• Aucun résultat trouvé

DYNAMICS OF SUPERCOOLED WATER STUDIED BY NEUTRON SCATTERING

N/A
N/A
Protected

Academic year: 2021

Partager "DYNAMICS OF SUPERCOOLED WATER STUDIED BY NEUTRON SCATTERING"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00224267

https://hal.archives-ouvertes.fr/jpa-00224267

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DYNAMICS OF SUPERCOOLED WATER STUDIED BY NEUTRON SCATTERING

J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, A. Dianoux

To cite this version:

J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, A. Dianoux. DYNAMICS OF SUPERCOOLED

WATER STUDIED BY NEUTRON SCATTERING. Journal de Physique Colloques, 1984, 45 (C7),

pp.C7-65-C7-71. �10.1051/jphyscol:1984706�. �jpa-00224267�

(2)

DYNAMICS OF SUPERCOOLED WATER STUDIED BY NEUTRON SCATTERING

J .

T e i x e i r a ,

M . - C .

Bellissent-Funel,

S . - H .

chen* and

A . J .

~ianoux**

Laboratoire Lion BriZZouin, CEN ~ a c ~ a ~ + , 91191 Gif-sur-Yvette Cedex, Fronce

* ~ u c Z e a r Engineering Department, Massachusetts I n s t i t u t e o f TechnoZogy, Cambridge, Ma 02139, U.S.A.

** I n s t i t u t Laue-Langevin,

256 X , 38042

GrenobZe Cedex, France

Résumé - Nous présentons des r é s u l t a t s d'expériences de d i f f u s i o n incohé- r e n t e de neutrons, q u a s i - é l a s t i q u e e t i n é l a s t i q u e , par de l ' e a u en phase surfondue. L ' a n a l y s e du s p e c t r e q u a s i - é l a s t i q u e permet de déterminer deux temps c a r a c t é r i s t i q u e s e t l e u r dépendance en température. La d i f f u s i o n e s t expliquée par l e modèle de saut e t un mécanisme de r u p t u r e de l a l i a i s o n hydrogène e s t proposé. Le s p e c t r e i n é l a s t i q u e e s t étendu j u s q u ' à 600 meV montrant, pour l a première f o i s , l a r a i e due aux v i b r a t i o n s intramoléculaires de s t r e t c h i n g .

A b s t r a c t - Incoherent q u a s i - e l a s t i c and i n e l a s t i c neutron s c a t t e r i n g by water was performed i n a temperature range extending t o t h e supercooled s t a t e . The a n a l y s i s o f t h e q u a s i - e l a s t i c snectrum separates two main compo- nents and gives two c h a r a c t e r i s t i c times. T h e i r temperature a n a l y s i s j u s t i - f i e s t h e use o f t h e Jump D i f f u s i o n mode1 and suggests a mechanism f o r t h e hydrogen bond breaking. The i n e l a s t i c s p e c t r a extend u n t i l 600 meV, i .e.

covering t h e i n t r a m o l e c u l a r v i b r a t i o n r e g i o n showing, f o r t h e f i r s t time, t h e s t r e t c h i n g band.

As many o t h e r l i q u i d s , water molecules form between them hydrogen bonds. However, some pecul i a r i t i e s make i t s behaviour very s p e c i f i c . F i r s t l y , t h e hydrogen bond framework i s v e r y dense. A c t u a l l y , even a t room temperature, as much as 80 % o f t h e p o s s i b l e bondsare formed /1/. Secondly, t h e hydrogen bonds a r e f r a g i l e , i . e . , extremely temperature and pressure dependent, because o f t h e i r energy and d i r e c - t i o n a l character. F i n a l l y , t h e bonds form l o c a l l y a t e t r a h e d r a l l a t t i c e , i .e., a very open s t r u c t u r e where each molecule i s surrounded by about f o u r n e x t neighbours.

When t h e temperature i s decreased, t h e number o f bonds increases /1/, t h e angular c o r r e l a t i o n s a i s o i n c r e a s e / 2 / and consequently t h e observed anomalies i n t h e beha- v i o u r o f water a r e more pronounced. A t low temperatures, Say below room temperature and i n t h e su ercooled s t a t e , t h e s t r u c t u r a l aspects dominate and t h e p r o p e r t i e s o f water can l e explained from geometrical c o n s i d e r a t i o n s / 3 / . L t f o l l o w s , as a consequence, t h a t i n t h i s low temperature range, t h e n a t u r e of t h e p o t e n t i a l used, f o r instance i n numerical s i m u l a t i o n s i s n o t very c r u c i a l and d i f f e r e n t choices can g i v e good r e s u l t s , as f a r as t h e t e t r a h e d r a l s t r u c t u r e i s reproduced.

Because o f t h e importance o f hydrogen bonding, one can ask t h e f o l l o w i n g question : what i s t h e dyhamical behaviour o f an hydrogen bond and how i s i t r e l a t e d w i t h t h e t r a n s p o r t p r o p k r t i e s o f l i q u i d water ?

C l e a r l y , t h e r e i s no simple way t o i s o l a t e t h e hydrogen bond from t h e molecular dynamics. A c t u a l l y , most o f the techniques are m a i n l y s e n s i t i v e t o the molecule as a whole and t h e s e p a r a t i o n o f t h e hydrogen bond behaviour i s hazardous.

However, incoherent q u a s i - e l a s t i c and i n e l a s t i c neutron s c a t t e r i n g appears t o be

abor oratoire commun

C E A , CNRS

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984706

(3)

C7-66 JOURNAL DE PHYSIQUE

r a t h e r a p p r o p r i a t e because one i s t h e r e s e n s i t i v e t o t h e p r o t o n dynamics, then t o the hydrogen bond.

I n a t y p i c a l neutron s c a t t e r i n g experiment, a beam of monoenergetic neutrons i s s c a t t e r e d by t h e sample. Angular and energy a n a l y s i s o f t h e s c a t t e r e d neutrons p r o v i d e i n f o r m a t i o n on both s t r u c t u r e and dynamics a t a molecular and atomic l e v e l . Incoherent neutron s c a t t e r i n g , i n p a r t i c u l a r , i s r e l a t e d w i t h t h e dynamic s t r u c - t u r e f a c t o r , Ss(Q,E), and can be expressed i n terms o f t h e atomic i n d i v i d u a l move- ments. Because o f t h e v e r y h i g h incoherent cross s e c t i o n o f hydrogen atoms, t h e s c a t t e r i n g by Hz0 molecules can be assumed t o be o r i g i n a t e d by hydrogen atoms and the observed energy spectrum measures t h e p r o t o n dynamics.

The experimental d e t e r m i n a t i o n o f t h e incoherent i n e l a s t i c spectrum i s a compromise between t h e amplitude of t h e energy t r a n s f e r range and t h e energy r e s o l u t i o n . ide present here two s e t s of experiments q u i t e d i f f e r e n t from t h i s p o i n t o f view.

One s e t o f experiments used t h e Intense Pulsed Neutron Source a t Argonne (U.S.A.).

The i n c i d e n t neutron energy was 800 meV which a l l o w s one,t equal t o 600 meV a t reasonable Q values ( s m a l l e r than 8 A- P ) . reach energy t r a n s f e r s

F i g 1 - G(Q, E) defined by Eq.(l), obtained a t - 15OC. The energy o f t h e i n c i d e n t neutrons was 800 meV.

I n F i g . 1 we show t h e f u n c t i o n

G(Q,E)

=

-7 ~2 Ss(Q,E)

Q (1)

(where E i s t h e energy t r a n s f e r and Q the wave v e c t o r ) obtained a t -15"C, i .e. w i t h a supercooled sample. For t h i s purpose we used a s e t o f 150 P i r e x c a p i l l a r i e s 0.8 mm i . d .

From t h e f i g u r e we i d e n t i f y c l e a r l y t h r e e main bands : the l i b r a t i o n a l band a t 96

meV, t h e i ntramol e c u l a r v i b r a t i o n a l bendi ng band a t 207 meV and t h e i n t r a m o l e c u l a r

(4)

1 ) the l i b r a t i o n a l band s h i f t s towards high frequencies when temperature decreases.

2) the bending l i n e i s almost temperature independent.

3 ) t h e stretching l i n e s h i f t s towards low frequencies with decreasing temperature.

In contrast with the equivalent peak i n the Raman spectrum, i t cannot be separated in d i f f e r e n t components. Al1 these r e s u l t s indicate t h a t the proton motion i n water molecules i s strongly affected by the formation of hydrogen bonds. In p a r t i c u l a r

i t i s the origin of the l i b r a t i o n a l band which i s not present i n gas phase. The temperature variation of the l i b r a t i o n a l band can a l s o be explained noting t h a t the hydrogen bond network i s more d i s t o r t e d when temperature increases and will be b e t t e r understood wi t h the quasi-el astic spectrunl analysis we present below.

A more detailed analysis of t h i s s e t of r e s u l t s will be presented elsewhere /4/

Another s e t of experiments was performed a t the I n s t i t u t Laue-Langevin (Grenoble).

The incident neutron energy was 3.14 meV, in order t o obtain a resolution high enough t o study the quasi-elastic component of the incoherent spectrum, even a t low temperatures. The sample was composed of about 80 Pyrex c a p i l l a r i e s ( i . d .

=

0.3 mm) i n order t o decrease the temperature down t o -20°C. Spectra were recorded a t ni ne d i f f e r e n t temperatures below room temperature, and f o r 19,d'fferent angles corresponding t o e l a s t i c wave-vectors 4 extending from 0.25 t o 2 A-1. A n example of t h e obtained spectra i s given i n Fig.2.

Fig 2 - Typical quasi-elastic spectra, obtained a t - 5OC. The energy of the incident neutrons was 3.14 meV. Points represent the experimental data. The solid l i n e s are the best f i t . The dashed l i n e s represent the resolution function.

The f i t was done assuming two dynamic processus each of them described by lorent- zians

:

The f i r s t term i s the Debye-Waller f a c t o r , < u 2 > i s the vibrational amplitude and

(5)

C7-68 JOURNAL DE PHYSIQUE

* means c o n v o l u t i o n . The mathematical form o f t h e o t h e r terms a r e :

I n t h i s expressions t h e energy t r a n s f e r i s now represented by w,

j

(Qa) a r e s p h e r i - c a l Bessel f u n c t i o n s and a

=

0.98 A ( t h e O-H d i s t a n c e ) i s a r a d i u s %f g y r a t i o n f o r t h e r o t a t i o n .

T(Q,w) i s a l o r e n t z i a n w i t h HWHM

=

T(Q) and,in a c l a s s i c a l p i c t u r e , i s associated w i t h d i f f u s i o n processes. We analysed t h e w i d t h r ( Q ) w i t h i n t h e Jump D i f f u s i o n mode1 /5/:

where D i s t h e s e l f - d i f f u s i o n c o e f f i c i e n t and

T,

represents a residence time. Fig.3 shows t h e r e s u l t o f t h i s f i t a t d i f f e r e n t temperatures between 20°C and -20°C.

Fig.3 - HWHM o f t h e t r a n s l a t i o n a l l o r e n t z i a n a t d i f f e r e n t temperatures. The s o l i d l i n e s reoresent t h e b e s t f i t . For T=20°C t h e s e l f - d i f f u s i o n l i n e i s shown.

The broad components R(Q,w) are normally associated w i t h r o t a t i o n a l r e l a x a t i o n . They a r e Q independent. If we d e f i n e a c h a r a c t e r i s t i c t i m e

T~

given by

:

=q

1

( 6 )

we o b t a i n an Arrhentus behaviour f o r i t s temperature dependence ( F i g . 4 ) .

F i n a l l y , we determined t h e Debye-Waller parameter. I t i s , w i t h i n the experimental

(6)

and ~ e r c o l a t i o n madel l Bertoliniet al.)

Fig.4 - Arrhenius p l o t of

T "

and

T I

determined i n Our experiment. D i f f e r e n t t r a n s - p o r t p r o p e r t i e s and r e l a x a t i o n times a r e shown t o g e t h e r .

e r r o r temperature independent. The value of t h e v i b r a t i o n a l ampli tude i s

<u2>1I2

=

0.484 1. We must emphasize t h a t al1 t h e d a t a a r e f i t t e d with a t y p i c a l e r r o r of 1 % with t h r e e f r e e parameters : <u2>, r(Q) and D r . In Fig.2 t h e s o l i d l i n e s r e p r e s e n t t h e f i n a l f i t .

From t h i s f e a t u r e s , i t i s p o s s i b l e t o j u s t i f y a mechanism f o r t h e proton motion.

As we pointed o u t above, water molecules a r e i n s t a n t a n e o u s l y connected with most o f t h e i r neighbours through hydrogen bonds. However, each hydrogen bond i s very d i r e c - t i o n a l and t h e 1 i b r a t i o n amplitude i s very l a r g e . Molecular dynamics computer simulations of Impey e t al / 6 / i n d i c a t e t h a t , when t h e amplitude of l i b r a t i o n i s above 25" t h bond i s broken. This e s t i m a t i o n i s i n very good agreement with t h e value < u 2 > l / ?

=

0.484 8. we deduced from t h e Debye-Waller f a c t o r .

When a bond i s broken, t h e molecule can form a bond with another neighbour. Then, t h e time TI i s a measure of t h i s c h a r a c t e r i s t i c time, and we j u s t i f y t h e use of Eq. ( 4 ) i n t h e f i t t i n g procedure, noting t h a t t h i s processus corresponds t o a r o t a t i o n a l movement. Independent determi nations of t h e hydrogen bond 1 i fe-time / 7 / lead t o values with t h e same o r d e r of magnitude ( F i g . 4 ) , but what must be emphasized i s t h a t i n both cases one f i n d s an Arrhenius temperature dependence. This normal behaviour i s d i f f e r e n t from those of a l 1 o t h e r p r o p e r t i e s of water and i t i s c e r - t a i n l y a m a n i f e s t a t i o n of t h e hydrogen bond dynamics.

On t h e o t h e r hand, t h e d i f f u s i o n of t h e molecule i s p o s s i b l e only when a s u f f i c i e n t

number of bonds i s broken simultaneously. With decreasing temperature, t h e f r a c t i o n

of mobile molecules becomes extremely small and consequently the.temperature depen-

dence of a l 1 t h e t r a n s p o r t p r o p e r t i e s i s s t r o n g l y non-Arrhenius. A simple p i c t u r e

based on t h e geometrical p r o p e r t i e s of t h e hydrogen bond framework has been propo-

sed /3/ t o r e l a t e t h e hydrogen bond l i f e t i m e and t h e t r a n s p o r t p r o p e r t i e s and used

with success i n t h e i n t e r p r e t a t i o n of t h e d i e l e c t r i c r e l a x a t i o n time / 8 / . In

O u r

(7)

C7-70 JOURNAL DE PHYSIQUE

experiments, t h e anomalous temperature behaviour i s followed by t h e residence time

T~

( F i g . 4 ) .

I t i s worth noting moreover t h a t a c h a r a c t e r i s t i c jump length L can be defined i n t h e c l a s s i c a l way from Eq.15) by

L

=

(6 D -ro) 1 / 2 ( 7 )

The temperature dependence we o b t a i n f o r L i s given i n Fig . 5 . I t s value i s i n average

Fig.5 - Temperature dependence,of t h e jump length L defined by Eq.(7). Note t h a t i t i s i n average c l o s e t o 1 . 6 A , t h e d i s t a n c e between t h e two protons i n water molecule.

equal t o 1.6 1\, which suggests t h a t t h e d i f f u s i o n i s made by r o t a t i o n a l jumps.

Actually t h i s d i s t a n c e corresponds t o t h e d i s t a n c e between two protons, then t o two p o s s i b l e bonds of t h e water molecule. The small temperature dependence can be understood i f we remember t h a t a t high temperatures t h e hydrogen bond frarnework is more deformed and t h e d i s t a n c e L i s reduced.

Fig.4 shows p l o t t e d t o g e t h e r d i f f e r e n t r e l a x a t i o n times and dynamic p r o p e r t i e s of l i q u i d water. While t r a n s p o r t p r o p e r t i e s and molecular r e l a x a t i o n times a r e not Arrhenius temperature dependent, a s h o r t e r time i s observed i n depolarized l i g h t Rayleigh s c a t t e r i n g /7/ and i n O u r experiment. The temperature dependence of t h e hydrogen bond 1 ifetirne deduced by Bert01 i n i e t a l /8/ has a l s o a small temperature dependence w i t h an a s s o c i a t e d a c t i v a t i o n energy c l o s e t o t h a t of

T I .

The a c t i v a t i o n energy deduced from Rayleigh s c a t t e r i n g is s l i g h t l y h i g h e r perhaps because i t i s t k r e a s s o c i a t e d with t h e iholecular p o l a r i z a b i l i t y .

Ne described above a mechanism t o r e l a t e t h e two d i f f e r e n t behaviours i n temperature

of t h e c h a r a c t e r i s t i c times .ro and

T

. However,

O u r

approach i s c e r t a i n l y t o o crude,

i n p a r t i c u l a r , w r i t i n g Eq.(2). ~ c t u a i l ~ , t h e mode1 we propose i s not compatible with

t h e convolution of t h e d i f f u s i o n and r o t a t i o n components which supposes t h a t t h e

(8)

temperature dependent. With such a s p e c i f i c model , i t w i l l be p o s s i b l e t o p r e c i s e more q u a n t i t a t i v e l y t h e molecular dynamics o f water. Our a n a l y s i s represents i n t h i s sense a f i r s t order approximation.

REFERENCES

/1/ G.E.Walrafen i n Water : A Comprehensive T r e a t i s e , e d i t e d by F.Franks (Plenum N.Y.,1972) v o l . 1 ; G. d l A r r i g o , G. Maisano, F. Mallamace, P. M i g l i a r d o and F. Wanderlingh, J.Chem.Phys. 75, 4264 (1981) ; W.A.P. Luck and W. D i t t e r , J .Phys.Chem. - 74, 3687 (1970) .-

/2/ L. Bosio, J. T e i x e i r a , J.C. Dore, D. S t e y t l e r and P. Chieux, Mol.Phys. 50, 733 (1983)

;

L. Bosio, S.-H. Chen and 3 . T e i x e i r a , Phys.Rev. Ac, 1468 -

(1983).

/3/ H.E. Stanley and J . T e i x e i r a , J.Chem.Phys. 2, 3404 (1980).

/4/ S.-H. Chen, K. Toukan, C. Loong, D. P r i c e and J . T e i x e i r a ( t o be published).

/5/ P.A. E g e l s t a f f , An I n t r o d u c t i o n t o t h e L i q u i d S t a t e (Academic, London, 1967)

/ 6 / R.W. Impey, P.A. Madden and I.R. McDonald, Mol.Phys. 5, 513 (1982).

/7/ C.J. Montrose, J.A. Bucaro, J. Marshall-Coakley and T.A. L i t o w i t z , J-Chem.

Phys. 60, 5025 (1974) ; O. Co.nde and J. T e i x e i r a , J .Phys. ( P a r i s ) 5, 525 (1983):

/8/ D. B e r t o l i n i , M. C a s s e t t a r i and G. S a l v e t t i , 3.Chem.Phys. c, 3285 (1982).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to