• Aucun résultat trouvé

SUPERSPACE EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "SUPERSPACE EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225719

https://hal.archives-ouvertes.fr/jpa-00225719

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SUPERSPACE EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS

A. Janner

To cite this version:

A. Janner. SUPERSPACE EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS. Journal de Physique Colloques, 1986, 47 (C3), pp.C3-95-C3-102. �10.1051/jphyscol:1986309�. �jpa-00225719�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, s u p p l 6 m e n t a u n o 7, Tome 47, juillet 1986

SUPERSPACE EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS

A . JANNER

Instituut voor Theoretische Fysica, ~niversiteit Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

Rdsum6 - On consid6re l e plongement de; q u a s i c r i s t a u x & une dimension dans un espace . Euclidien bidimensionnel . Les conditions pgur a b o u t i r 21 des r6seaux 1som5t-riques ( c a r r 6 e t hexagonal) f o n t a p p a r a i t r e deux p a r m & t r e s

qui c a r a c t 6 r i s e n t l a c l a s s 8 d'lsomorphisme l o c a l . Ces p6mes parami?tres d8termi'nent l a s t r u c t u r e ' des modules l i b c e s engendr6s par l e s compogantes e x t e r n e s e t - c e l l e s - i n t e r n e s d e s , vecteurs r 6 t i c u l a i r . e ~ de ,l'espape d i r e c t e t de c e l u i r6ciproque. La P y r r h o t i t e Fel-xS e s t t r a i t e e c m e exemple.

Abstract -

considered .'

hexagonal )

The embedding of 1D q u a s i c r y s t a l s i n a. 2D EuClidean space is The c o n d i t i o n s f o r g e t t i n g i s o m e t r i c l a t t i c e s (square and rameters c h a r a c t e r i z i n g t h e l o c a l isomorphism c l a s s . They a l s o determine th'e s t r u c t u r e of t h e f r e e modules generated by t h e i n t e r n a l and t h e e x t e r n a l components', r e s p e c t i v e l y , of t h e l a t t i c e v e c t o r s i n d l r e c t and i n r e c i p r o c a l space; ~ y r r h o t i t e Fel-xS is t r e a t e d a s .an example.

I - INTRODUCTION

The new c l a s s of c r y s t a l s t r u c t u r e s g e n e r a l l y i n d i c a t e d by-the name of q u a s i c r y s t a l s s h a r e s t h e fundamental property of a l l o t h e r c r y s t a l s known s o f a r of having F o u r i e r wave vectors e x p r e s s i b l e a s i n t e g r a l l i n e a r combination of a f i n i t e number of fundamental ones. When t h e s e b a s i s wave vectors a r e l i n e a r l y independent onL t h e r a t i o n a l s but l ~ i n e a r l y dependent on t h e r e l a t t l c e p e r i o d i c i t y is l o s t , t h e c r y s t a l i s a p e r i o d i c ( a t l e a s t p a r t i a l l y ) commonly 'called incommens~irate.

' Q u a s i c r y s t a l s belong t o t h i s c l a s s .

By bringing t h e fundamental wave v e c t o r s i n 1-to-1 correspondence with t h e b a s i s v e c t o r s of a l a t t i c e i n a higher dimensional Euclidean space ( c a l l e d s u p e r s p a c e ) , i t is p o s s i b l e t o embed t h e ' whole c r y s t a l s t r u c t u r e and t o recover space group symmetry even i n t h e incommensurate gase. I n present superspace appr'oach t h e o r i g i n a l s t r u c t u r e is r e l a t e d t o t h e embedded one by orthogonal projection_ i n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986309

(3)

C3-96 JOURNAL DE PHYSIQUE

r e c i p r o c a l space and i n t e r s e c t i o n i n d i r e c t space /1/,/2/.

The c r y s t a l l o g r a p h i c symmetry of q u a s i c r y s t a l s has a l s o been recovered by embedding i n a higher dimensional Euclidean space following methods developed f o r t h e a l g e b r a i c c h a r a c t e r i z a t i o n of a p e r i o d i c t i l i n g of t h e Penrose t y p e /3/. One of t h o s e methods, t h e s o - c a l l e d d i r e c t p r o j e c t i o n approach, i s conceptually very s i m i l a r t o t h e superspace one, but involves p r o j e c t i o n and i n t e r s e c t i o n i n t h e r e c i p r o c a l as well a s i n t h e d i r e c t space. It has been shown by Janssen t h a t t h e two methods a r e a c t u a l l y equivalent /4/. I n t h e superspace approach, q u a s i c r y s t a l s appear a s modulated c r y s t a l s having discontinuous modulation l i n e s and a b a s i s s t r u c t u r e not n e c e s s a r i l y commensurate. P h y s i c a l l y speaking, t h i s can be expressed by s a y i n g t h a t t h e Bragg r e f l e c t i o n peaks of t h e d i f f r a c t i o n p a t t e r n of a q u a s i c r y s t a l do not s p l i t ( i n g e n e r a l ) i n t o a s u b s e t of 'main r e f l e c t i o n s ' on a r e c i p r o c a l l a t t i c e and one of a d d i t i o n a l s a t e l l i t e r e f l e c t i o n s a t incommensurate p o s i t i o n s . Accordingly, q u a s i c r y s t a l s r e p r e s e n t a new c l a s s of incommensurate c r y s t a l s t r u c t u r e s . This opens t h e p o s s i b i l i t y of point group symmetries which a r e c r y s t a l l o g r a p h i c i n a higher dimensional space only, a s it has been observed i n icosahedral quasi c r y s t a l s .

There is another new f e a t u r e , not shared by a l l q u a s i c r y s t a l s but t y p i c a l f o r t h o s e of the Penrose type: t h a t of being a s s o c i a t e d w i t h an hypercubic l a t t i c e , d e s p i t e t h e f a c t t h a t t h e d i f f r a c t i o n p a t t e r n i n space never has t h e f u l l hypercubic point group symmetry. The relevance of higher dimensional isometric l a t t i c e s has always been a b a s i c concern within t h e superspace approach because not o c c u r r i n g f o r incommensurate c r y s t a l s with main r e f l e c t i o n s on l a t t i c e p o s i t i o n s mapped o n t o themselves by symmetry transformations .

T h i s paper i s a preliminary i n v e s t l g a t i o n on t h e m e t r i c a l r e l a t i o n s one can a s s o c i a t e t o t h e embedding of an incommensurate c r y s t a l s t r u c t u r e . The c o n s i d e r a t i o n s are r e s t r i c t e d t o a 2D embedding of 1D q u a s i c r y s t a l s and t h e a t t e n t i o n i s focussed on l a t t i c e symmetry. The point group and t h e space group symmetry of the embedded s t r u c t u r e , a s well as the 2D and 3D q u a s i c r y s t a l c a s e r e p r e s e n t t h e n e x t s t e p s .

I1 - SUPERSPACE EMBEDDING

Considered is a 1D q u a s i c r y s t a l described by t h e d e n s i t y d i s t r i b u t i o n :

where n l , n2 a r e i n t e g e r s , a l , a 2 have an i r r a t i o n a l r a t i o and C(nln2) is a c h a r a c t e r i s t i c f u n c t i o n t a k i n g values 0 and 1 and ensuring a f i n i t e minimal d i s t a n c e between atomic p o s i t i o n s as well a s an i n f i n i t e c r y s t a l extension.

(4)

These c o n d i t i o n s can be r e a l i z e d by t h e s o - c a l l e d d i r e c t p r o j e c t i o n method, where p o i n t s of a 2D l a t t i c e w i t h i n a s t r i p of width D a r e p r o j e c t e d p e r p e n d i c u l a r l y t o t h e 1 D c r y s t a l l i n e . A l a t t i c e b a s i s a l s , a2s then p r o j e c t s onto a l and a

2' r e s p e c t i v e l y , and decomposes a c c o r d i n g t o :

with a i I t h e s o - c a l l e d i n t e r n a l components, and a . t h e e x t e r n a l ones. Choosing a p p r o p r i a t e i n i t i a l c o n d i t i o n s one t h e n has :

with 0 a s t e p f u n c t i o n a t t = 0. I n such a c a s e t h e F o u r i e r components of p ( r ) a r e given by:

Y *

with z , , z 2 i n t e g e r s and a l , a2 t h e ( e x t e r n a l ) space components of t h e r e c i p r o c a l b a s i s v e c t o r s a?s and a*

2s:

Y *

a:. = (a,, a ,I), a s a v = 6 , 1 ~ p p , v = 1 , 2 .

I n eq.(4) ? ( z l z 2 ) i s t h e c h a r a c t e r i s t i c f a c t o r given by:

From e q . ( 4 ) f o l l o w s t h a t s u c h a q u a s i c r y s t a l s a t i s f i e s t h e c o n d i t i o n s f o r Z-module c r y s t a l l o g r a p h y /5/.

Knowing t h e c r y s t a l s t r u c t u r e and its d i f f r a c t i o n p a t t e r n , t h e r e c i p r o c a l

Y *

f r e e Z-module M* = { a l , a 2 } f o l l o w s from t h e p o s i t i o n s of t h e Bragg peaks; t h e d i r e c t one M = [ a l , a 2 ] from t h e p o s s i b l e atomic p o s i t i o n s . Furthermore, from t h e s e t of i n t e n s i t i e s d e s c r i b e d by ? ( z l z 2 ) one g e t s ~ a and ~ a g ~ , y ~ and from t h e s e t of occupied atomic p o s i t i o n s given by C(nln2) a l s o alI/D and a21/D. Accordingly, a q u a s i c r y s t a l s t r u c t u r e determines i n a d d i t i o n t o M and MY a l s o t h e values of a *

u a v l f o r p , v = 1 , 2 , i .e. t h e two r e a l parameters o and p defined by:

(5)

JOURNAL DE PHYSIQUE

From d u a l i t y one g e t s t h e corresponding m e t r i c a l r e l a t i o n s i n d i r e c t space:

a l = pa2 and aZI = - aa 1 1

' (8)

These parameters a r e t h e same as t h o s e considered by Socolar and S t e i n h a r d t /6/. I n t h e i r paper q u a s i c r y s t a l s a r e c o n s i d e r e d having atomic p o s i t i o n s a t

w i t h n i n t e g e r , a , 6 and p r e a l , a i r r a t i o n a l and l....l t h e g r e a t e s t i n t e g e r f u n c t i o n . Denoting by 0 t h e a n g l e between a l s and t h e e x t e r n a l space d i r e c t i o n , and by q5 t h a t between a l s and a2s, t h e same p o s i t i o n s can be expressed by:

which i m p l i e s e q . ( 8 ) f o r a ? = a . The a d d i t i o n a l parameters a and 8 n o t c o n s i d e r e d above i n t h e m e t r i c a l r e l a t i o n s f o r t h e l a t t i c e embedding do not modify t h e l o c a l isomorphism c l a s s of t h e q u a s i c r y s t a l , which is f i x e d by a and p. A s explained i n / 6 / , a determines t h e r e l a t i v e frequency of t h e two s p a c i n g s a and a(1 + l / p ) between neighbouring atomic p o s i t i o n s i n t h e q u a s i c r y s t a l sequence. The o n l y a d d i t i o n a l parameter (up t o t h a t of a u n i t of l e n g t h expressed by a = l / a * ) a p p e a r i n g i n t h e embedding can be i n d i c a t e d by a l I = Xal. One t h u s a r r i v e s a t t h e f o l l o w i n g c a n o n i c a l p a r a m e t r i z a t i o n of t h e q u a s i c r y s t a l embedding:

a * = - a* cop, 11x1, a ; s = *(I

1 s l + o p l + o p , -1 1 , with aa* = 1. ( 1 1 )

I11 - TWO DIMENSIONAL BRAVAIS LATTICES

I t is not s e l f - e v i d e n t t h a t 2D Bravais l a t t i c e s can be r e l e v a n t f o r t h e embedding Of 1D q u a s i c r y s t a l s . Let us n e v e r t h e l e s s consider t h e c o n d i t i o n s imposed by t h e embedding i n t o one of t h e f i v e 2D B r a v a i s l a t t i c e s , d i s r e g a r d i n g i n t h i s e x p l o r a t o r y paper t h e q u e s t i o n of a r i t h m e t i c equivalence ( e x p r e s s i n g t h e freedom i n choosing t h e l a t t i c e b a s i s ) .

No c o n d i t i o n s a r e imposed by an Oblique l a t t i c e . Those f o r g e t t i n g a Rectangular l a t t i c e can be expressed by als.a2s = 0, implying

(6)

A s one can s e e from e q . ( 9 ) one can choose o , p > 0 without l o s s of g e n e r a l i t y . Therefore any I D q u a s i c r y s t a l a s above admits a r e c t a n g u l a r embedding. This i s , however, not t h e end of t h e s t o r y , a s i n s u p e r s p a c e embedding t h e d e s c r i p t i o n may i n f l u e n c e t h e s t r u c t u r a l r e l a t i o n s made e x p l i c i t / 7 / .

The c o n d i t i o n f o r g e t t i n g a Diamond l a t t i c e can be c a s t i n t o a:s = a:s l e a d i n g t o t h e r e l a t i o n :

implying t h a t u2 and p2 both have t o be e i t h e r l a r g e r o r s m a l l e r t h a n one. It appears t h a t , i f not a l r e a d y t r u e , t h a t c o n d i t i o n can be managed by changing t h e s i g n of p, i . e . i n t e r c h a n g i n g t h e r o l e of s h o r t and l o n g i n t e r v a l s . Therefore a diamond embedding is a l s o always p o s s i b l e .

One g e t s s t r u c t u r a l c o n d i t i o n s i n terms of o and p o n l y , f o r t h e embedding i n t o t h e two i s o m e t r i c B r a v a i s l a t t i c e s , t h e s q u a r e and t h e hexagonal one.

A Square l a t t i c e s a t i s f i e s both e q s . ( l 2 ) and (13) l e a d i n g t o t h e c o n d i t i o n :

2 2

P - 1 0 - 1 A

P u

imp1 ying

The parameter A i n e q . ( l 4 ) has been i n t r o d u c e d because i t appears i n t h e corresponding c h a r a c t e r i s t i c e q u a t i o n determining t h e i n f l a t i o n r u l e of t h e q u a s i c r y s t a l ( f o r A r a t i o n a l ) /8/. I n t h e c a s e of o = p t h e c h a r a c t e r i s t i c e q u a t i o n is given by:

which l e a d s t o t h e p a r a m e t r i z a t i o n :

The corresponding i n f l a t i o n r u l e i s Cn+, = c $ ~ - ~ . For A = 1 one o b t a i n s t h e well-known Fibonacci t i l i n g .

I n t h e c a s e of an Hexagonal l a t t i c e , one can c o n s i d e r it a s rhombic with an a n g l e 4 = ~ / 3 , i . e . a l s . a 2 s = %a:s = This i m p l i e s :

(7)

JOURNAL DE PHYSIQUE

with t h e parameter A a p p e a r i n g i n t h e corresponding c h a r a c t e r i s t i c e q u a t i o n

One then g e t s t h e s t r u c t u r a l c o n d i t i o n f o r hexagonal l a t t i c e embedding:

The s i m p l e s t s o l u t i o n i s o b t a i n e d f o r A = 1 g i v i n g t h e v a l u e s o = );( -1 + J? ) and p

= 20. Another s i m i l a r s o l u t i o n f o l l o w s f o r A = - y i e l d i n g o = ( 1 + J? ) and p =

$0.

The d i s c u s s i o n of t h e c a s e $ = 2n/3 i s q u i t e analogous and r e s u l t s i n a simple replacement of A by - A , and a change of t h e s i g n of o and of p i n e q . ( 2 0 ) . I V - MODULATED STRUCTURE

Q u a s i c r y s t a l s with atomic p o s i t i o n s a s i n e q . ( 9 ) can a l s o be e x p r e s s e d i n terms of a b a s i c s t r u c t u r e and a modulation:

with f r a c ( x ) t h e f r a c t i o n a l p a r t of x. Comparing e q s . ( l l ) and (21 ) one s e e s t h a t t h e

* *

r e c i p r o c a l wave v e c t o r s of t h e b a s i c s t r u c t u r e a r e generated by a l = a o p / ( l + o p ) ,

I * *

whereas t h e modulation wave v e c t o r s a r e generated by q = -a = a 2 . The Z-module M*

0 1

is t h e r e f o r e e x p r e s s i b l e i n terms of t h e same fundamental p e r i o d i c i t i e s a s i n t h e previous d e s c r i p t i o n , a s i t should be.

From e q . ( 2 1 ) i t follows furthermore t h a t t h e l a t t i c e d i s t a n c e i n t h e average s t r u c t u r e (which i s t h e b a s i c s t r u c t u r e a l s o ) i s given by:

Consider now a r a t i o n a l approximation f o r a , and denote, a s c o n v e n t i o n a l , t h e two s p a c i n g s between neighbouring p o s i t i o n s of t h e q u a s i c r y s t a l by:

a = S and a ( l + l / p ) = L .

Then f o r t h e u n i t c e l l i n t h e s u p e r s t r u c t u r e approximation one has:

(8)

n S S + n L L = (nS + nL) A, nS and nL i n t e g e r s .

One f i n d s indeed t h a t o e x p r e s s e s t h e r e l a t i v e frequency of S and L i n t e r v a l s

V - AN EXAMPLE: PYRRHOTITE

The c r y s t a l s t r u c t u r e of P y r r h o t i t e , Fel-xS is t h a t of a modulated c r y s t a l involving d i s p l a c i v e a s well as occupational modulation. The modulation wave vector q is o r i e n t e d a l o n g t h e hexagonal a x i s of t h e average s t r u c t u r e and r e l a t e d t o t h e compositional parameter x i n a simple way:

Such a compound i s denoted a s NC-Pyrrhotite. I n g e n e r a l , i t is thus an incommensurate c r y s t a l . Its (3,l)-dimensional superspace group symmetry has been determined, a s well as the c h a r a c t e r i s t i c s of t h e modulation waves /9/. Here t h e d i s p l a c i v e p a r t o n l y w i l l be considered. I t appears t h a t , within a good approximation, neighbouring Fe atoms along t h e c - d i r e c t i o n i n v o l v e two i n t e r v a l s only. D i s r e g a r d i n g t h e o t h e r two c r y s t a l l o g r a p h i c a x e s ( l y i n g i n t h e hexagonal p l a n e ) , P y r r h o t i t e can t h e r e f o r e be d e s c r i b e d a s a I D q u a s i c r y s t a l . I n r e f . /9/ t h e N = 5.5 c a s e is considered i n more d e t a i l ; within t h e u n i t c e l l t h e r e a r e 9 l o n g and 2 s h o r t i n t e r v a l s having r a t i o approximatively 1.0357. T h e r e f o r e , f o r e n s u r i n g t h e conventions adopted above ( o and p p o s i t i v e ) one has t o choose q = 9 c w / l l i n s t e a d of 2c*/11 a s i n e q . ( 2 6 ) . One t h e n g e t s t h e f o l l o w i n g s e t of parameters f o r t h e 5.5C P y r r h o t i t e :

n s = 2 . n L = 9 , o =11/9 and p - 28 . (27)

Embedding i n t o both t h e r e c t a n g u l a r o r t h e rhombic l a t t i c e is p o s s i b l e , but embedding i n t o t h e i s o m e t r i c ones, s q u a r e o r hexagonal, i s excluded. Indeed both t h e e q s . ( l 6 ) and ( 2 0 ) a r e not s a t i s f i e d . The same conclusion f o l l o w s from t h e d a t a one g e t s by choosing t h e q = 2c*/11 d e s c r i p t i o n .

V I - FINAL REMARKS

The s t a n d a r d embedding of a modulated s t r u c t u r e a s i n e q . ( 2 1 ) is given by:

(9)

JOURNAL DE PHYSIQUE

a = ( l / a a J , - b / a ) , bs = (0, b ) , with b*b = 1 ,

s o t h a t o n l y t h e r e c i p r o c a l 2-module M* = a;{l,o} appears. On t h e c o n t r a r y , t h e canonical q u a s i c r y s t a l embedding of eq. ( 1 1 ) , t a k e s t h e e q u i v a l e n t form:

which r e v e a l s an i n t e r t w i n n i n g of d i r e c t and r e c i p r o c a l s p a c e with r e s p e c t t o t h e i n t e r n a l and e x t e r n a l components. These g e n e r a t e t h e f o l l o w i n g f r e e modules:

showing t h e i n t e r t w i n n i n g .

ACKNOWLEDGEMENTS The very s t i m u l a t i n g d i s c u s s i o n s w i t h E. Springelkamp helped t o c l a r i f y t h e r o l e of d i f f r a c t i o n i n t e n s i t i e s i n t h e m e t r i c a l embedding's c o n d i t i o n s and a r e g r a t e f u l l y acknowledged.

REFERENCES

De Wolff, P.M.. Acta C r y s t . A33 (1977) 609.

J a n n e r , A. and J a n s s e n , T., Phys. Rev. B15 (1977) 649.

De B r u i j n , N.G., Proc. Kon. Ned. Ac. Wet. A84 (1981) 39.

J a n s s e n , T., " C r y s t a l l o g r a p h y of q u a s i - c r y s t a l s " , Acta C r y s t . A ( t o a p p e a r ) . J a n n e r , A , , Ann. I s r a e l Phys. Soc. 3 (7980) 178.

S o c o l a r , J.E.S. and S t e i n h a r d t , P. J . , " Q u a s i c r y s t a l s 11: Unit C e l l C o n f i g u r a t i o n s " , ( t o a p p e a r ) .

Hogervorst, A . C . R . , "Comparative Study of t h e Modulated S t r u c t u r e s i n Rb2ZnBrLI and i n R e l a t e d C m p ~ u n d s ~ ~ , Ph.D. T h e s i s , T.H. D e l f t , The Netherlands (1986).

Bombieri, E. and Taylor Jean E . , " Q u a s i c r y s t a l T i l i n g s and A l g e b r a i c Number Theory", ( t o a p p e a r ) .

Yamamoto, A. and Nakazawa, H . , Acta C r y s t . A38 (1982) 79.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to