• Aucun résultat trouvé

OBSERVATION OF IN SITU FORMATION OF PHTHALOCYANINE-BIS (PYRIDINE) IRON(II) BY X-RAY ABSORPTION SPECTROSCOPY

N/A
N/A
Protected

Academic year: 2021

Partager "OBSERVATION OF IN SITU FORMATION OF PHTHALOCYANINE-BIS (PYRIDINE) IRON(II) BY X-RAY ABSORPTION SPECTROSCOPY"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00226023

https://hal.archives-ouvertes.fr/jpa-00226023

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OBSERVATION OF IN SITU FORMATION OF PHTHALOCYANINE-BIS (PYRIDINE) IRON(II) BY

X-RAY ABSORPTION SPECTROSCOPY

K.-H. Frank, E.-E. Koch, H.-W. Biester

To cite this version:

K.-H. Frank, E.-E. Koch, H.-W. Biester. OBSERVATION OF IN SITU FORMATION OF PHTHALOCYANINE-BIS (PYRIDINE) IRON(II) BY X-RAY ABSORPTION SPECTROSCOPY.

Journal de Physique Colloques, 1986, 47 (C8), pp.C8-653-C8-657. �10.1051/jphyscol:19868124�. �jpa-

00226023�

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplkment au no 12, Tome 47, dkcembre 1986

OBSERVATION OF IN SITU FORMATION OF PHTHALOCYANINE- BIS(PYRIDINE)IRON(II) BY X-RAY ABSORPTION SPECTROSCOPY

K.-H. FRANK, E.-E. KOCH and H.-W. BIESTER*

Fritz-Haber-~nstitut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-1000 Berlin 3 3 , F.R.G.

*II.~nstitut fiir Experimentalphysik, Universitat Hamburg, D-2000 Hamburg 50, F.R.G.

A b s t r a c t

X-ray a b s o r p t i o n spectroscopy has been employed t o study i n s i t u the changes i n the l o c a l s t r u c t u r e o f t h e c e n t r a l atom o f Fe-Phthalocyanine (FePC) by t h e a d s o r p t i o n o f p y r i d i n e . A dipole-forbidden (ls+3d) pre-edge s t r u c t u r e o f the Fe K-edge has been observed which i n d i c a t e s t h e

D

symmetry o f FePC. This ls+3d t r a n s i t i o n i s missing i n the spectrum o f the ~ e ~ ~ - ~ ~ # ? d i ne compl ex. The disappearance o f t h e pre-edge s t r u c - t u r e i s i n t e r p r e t e d by the adsorption o f two p y r i d i n e molecules t o the FePC molec- u l a r plane leading t o a change o f the f o u r f o l d symmetry i n t o an octahedral geometry.

The absence.of a chemical s h i f t o f t h e Fe K-edge i n d i c a t e s t h a t t h e complex has been formed w i t h o u t a n e t t r a n s f e r o f e l e c t r o n charge between the c e n t r a l atom and the p y r i d i n e l i g a n d s .

I n t r o d u c t i o n

The metal phthalocyanines (MePcls) a r e o f considerable i n t e r e s t because the l o c a l molecular s t r u c t u r e around the c e n t r a l atom i s v e r y s i m i l a r t o t h a t i n c h l o r o - p h y l l and hemoglobin. Thus they are model substances f o r r e d o x - a c t i v e complexes i n l i v i n g organisms o r i n c a t a l y t i c systems. I n a d d i t i o n , they have i n t e r e s t i n g proper- t i e s as semiconductors and f o r device a p p l i c a t i o n s / I / . The l o c a l e l e c t r o n i c and geometric s t r u c t u r e a t t h e c e n t r a l metal atom plays 'a dominant r o l e f o r t h e i r chem- i c a l p r o p e r t i e s . The occupied valence bands o f the 3d-PC's and the b i n d i n g energies o f the core l e v e l s are w e l l known from photoemission experiments / 2 / . Recently, t h e empty molecular o r b i t a l s o f 3d-PC's have been determined by h i g h r e s o l u t i o n s o f t X-ray absorption spectroscopy (XAS) i n the range o f the carbon and n i t r o g e n K-edges and t h e 3d-metal L -edges /3/. This technique i s s i t e s p e c i f i c due t o t h e pos- s i b i l i t y t o selectl€ielBTfferent c o r e - l e v e l edges o f i n t e r e s t . Thus, i t was p o s s i b l e t o observe i n p a r t i c u l a r the unoccupied 3 d - o r b i t a l s o f the c e n t r a l atom i n the 3d MePC's /3/. The t o t a l d e n s i t y o f empty s t a t e s i s accessible by i n v e r s e photoemission spectroscopy which has been developed i n t h e l a s t few years /4/ and a p p l i e d success- f u l l y t o study t h e empty molecular o r b i t a l s o f adsorbed benzene and azabenzenes / 5 / . I n the X-ray regime the I s edges of t h e 3d metals can be reached. The r e s o l u t i o n i s reduced however by the i n t r i n s i c broadening due t o l i f e time e f f e c t s . Nevertheless, t h e measurement o f t h e near edge absorption a t the metal K-edce i n orqanometallic molecules 1 i ke 3d-MePC's contains valuable i n f o r m a t i o n about the symmetry a t the c e n t r a l atom /6/. Furthermore, these experiments can be done i n r e a c t i o n c e l l s under a r e a l chemical environment. The main f e a t u r e s o f the K-edge t r a n s i t i o n s can be r e - l a t e d t o 1s+4p and shape resonances and/or t o m u l t i s c a t t e r i n g processes. I n a d d i t i o n a small pre-edge peak has been assigned t o the ls+nd t r a n s i t i o n i n the spectra o f t r a n s i t i o n metals w i t h incomplete f i l l e d d - s h e l l s /6,7/. The i n t e n s i t y o f t h i s weak feature i s a s e n s i t i v e measure t o determine the s i t e symmetry o f t h e atom. I n a per- f e c t octahedral symmetry the pre-edge s t r u c t u r e i s completely absent. Going t o d i s - t o r t e d octahedral, square pyramidal and t e t r a h e d r a l geometries t h e amplitude i n - creases /6,7/. T h i s e f f e c t has been used t o study the s i t e symmetry i n i n o r g a n i c com- pounds and organometallic complexes / 8 / . I t i s w e l l known t h a t i n t h e planar YePC's Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19868124

(3)

'28-654 J O U R N A L DE PHYSIQUE

i t i s p o s s i b l e t o change t h e c o o r d i n a t i o n o f t h e c e n t r a l atom by a d s o r p t i o n o f l i g a n d s w i t h donor o r a c c e p t o r c h a r a c t e r / 9 / . F o r example t h e r e e x i s t s P h t h a l o c y a n i n e - b i s ( p y - r i d i n e ) i r o n ( I I )

/ l o / .

Thus, we have t r i e d t o s t u d y i n s i t u t h e f o r m a t i o n o f t h i s com- p l e x and t h e change i n c o o r d i n a t i o n by Fe K-edge XAS.

Experimental

The XAS measurements were performed a t t h e RUM0 spectrometer a t HASYLAB (DESY, Hamburg) i n t r a n s m i s s i o n geometry u s i n g a S i ( 3 1 1 ) double c r y s t a l monochromator /11/.

The FePC sample has been evaporated o n t o a 1 um t h i c k Kapton f o i l . The t h i c k n e s s o f t h e f i l m was e s t i m a t e d t o be about 3 urn. T h i r t y o f t h e s e f o i l s were s t a c k e d t o g e t optimum a b s o r b e r - t h i c k n e s s and keeping a t t h e same t i m e a l a r g e s u r f a c e t o volume r a t i o . The sample s t a c k was t h e n t r a n s f e r r e d i n t o a vacuum chamber equipped w i t h two Kapton windows. A r e s e r v o i r f i l l e d w i t h l i q u i d p y r i d i n e was connected t o t h e chamber by a v a l v e . The p y r i d i n e had been cleaned b e f o r e by s e v e r a l f r e e z e and thaw c y c l e s . The X-ray a b s o r p t i o n spectrum o f t h e FePC was t h e n measured under vacuum c o n d i t i o n s . By opening t h e v a l v e and f i l l i n g t h e chamber w i t h p y r i d i n e vapour t h e f o r m a t i o n o f t h e FePC-pyridine complex c o u l d be observed i n s i t u by XAS d i r e c t l y .

R e s u l t s and D i s c u s s i o n

I n F i g . l a t h e t r a n s i m i s s i o n spectrum o f FePC i s shown i n t h e range o f t h e Fe K-edge. The spectrum e x h i b i t s s i x w e l l r e s o l v e d s t r u c t u r e s l a b e l l e d A1, B, C1, C and D. T h e i r e n e r g i e s a r e 1 is t e d i n t a b l e 1. The z e r o o f energy scale*$;s been f q x e d t o t h e f i r s t i n f l e c t i o n p o i n t o f t h e spectrum a t 7105 eV.

Table 1: E n e r g i e s o f t h e f e a t u r e s o f t h e Fe K-edge i n FePC r e l a t i v e t o t h e f i r s t i n f l e c t i o n p o i n t o f t h e spectrum i n F i g . l a .

F o r comparison t h e spectrum o f t h e K-edge o f Fe i n t h e p u r e m e t a l i s shown i n F i g . I d , where t h e whole p a t t e r n o f s t r u c t u r e s A

-

D can a l s o be i d e n t i f i e d . T h e i r ener- g i e s a r e o n l y s l i g h t l y s h i f t e d , b u t t h e r e l a t i v e i n t e n s i t i e s have changed c o m p l e t e l y . The weak humps A and A2 coalesce i n t o one peak i n p u r e i r o n . They a r e a t t r i b u t e d t o t h e d i p o l e - f o r b i i d e n ls+3d t r a n s i t i o n which w i l l be d i s c u s s e d below. There i s no agreement i n t h e l i t e r a t u r e c o n c e r n i n g t h e assignment o f s t r u c t u r e B. Several ex- p l a n a t i o n s a r e discussed: ( i ) ls+4s t r a n s i t i o n /12/, ( i i ) 4p f i n a l s t a t e /13,14/, ( i i i ) t h e o n s e t o f t h e continuum /15/, ( i v ) l s 4 p shake down f e a t u r e / 1 6 / . Concern- i n g . t h e main maximum i n t h e i r o n spectrum we f o l l o w t h e i n t e r p r e t a t i o n o f Grunes /17/ and i d e n t i f y C as t h e l s 4 p t r a n s i t i o n . C and D a r e t h e n a s s i g n e d t o shape resonances and/or m b l t i s c a t t e r i n g resonances.

W$

w i l l f o c u s o u r a t t e n t i o n on t h e pre-edge peaks A

,

A i n o r d e r t o o b t a i n i n f o r m a t i o n about t h e symmetry o f t h e Fe- i o n i n t h e ~ e ~ c - b ~ r i g i n e complex.

Exposure o f t h e FePC f i l m s t o p y r i d i n e vapour changes t h e spectrum. The Fe K-edge and t h e above mentioned s t r u c t u r e s A

-

D e x h i b i t no s h i f t i n t h e i r energy p o s i t i o n s ( F i g . l b ) . However, t h e i r r e l a t i v e i n t e n s i t i e s a r e markedly a f f e c t e d by t h e a d s o r p t i o n o f p y r i d i n e t o t h e FePC molecule. The maxima C1, C2 and D a r e broadened.

C2 and D a r e a l s o reduced i n t h e i r amplitudes. The p o s t i n t e r e s t i n q e f f e c t can be observed f o r t h e ls+3d t r a n s i t i o n A2. While A i s more o r l e s s u n e f f e c t e d A 2 . i s r e - duced by t h e p y r i d i n e a d s o r p t i o n (Fig. l b ) . 1 k d i s a p p e a r s a f t e r s a t u r a t i o n w ~ t h p y r i - d i n e vapour ( F i g . l c ) . The development o f t h e s p e c t r a a, b, and c ( F i g . I ) , w i t h ex- posure t o p y r i d i n e vapour can be e x p l a i n e d by t h e p e n e t r a t i o n o f p y r i d i n e i n t o t h e porous FeFC-films. I n F i g . 2 an e n l a r g e d p l o t o f these s p e c t r a i s shown i n t h e r e g i o n of t h e A1, A f e a t u r e s . The spectrum o f FePC e x h i b i t s as s h o u l d e r A; on t h e l o w energy s ~ d e 8 f A separated by 2.5 eV. The disappearance o f A2 and

P i

can a l s o be c l e a r l y seen i n

Fig.

2.

F i g . 2: E n l a r g e d p l o t o f t h e s p e c t r a o f F i g . l a , b, c i n t h e r e g i o n o f t h e

ls+3d t r a n s i t i o n .

+

(4)

F i g . ] :

Iron K-edge X-ray absorption spectra of iron-Phthalocyanine (a) and after expo- sure to pyridine vapour

( b ) .

Spectrum (c) corresponds to the

Phthalocyanine-bis(pyri-

dine)iron(lI) complex after saturation of the FePC film with pyridine. For com- parison the K-edge of iron metal is shown

(d). See text for explanation of the nota- tion.

7100 7150 7200

PHOTON

ENERGY

( e V )

7090 7100 7110 7120

PHOTON ENERGY (eV1

(5)

C8-656 JOURNAL DE PHYSIQUE

It i s w e l l known /6,7/ t h a t t h e i n t e n s i t y o f the d i p o l e - f o r b i d d e n pre-edge peak i s c o r r e l a t e d t o t h e s i t e symmetry o f t h e adatom. I n a p e r f e c t octahedral s i t e t h e ls+3d t r a n s i t i o n i s o n l y quadrupole allowed / 7 / . Thus i t i s very weak. Lowering t h e s i t e s y m e t r y t o d i s t o r t e d octahedral, square pyramidal and tetrahedal geometry t h e pre-edge i n t e n s i t y increases /6,7/. The pre-edge a b s o r p t i o n becomes d i p o l e allowed because o f stronger 3d-4p mixing and h y b r i d i s a t i o n o f the 3d o r b i t a l s w i t h the p- l e v e l s o f t h e l i g a n d s . I n a p l a n a r f o u r f o l d s i t e t h e r e e x i s t s a l s o a pre-edge s t r u c - t u r e /18/. Therefore we i n t e r p r e t t h e disappearance o f peaks A and A' by t h e ad- s o r p t i o n of two p y r i d i n e molecules t o the FePC molecule below $nd abo6e i t s molec- u l a r plane. The s i t e symmetry o f t h e Fe atom i s then octahedral. Most probably the p y r i d i n e s a r e deposited w i t h t h e i r n i t r o g e n end t o t h e FePC /19/. This geometry i s shown i n F i g . 3. A d e t a i l e d a n a l y s i s o f the Fe-N d i s t a n c e cannot be obtained from our measurements. But a p e r f e c t o r o n l y s l i g h t l y P 8 i s t o r t e d octahedral s i t e can be expected. This i s i n agreement w i t h ab i n i t i o MO c a l c u l a t i o n s o f S a i t o and Kashiwagi /19/ f o r t h i s FePC ( p y r i d i n e ) complex. The authors c a l c u l a t e d f o r t e low s p i n F e ( I 1 ) s t a t e o f t h e F ~ P C - p y r i g i n e complex a Fe-N d i s t a n e o f 2.19

k ,

which i s about 10 % l a r g e r than the i n p l a n e Fe-N distancep8f 2.02

i .

The occurrance o f t h e low s p i n F e ( I 1 ) s t a t e f o r FePC and FePC-Py has been proven by Mossbauer s t u d i e s o f Hudson and W h i t f i e l d /20/. T h i s r e s u l t may be checked e x p e r i m e n t a l l y by EXAFS meas- urements o f t h e complex from which the nearest neighbour distances and the number o f nearest neighbours can be e x t r a c t e d .

The l o c a l geometry o f i r o n i n FePC(Py) i s very s i m i l a r t o t h e s i t e symmetry o f i r o n i n hemoglobin /21/. Indeed t h i s c l o s e Zorrespondence i s r e f l e c t e d by the s i m i - l a r i t y o f t h e XAS o f hemoglobin /22/ and F ~ P C ( P Y ) ~ .

F i g . 3: S i x f o l d octahedral geometry o f t h e Phthalocyanine-bis(pyridine)iron(II) complex.

As mentioned above we have n o t observed any chemical s h i f t o f the X-ray ab- s o r p t i o n edges o f the f r e s h l y evaporated FePC and the i n s i t u prepared FePC-pyridine complex. Transfer o f n e t e l e c t r o n charge between the F e ( I 1 ) ions /20/ and the n i t r o - gen atoms o f the p y r i d i n e molecules does n o t occur by the adsorption. This f i n d i n g i s i n agreement w i t h XPS r e s u l t s /23/ and t h e Mossbauer s t u d i e s /20/. They have found F e ( I 1 ) i o n s i n FePC as w e l l as i n t h e complex. F i n a l l y , we note t h a t exposure o f t h e FePC-sample t o O2 d i d n o t l e a d t o an observable change i n the XAS w i t h i n the d e t e c t - i o n l i m i t s o f t h e present experiment.

Acknowledgement

We wish t o thank G. M a t e r l i k f o r h i s v a l u a b l e support i n the i n i t i a l stages o f t h i s work, B. Lengeler f o r v a l u a b l e discussions and I. Chernotiorsky and P. Obel f o r t h e i r very s k i l l f u l l t e c h n i c a l support.

T h i s work has been supported i n p a r t by t h e Bundesministerium fiir Forschung und Technologie (BMFT) from funds f o r research w i t h synchrotron r a d i a t i o n (BMFT) 06 390 FXg/C3-09).

(6)

References

1. A. R. B. Lever: Advanc. Org. Chem. Radiochem. 7 (1965) 27, C. Hamann, ed.;

Organische Festkijrper und organische dunne Schichten (Akademie Verlag, L e i p z i g 1978); M. Pope and C. E. Swenberg: E l e c t r o n i c Processes i n Organic C r y s t a l s (Clarendon Press, Oxford, 1982).

2. E. E. Koch, i n : Organic Molecular Aggregats, eds. P. Reinicker, H. Haken and H. C. Wolf (Springer, B e r l i n , 1983) p. 35.

3. E. E. Koch, Y. Yugnet and F. J. Himpsel, Chem. Phys. L e t t . 116 (1985) 7 .

4. V. Dose, J. Phys. Chem. 88 (1984) 1681. -

5. K. H. Frank, R. Dudde a n r E . E. Koch, submitted t o Chem. Phys. L e t t .

6. R. G. Shulman, Y. Yafet, P. Eisenberger and W. E. Blumberg, Proc. Nat. Acad.

S c i . 73 (1976) 1384.

7. J. GloE, F. W. L y t l e , R. P. Messmer and D. H. Maylotte, Phys. Rev.

830

(1984) 5596.

8. U. L. S r i v a s t a v a and

H'.

1. Nigam, Coord. Chem. Rev. 9 (1972) 275; A. L . Roe, D. J. Schneider, R. J. Mayer, J. W. Pyrz, J. Windom and L. Que, J. Am. Chem.

SOC. 116 (1984) 1676.

9. B. D . x r e n z i n , Coordination Compounds o f Porphyrins and Phthalocyanines (J. Wiley, New York, 1981).

10. B. W. Dale, Trans. Farad. Soc. 65 (1969) 311.

11. A. K r o t z i g , G. Materl i k , M. S w a z and J. Zegenhagen, Nucl

.

I n s t r . Meths. Phys.

Res. 219 (1984) 430.

12. G. L.-G-fenn and C . G. Dodd, J. Appl. Phys. 39 (1968) 5372.

13. M. B e l l i , A. S c a f a t i , A. Bianconi, S. M o b i l x , L. Palladino, A. Reale and E. B u r a t t i n i , Sol. S t a t . Commun. 35 (1980) 355.

14. K. Tsutsumi, 0. A i t a and K. I c h i k G a , Phys. Rev. B15 (1977) 4638.

15. F. W. K u t z l e r , C. R. N a t o l i , D. K. Misemer, S. D o f i c h and K. 0. Hodgson, J. Chem. Phys. 73 (1980) 3274.

17. L . A. Grunes, PGs. Rev. B27 (1983) 2111.

18. J. Garcia, M. Benfatto, C x . N a t o l i and A. Bianconi, c o n t r i b u t i o n t o t h i s conference.

19. M . S a i t o and H. Kashiwagi, J. Chem. Phys. 82 (1985) 3716.

20. A. Hudson and J. H. W h i t f i e l d , I n o r g . ChemL-6 (1967) 1120.

21. E. Bayer and G. Holzbach, Angew. Chem. 89 (1T77) 120.

22. A. Bianconi

,

i n : EXAFS and near edge s t E c t u r e , eds. A. Bianconi

,

L. Incoccia, S. S t i p i c h (Springer, B e r l i n , 1983) p. 118.

23. T. Kawai, M. Soma, Y. Matsumoto, T. Onishi and K. Tamaru, Chern. Phys. L e t t .

-

37

(1976) 378.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to