e boundaries, average s t r a i n r a t e i n t h e s c a l e d v a r i a b l e s f o r t h e s t r i p rave i s e x a c t l y equal t o one. T h i s f a c t a l l o w s d i r e c t comparisons between t h e homogeneous and inhomogeneous cases. F i g u r e 3 shows t h e s t r e s s a t t h e c e n t e r o f t h e s t r i p as a f u n c t i o n o f average s t r a i n ( o r t i m e ) . The p e r t u r b a t i o n was added a t t h e p o i n t marked I, and t h e peak o f t h e homogeneous response i s marked P. F o r t h e small t e m p e r a t u r e bump t h e s t r e s s f o l l o w s t h e homogeneous response u n t i l w e l l p a s t t h e p o i n t P, and t h e n drops r a p i d l y as t h e shear band a c c e l e r a t e s and l o c a l i z e s . The

(5)

C5-326 JOURNAL DE PHYSIQUE

s t r e s s a t o t h e r p o i n t s o f t h e s t r i p i s n e a r l y t h e same, b u t l a g s s l i g h t l y i n t i m e . Note t h a t i n r e a l t i m e ( f o r yo = 500 s - I , say) t h e s t r e s s c o l l a p s e i s delayed

Fig. 3 - S t r e s s vs. average s t r a i n ( o r t i m e , s i n c e Vave = 1). Homogeneous and p e r t u r b e d responses f o r cases A and B.

a p p r o x i m a t e l y 125 us p a s t peak s t r e s s P, and t h e r a p i d a c c e l e r a t i o n i t s e l f takes more than 20 us. T h i s b e h a v i o r i s e n t i r e l y s i m i l a r f o r b o t h cases A and B. The case o f t h e l a r g e r temperature p e r t u r b a t i o n c o n t r a s t s s h a r p l y . I n t h i s case t h e s t r e s s c o l l a p s e begins even before p o i n t P .

r\-

F i g u r e s 4 and 5 show t h e e v o l u t i o n o f temperature and p l a s t i c s t r a i n r a t e a t t h e c e n t e r and edge o f t h e band i n comparison t o t h e homogeneous case. As i s t o be expected t h e b e h a v i o r p a r a l l e l s t h e s t r e s s response. A t f i r s t t h e temperature and s t r a i n r a t e d e v i a t e s l o w l y f r o m t h e homogeneous response, b u t when t h e s t r e s s c o l l a p s e s , t h e y b o t h r i s e s t e e p l y i n t h e c e n t e r . A t t h e edge t h e temperature l e v e l s o f f t o a p l a t e a u w h i l e t h e ' p l a s t i c s t r a i n r a t e ( n o t shown f o r t h e edge p o s i t i o n ) drops towards zero. A t f i r s t i t appears t h a t t h e temperature and p l a s t i c s t r a i n r a t e change so as t o compensate each o t h e r w i t h o u t a p p r e c i a b l y a f f e c t i n g t h e s t r e s s response, b u t e v e n t u a l l y thermal s o f t e n i n g wins o u t i n t h e c e n t e r . A t t h e edge t h e s t r e s s drops due t o momentum t r a n s f e r f r o m t h e c e n t e r and e f f e c t i v e l y quenches b o t h t h e temperature r i s e and t h e p l a s t i c d e f o r m a t i o n .

-

V)

Y -

Fig. 4

-

Temperature r i s e f o r case A. Upper c u r v e s a r e f o r t h e c e n t e r o f t h e band, l o w e r c u r v e s f o r t h e edge. S o l i d c u r v e i s t h e homogeneous case.

1

- --

\

P --- -

\ CASE A

\\ large

>

\small

l

A @ \ A @ I

e

CASE B

- 1 .

small

\

A 8

(6)

small A 0

Fig. 5

-

P l a s t i c s t r a i n r a t e i n t h e c e n t e r of t h e band f o r c a s e A. Reference r a t e (homogeneous deformation) is c l o s e t o 1.

Figures 6 and 7 show cro,ss s e c t i o n s of temperature and p l a s t i c s t r a i n r a t e f o r c a s e A (with t h e l a r g e r temperature p e r t u r b a t i o n ) a t several times during t h e rapid

v,",

0.0842

...

\ \ \

0.0892

\ . --

-

- - - . . -

-

0.0942 (P)

0.0967

. .

Fig. 6

-

Cross s e c t i o n s of temperature r i s e a t times i n d i c a t e d .

Fig. 7

-

Cross s e c t i o n s of p l a s t i c s t r a i n r a t e a t times i n d i c a t e d . -p

0

\.

-.-.- 0.0842

...

I \

0.0892

- - -

-

- - -

-

- -

\.

0.0942 (P)

" '..* \

0.0967

(7)

C5-328 JOURNAL DE PHYSIQUE

t r a n s i t i o n . The most n o t a b l e f e a t u r e i s t h e n a r r o w i n g o f t h e most a c t i v e r e g i o n o f d e f o r m a t i o n . T h i s i s p a r t i c u l a r l y e v i d e n t i n t h e c r o s s s e c t i o n s o f p l a s t i c s t r a i n r a t e . Note t h a t f o r t h e l a t e s t t i m e t h e p l a s t i c s t r a i n r a t e i n t h e c e n t e r o f t h e band i s n e a r l y 8 0 t i m e s t h e average a p p l i e d s t r a i n r a t e .

I 1 1

-

MODIFICATIONS FOR A DIPOLAR EFFECT

As a shear band forms, i t i s e v i d e n t t h a t v e r y steep l o c a l s t r a i n g r a d i e n t s must develop. Therefore, i t has seemed w o r t h w h i l e t o r e f o r m u l a t e t h e p r o b l e m i n terms o f a d i p o l a r t h e o r y o f p l a s t i c i t y . T h i s has been accomplished i n a s t r a i g h t f o r w a r d manner by m o d i f y i n g t h e t h e o r y due t o Green, M c I n n i s , and Naghdi / 9 / t o i n c l u d e a r a t e e f f e c t . I n a d i p o l a r m a t e r i a l i t i s assumed t h a t , i n a d d i t i o n t o t h e u s u a l t r a c t i o n f o r c e s t h a t do work a g a i n s t v e l o c i t i e s , t h e r e a r e h y p e r t r a c t i o n s , denoted

o

and h a v i n g t h e dimensions o f s t r e s s t i m e s l e n g t h , t h a t do work a g a i n s t v e l o c i t y g r a d i e n t s . Decomposition o f s t r a i n gradient^ i n t o e l a s t i c and p l a s t i c p a r t s i n t r o d u c e s a new i n t e r n a l v a r i a b l e , denoted d, i n t h i s paper, w h i c h r e q u i r e s i t s own e v o l u t i o n a r y c o n s t i t u t i v e e q u a t i o n . As skown i n /9/, d i p o l a r p l a s t i c i t y i n t r o - duces l e n g t h s c a l e s t h a t a r e c h a r a c t e r i s t i c o f t h e m a t e r i a l i t s e l f . I n t h i s paper i t i s supposed t h a t t h e r e i s o n l y one i n t r i n s i c l e n g t h s c a l e f o r e l a s t i c , p l a s t i c , o r v i s c o p l a s t i c d e f o r m a t i o n , which i s denoted L. I n a d d i t i o n t o t h e nondimensional q u a n t i t i e s i n t r o d u c e d p r e v i o u s l y , we r e q u i r e

The f u l l s e t o f e q u a t i o n s w i t h a Von Mises t y p e f l o w c o n d i t i o n now t a k e s t h e f o r m Momentum: ( s

-

a u ) = p t

'Y 'Y

Energy:

6

= ke

'YY

+

s ; ~ + C o n s t i t u t i v e E q u a t i o n s :

Reference Response and Work Hardening:

Y i e l d C o n d i t i o n :

( s 2 +o2)' = ( 1

-

a e ) ~ l

+

b ~ ( s 2

+

0 2 ) 4 p K

I n t h e s e e q u a t i o n s h p l a y s t h e r o l e o f a p l a s t i c m u l t i p l i e r and i s t o be d e t e r m i n e d from y i e l d c o n d i t i o n when t h e l o a d i n g p o i n t (s, o,e) l i e s o u t s i d e t h e s t a t i c y i e l d s u r f a c e , a s determined b y t h e l a s t e q u a t i o n w i t h h s e t equal t o zero. E x t r a boundary c o n d i t i o n s a r e a l s o r e q u i r e d . These a r e chosen t o be a(+l,t) = 0, so t h a t t h e d i p o l a r e f f e c t w i l l e f f e c t i v e l y v a n i s h o u t s i d e t h e shear band.

Homogeneous s o l u t i o n s t o t h e s e e q u a t i o n s a r e e x a c t l y t h e same as b e f o r e , b u t now t h e response t o p e r t u r b a t i o n s , computed f o r case B w i t h t h e s m a l l e r t e m p e r a t u r e bump, appears t o be q u i t e d i f f e r e n t , a l t h o u g h l o n g c o m p u t a t i o n a l r u n t i m e s have n o t y e t been achieved. F i g u r e 8 shows t h e e v o l u t i o n o f t h e c e n t r a l p l a s t i c s t r a i n r a t e f o r a nondimensional i n t r i n s i c l e n g t h a = 10 2 . The r a t e decays r a p i d l y back toward t h e average a p p l i e d r a t e , a t l e a s t f o r s h o r t t i m e s a f t e r i n t r o d u c t i o n o f t h e p e r t u r b a t i o n , so t h a t t h e d i p o l a r e f f e c t appears t o s t a b i l i z e t h e d e f o r m a t i o n .

(8)

i SIMPLE MATERIAL

--- ----

CASE B

"I

DIPOLAR MATERIAL

s l '

P ,

-

0.095 0.1 0.105

rave

F i g . 8

-

P l a s t i c s t r a i n r a t e i n t h e c e n t e r of t h e band f o r case B a t e a r l y t i m e s . D i p o l a r m a t e r i a l compared t o s i m p l e m a t e r i a l .

I V

-

DISCUSSION AND CONCLUSIONS

The response t o t h e small temperature p e r t u r b a t i o n i s q u a l i t a t i v e l y v e r y s i m i l a r f o r b o t h cases A and B. F i g u r e 3 shows t h a t , a l t h o u g h t h e s t r e s s l e v e l s a r e d i f f e r e n t due t o t h e d i f f e r e n t v i s c o u s response, t h e shapes o f t h e homogeneous respone curves a r e s i m i l a r , and so a r e t h e shapes o f t h e response t o p e r t u r b a t i o n . For something on t h e o r d e r o f 5 o r 6% average s t r a i n p a s t t h e peak o f t h e homogeneous c u r v e t h e s t r e s s p a t h d e v i a t e s o n l y s l i g h t l y u n t i l s t r e s s c o l l a p s e s e t s i n a t t h e end o f t h e c a l c u l a t i o n . S i m i l a r b e h a v i o r was r e p o r t e d by Merzer /6/ who used a c o m p l e t e l y d i f f e r e n t f l o w l a w f o r v i s c o p l a s t i c i t y . Thus, i t appears t h a t s t r e s s c o l l a p s e i s i n h e r e n t i n t h e process o f band f o r m a t i o n w i t h t h e d e t a i l s depending on t h e s p e c i f i c m a t e r i a l model used.

The c a l c u l a t i o n w i t h t h e l a r g e r p e r t u r b a t i o n i n temperature f o r case A shows t h a t t h e d e t a i l s o f s t r e s s c o l l a p s e a l s o depend s t r o n g l y on t h e magnitude o f t h e p e r t u r - b a t i o n . A l t h o u g h case B has n o t been r u n w i t h t h e l a r g e r temperature d i s t u r b a n c e , t h e r e i s no reason t o expect t h a t t h e r e s u l t s would be q u a l i t a t i v e l y d i f f e r e n t f r o m case A.

The most s t r i k i n g a s p e c t o f t h e response p a t t e r n s i n F i g u r e 3 i s t h e i r s i m i l a r i t y t o t h o s e o b t a i n e d i n a n a l y z i n g i m p e r f e c t i o n s e n s i t i v i t y f o r a b i f u r c a t i o n problem, eg., see

/ l o / .

The o n l y t h i n g m i s s i n g i s t h e b i f u r c a t i o n branch i t s e l f . F i g u r e s 4 and 5 f o r temperature and p l a s t i c s t r a i n r a t e r e i n f o r c e t h i s idea.

A l t h o u g h c a l c u l a t i o n s f o r t h e d i p o l a r case have n o t y e t progressed f a r enough t o be d e f i n i t i v e , i t appears t h a t t h e e f f e c t , even f o r a v e r y small i n h e r e n t m a t e r i a l l e n g t h s c a l e , w i l l be h i g h l y s t a b i l i z i n g . T h i s would be i n accordance w i t h t h e experience t o d a t e f o r e l a s t i c systems where, as i n /11/, h i g h e r o r d e r e f f e c t s a l l o w smooth t r a n s i t i o n s i n s t e a d o f d i s c o n t i n u i t i e s .

U n f o r t u n a t e l y , because o f computational i n s t a b i l i t i e s t h a t s e t i n , i t has n o t y e t been p o s s i b l e t o c o n t i n u e c a l c u l a t i o n s t o t h e p o i n t where a f i n a l c o n f i g u r a t i o n f o r t h e shear band appears. The c a l c u l a t i o n s r e p o r t e d i n /2/ i n d i c a t e d t h a t a peak v a l u e f o r p l a s t i c s t r a i n r a t e may occur, b u t r e e x a m i n a t i o n has i n d i c a t e d numerical i n s t a b i l i t y . The d i f f i c u l t y seems t o be t h a t e v e n t u a l l y t h e extreme l o c a l i z a t i o n o f t h e band d e f e a t s t h e a b i l i t y o f t h e p r e s e n t numerical method t o r e s o l v e t h e d e t a i l s .

REFERENCES

/1/ C l i f t o n , R. J . , D u f f y , J., H a r t l e y , K. A. and Shawki, T. G., S c r i p . Met.

18

(1984) 443.

(9)

C5-330 JOURNAL DE PHYSIQUE

/2/

Wright, T. W. and Batra, R. C., Int. J. Plas. 1 (1985) in press.

/3/ Litonski, J., Bull. liAcad. Pol. Sci. 5 (19777 7.

/4/ Johnson, G. R., Hoegfelt, J. M.,Lindholm,

U.

S. and Nagy, A., J. Eng. Mat.

&

Tech., Trans. ASME 105 (1983) 42 and 105 (1983) 48.

/5/

Burns, T. J., Sandia Reaort SAND83-1901, A1 Duquerque,

PiH

(1983).

/6/ Merzer, A. M., J. Mech. Phys. Sol. 30 (1982) 323.

/7/ Costin, L. S., Crisman, E. E., Hawley,

R.

H. and Duffy, J., in Mechanical Properties at High Rates of Strain, 1979, Inst. Phys. 47 (1979) 90.

/8/ Becker, E. B., Carey, G. F. and Oden, J. T., Finite Elements, An Introduction, Prentice-Hall (1981) Englewood Cliffs, NJ.

/9/ Green, A. E., McInnis, B. C. and Naghdi, P. M., Int. J. Enq. Sci.

6

(1968) 373.

/lo/ Iooss, G. and Joseph, D. D., ~lementar~ Stability and ~ifurcation- he or^,

Springer-Verlag (1980) New York - Heidelberg - Berlin.

/11/ Aifantis, E. C. and Serrin, J. B., J. Colloid and Interface Sci. 3 (1983)

517 and 96 (1983) 530.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to