• Aucun résultat trouvé

THE GREEN FUNCTION OF A MACROSCOPIC ELECTROMAGNETIC FIELD IN A DISPERSIVE PLANE-STRATIFIED ANISOTROPIC MEDIUM

N/A
N/A
Protected

Academic year: 2021

Partager "THE GREEN FUNCTION OF A MACROSCOPIC ELECTROMAGNETIC FIELD IN A DISPERSIVE PLANE-STRATIFIED ANISOTROPIC MEDIUM"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00224162

https://hal.archives-ouvertes.fr/jpa-00224162

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE GREEN FUNCTION OF A MACROSCOPIC ELECTROMAGNETIC FIELD IN A DISPERSIVE PLANE-STRATIFIED ANISOTROPIC MEDIUM

Ya. Iosilevskii

To cite this version:

Ya. Iosilevskii. THE GREEN FUNCTION OF A MACROSCOPIC ELECTROMAGNETIC FIELD

IN A DISPERSIVE PLANE-STRATIFIED ANISOTROPIC MEDIUM. Journal de Physique Collo-

ques, 1984, 45 (C5), pp.C5-305-C5-309. �10.1051/jphyscol:1984544�. �jpa-00224162�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplément a u n04, Tome 45, avril 1984 page ê5-305

T H E GREEN FUNCTION OF A MACROSCOPIC ELECTROMAGNETIC F I E L D IN A D I S P E R S I V E PLANE-STRATIFIED ANISOTROPIC MEDIUM

Ya. A. I o s i l e v s k i i

The Ministry of Science and DeveZoprnent, JerusaZern, IsraeZ

Résumé - La méthode d e s é q u a t i o n s f o n c t i o n n e l l e s d é v e l o p p é e a u p a r a v a n t d a n s l a c o n s t r u c t i o n de l a f o n c t i o n dynamique Green d ' u n champ q u a s i - é l a s t i q u e e t d ' u n champ s c a l a i r e , dans un m i l i e u d i s s i p a t i f , a n i s o t r o p i q u e , s t r a t i f i é p l a n , e s t e t e n d u e B un champ c5lectromagn6tique dans un m i l i e u a n a l o g u e . A b s t r a c t - The method o f f u n c t i o n a l e q u a t i o n s , which was developed p r e - v i o u s l y t o c o n s t r u c t t h e dynamic Green f u n c t i o n o f a q u a s i - e l a s t i c f i e l d and o f a s c a l a r f i e l d , i n a d i s s i p a t i v e p l a n e - s t r a t i f i e d a n i s o t r o p i c mediun, i s e x t e n d e d t o an e l e c t r o m a g n e t i c f i e l d i n an analogous medium.

I n t h i s l e t t e r , we show t h a t , i n t h e a b s e n c e o f an e x t e r n a l s t a t i c magnetic f i e l d , t h e Green f u n c t i o n problem f o r an e l e c t r o m a g n e t i c f i e l d i n a d i s p e r s i v e ( d i s s i p a t i v e ) p l a n e - s t r a t i f i e d a n i s o t r o p i c medium i s reduced t o t h e same c h a i n l i k e s e t o f f u n c t i m a l e q u a t i o n s o f t h e Dyson t y p e , which was e s t a b l i s h e d and s o l v e d p r e v i o u s l y /1-3/ f o r t h e dynamic Green f u n c t i o n o f a q u a s i - e l a s t i c and o f a s c a l a r f i e l d , i n a s i m i l a r medium.

I n t h e w - r e p r e s e n t a t i o n , Maxwell's e q u a t i o n s f o r t h e m a c r o s c o p i c e l e c t r o m a g n e t i c f i e l d w h i c h - i s produced i n any medium b y t h e e x t r a n e o u s s o u r c ë s o f t h e c h a r g e d e n s i t y

- (?;CO) and o f t h e c u r r e n t d e n s i t y

3,;

= Tex(?;w) can b e w r i t t e n , u s i n g Pex - Pex

Gaussian u n i t s ,

i j k j k -1 k k

e V B = c [ - i w ~ ~ + 4 1 r ( ~ ~ ~ + ~ ~ ~ ) ] / a / , V B =O / b / , r 3 ,

i j k j k k k i l )

e

v

E = i c - ' w ~ ~ / V E = 4 n ( p . +P 1 / d / ,

+ +, l3 el

,

where E = E(r;w) i s t h e macroscopic e l e c t r i c f i e l d s t r e n g t h , B = B(r;w) i s t h e macro- s c o p i c maggetic f i e l d s t r e n g t h ( t r a d i t i o n a l l y c a l l e d t h e m a g n e t i c i n d u c t i o n ) ;

pin = p . (r;w) i s t h e m a c r o s c o p i c d e n s i t y o f i n t r i n s i c c h a r g e s i n t h e medium;

+ l n +

fin = 3 . (r;w) i s t h e macroscopic d e n s i t y v e c t o r o f i n t r i n s i c c u r r e n t s i n t h e medium;

i n i j k .

e 1 s t h e c o m p l e t e l y a n t i s y m m e t r i c u n i t p s e u d o t e n s o r ; L a t i n s u p e r s c r i p t s d e n o t e corn p o n e n t s o f a v e c t o r o r o f a t e n s o r i n an 2 r b i t r a r y C a r t e s i a n c o o r d i n a t e system, which i s a t r e s t r e l a t i v e t o t h e medium; r = ( r f , r Z , r 3 ) = ( ~ , ~ , z ) i s t h e p o s i t i o n v e c t o r o f a v a r i a b l e s p a c e p o i n t w i t h r e s p e c t t o t h a t c o o r d i n a t e s y s t e m ; w i s a v a r i a b l e f r e q u e n c y ; c i s t h e s p e e d o f l i g h t i n vacuum. Each L a t i n s u p e r s c r i p t assumes t h e v a l u e s 1 , 2 , 3 ( o r x , y , z ) . C o r r e s p o n d i n g l y , a r e p e a t e d L a t i n s u p e r s ~ r i p t i m p l i e s a sum- mation o v e r tha: s u p e r s c r i p t from 1 t o 3. The t - r e p r e s e n t a t i o n $ ( r , t ) and t h e w-re- p r e s e n t a t i o n $ ( r ; w ) , o f a q u a n t i t y $ a r e r e l a t e d by

where t i s t h e t i m e a c c o r d i n g t o a c l o c k which i s a t r e s t r e l a t i v e t o t h e medium. We suppose t h a t t h e e x t r a t i e o u s c h a r g e s and c u r r e n t s do n o t b e l o n g t o t h e g i v e n medi%m, i . e . t h e $ a r e b r o u g h t i n from o u t s i d e . A c c o r d i n g l y , we s y p o s e t h a t , f i r s t l y , p e x ( r ; w ) and j,,(r;w) t a r e given (known, p r e s c r i b e d ) f u n c t i o n s o f r and w, and t h a t , s e c o n d l y ,

-S.

e a c h p a i r p and

Tex,

and p. and Y. s a t i s f i e s an i n d e p e n d e n t c o n t i n u i t y

e x l n l n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984544

(3)

C5-306 J O U R N A L DE PHYSIQUE

e q u a t i o n , i . e .

which a r e t h e c o n s e r v a t i o n laws f o r t h e extraneous and f o r t h e i n t r i n s i c charges, r e - s p e c t i v e l y . Equation (3a) i s p o s t u l a t e d . Equation (3b) can be derived by applying t h e o p e r a t o r - i w - l v i t o both s i d e s of eq. ( l a ) and by using eqs. (Id) and (3a). The spec- t r a l composition of t h e extraneous c u r r e n t s i s supposed t o be such t h a t

Equation (4b) follows from e q . ( 4 a ) , i f n o n - l i n e a r e f f e c t s f o r t h e e l e c t r o m a g n e t i c f i e l d i n q u e s t i o n a r e n e g l i g i b l e .

The m a t e r i a l e q u a t i o n f o r j! i s supposed t o have t h e form i n

where + i j + . + ' +

j p ( r ; w ) = a ( r ; w ) ~ ' ( r ; w ) a ~ ~ ( ; ; w ) = ~ ~ j ( ; ; w ) B ' ( r ; w ) / b / ; ( 6 )

"

t t

J i s t h e d e n s i t y v e c t o r o f t h e i n t r i c s i c charge c u r r e n t ; j i s t h e d e n s i t y v e c t o r of t h e i n t r i n s i c c h a r g e l e s s c u r r e n t ; M i s , f h e magnetic momenT of t h e medium p e r u n i t volume;

dJ

i s t h e c o n d u c t i v i t y t e n s o r ;

xlJ

i s t h e magnetic s u s c e p t i b i l i t y t e n s o r ; a l 1 t h e above q u a n t i t i e s . a r e taken i n t h e w - r e p r e s e n s a t i o n , i n accordance with eqs,(2).

The f a c t t h a t alJ and a r e supposed t o depend on r , s i g n i f i e s t h a t , i n g e n e r a l , t h e 3edium under z o n s i d e r a t i o n can be s p a t i a l l y inhomogeneous. Also, we suppose t h a t 0'1 (r;,) and ( r ; w ) , when regarded a s f u n c t i o n ~ o f t h e complex v a r i a b l e w , have+no p o l e s i n t h e upper semirp13ne. Sybs$ituting o l J (r;w) and

xlJ

(r;w) i n t u r n s f o r q(r;w) i n eq. ( 2 a ) , we o b t a i n a l J ( r , t ) = x l J ( r , t ) = O f o r t<O. As a consequence, i n t h e t - r e p r e - s e n t a t i o n eqs

.

( 6 ) become

Thus, e q s . (6a) and (6b) s u b j e c t t o 3he ab$ve assumptions a r e t h e most g e n e r a l l i n e a r cause-and-effect r e l a t i o n s between E and J e ' and between

3

and & r e s p e c t i v e l y , which allow f o r t h e frequency d i s p e r s i o n of t h e medium, b u t which l e a v e o u t of account a p o s s i b l e space d i s p e r s i o n o f t h e medium. A macroscopic c h a r g e l e s s c u r r e n t i s a s s o c i - a t e d w i t h t h e corresponding microscopic s p i n c u r r e n t , and i s , hence, e s s e n t i a l o n l y i f t h e medium has a magnetic s t r u c t u r e , i . e . i s e i t h e r a ferromagnet o r an a n t i f e r r o - magnet. I f t h e mediu? has no magnetic s t r u c t u r e , we can s e t xlJ=O, thus n e g l e c t i n g

a s compared t o

1

f e

1 .

S u b s t i t u t i o n o f e q s . ( 5 ) i n t o eq. ( l a ) , and o f e q . (3b) i n t o eq. (Id) y i e l d s

where, by d e f i n i t i o n ,

+ +

D i s the v e c t o r of e l e c t r i c induction; H i s t h e v e c t o r of magnetic i n d u c t i o n ( t r a d i - t i o n a l l y c a l l e d t h e magnetic f i e l d s t r e n g t h ) . I n view of e q s . ( 6 ) , e q s . ( 8 ) become

i j + i j -t

E (r;w) i s the d i e l e c t r i c p e r 3 e a b i l i t y t e n s o r ; (r;w) i s t h e inveyçe+of t h e mag- n e f i s p e r m e a b i l i t y t e n s o r u l J ( r ; w ) . Denoting, a l s o , t h e i n v e r s e o f ~ l J ( r ; w ) by

<'J (r;w)

,

we have, by d e f i n i t i o n ,

(4)

A ~ q o s d i n g t o t h e d e f i n i t i o n of o i j (r;w) and of X i j (?;CO), t h e q u a n t i t i e s c i j (;;w) * and

$1 (r;w) have no p o l e s i n t h e upper semi-glane o f t h e complex v a r i a b l e w. Note t h a t u s u a l l y t h e t e n s o r plJ (,;a), and n o t rllJ (r;w)

,

i s supposed t o be r e g u l a r i n t h e up- p e r semi-plane of w .

Multiplying eq. ( l c ) by ,iml, and t h e n making use of eq. (9b), we have Hm=-icw-l mn nkQ k Q

ri e V E . (12)

I f we i n s e r t e q s . (9a) and (12) i n t o eq. ( 7 a ) , we o b t a i n

i k * k + i +

K (r;-iV,w)E (r;w)=-4~riwj ( r ; w ) , ex (13)

i k

*

2 i k +

( r ; - i ~ , w ) = w E (r;w) +vjzijk' (?;w)~', (14)

Z i j k Q * 2 i j m m * nkQ

(r;w)=c e

n

[r;w)e

.

(15)

A s i m i l a r e q u a t i o n can be d e r i v e d f o r

3 .

To t h i s end, we i n s e r t eq. (Sa) i n t o eq. ( 7 a ) , and we m u l t i p l y t h e e q u a t i o n s o obtained by t h e t e n s o r Cml, e q . ( l l a ) . This g i v e s

)

.

e x (16)

i j '

Applying t h e o p e r a t o r e

9'

t o both s i d e s of eq. (16), and then making use o f eqs. ( 1 4 (9b), and ( l l b ) , we o b t a i n

i k * k * i *

K m (r;-iV,w)H (r;w)=@ ( r ; w ) , (17)

2 i k * j i j k Q * Q

~?(;;-iV,w)=w (r;w)+V Lm (r;w)V

,

(18)

Z;jkR(= ,c2eijmSmn(;r;w) .nkQ, (19)

. .

Q~ (?;w)=-4rrce49j~""'(?;u) jex(?;w). . .

- -

(20)

II

We d e f i n e t h e e l e c t r o m a g n e t i c Green f u n c t i o n E .

. .

. O(?,?o;u) of t h e E-type and t h e e l e c -

l L 0

*

*

tromagnetic Green f u n c t i o n H (r,ro;w) o f t h e H-type a s t h e s o l u t i o n s o f two independent e q u a t i o n s :

i n t h e whole i n f i n i t e s p a c e , where

*

r and i a r e parameters ( i = 1 , 2 , 3 ) . Since e q s . ( l 3 ) and (17) a r e l i n e a r , t h e i r s o l u t i o n s can be w r i t t e n

The v e c t o r s D~ and B~ can t h e n be found by e q s . (9) and ( l l b ) . S u b s t i t u t i o n of eq. (23) inTo eq. (12), and of eq. (24) i n t o eq. (16) enables us t o e x p r e s s H' i n terms of

EiiO, and E~ i n terms o f H ilo

.

Hence, o n l y one o f t h e two Green f u n c t i o n s i s a c t t a l l y r e q u i r e d .

We r e w r i t e e q s . (21) and (22) a s one e q u a t i o n o f t h e form k i. O + + +

*

ii

Kik (:;-iv,u)~ ( r , r o ;u) =6 ( r - r ) 6 O ,

where O

(5)

JOURNAL DE PHYSIQUE

Z i j k l ( r ; u ) = c e -+ 2 i j m mn B ( r ; u ) e + nkQ

.

, i i ii

oZE O i f .ik=,ik i.k i k

,

B =ri / a / ; ii i i

oZH O i f .ik- i k 8 i k , . i k

-u

3 / b / .

I n t h e a b s e n c e o f a s t a t i c . e t e r n a l m a p n e t i c f i e l d , t h e t e n s o r s ûik and Bik a r e sym- r n e t r i c . S i n c e t h e t e n s o r e l i E i s a n t i s y m m e t r i c w i t h r e s p e c t t o t h e p e r m u t a t i o n o f any two i n d i c e s , we have

Zi j k ~ - ~ k L i - j - -- Z j i k L = - Z i jkk (29)

We o b s e r v e t h a t e q . ( 2 5 ) s u b j e c t r ~ e q . ( 2 6 ) tu r n s i n t o t h e e q u a t i o n f o r t h e a c o u s t i c

Ill,

'

-*

v i b r a t i o n f i e l d Green f u n c t i o n D ( r , r ; a ) o f a s p z t i a l l y inhomogeneous e l a s t i c o - v i s c o u s a n i s o t r h p i c medium i i i t h t h e mas: d e n s i t y p ( r ) and w i t h t h e complex e l a s t i c i t y t e n s o r cijkR(?;w) ( s e e r e f s . / l , 2 / ) i f i n e q . ( 2 6 ) we f o r m a l l y s e t

ii i i

,i jkk-,ijkQ +

G O = D O , a i k = p ( ? ) ô i k , - ( r ; u ) . (30)

In t h i s c a s e , i n s t e a d o f e q s . ( 3 2 ) , we have , i j k Q = , k l i j = , j i k Q = , i j l k

(31) Suppose now t h a t t h e medium u n d e r c o n s i d e r a t i o n c o n s i s t s o f n + l homogeneous a n i s o - t r o p i c p l a n e - p a r a l l e l l a y e r s o f a r b i t r a r y t h i c k n e s s e s i n c o q t a c t . .W a l i g n t h e a x i s x w i t h a normal t o t h e i n t e r f a c e s , and d e n o t e by alk (w) , B F ( a ) , Z ; J ~ ' . ( ~ ) t h e c o r r e - s p o n d i n g m a t e r i a l c h a r a c t e r i s t i c s o f t h e i n d i v i d u a y l a y c r s ; p = O , l . .

.

, n . In t h i s c a s e , we mav w r i t e

L L 3 -k

t h e v a r i a b l e a b e i n g o m i t t e d . The q w n t i t y G O ( x , x o ; k l , ) i s c a l l e d t h e (x,k ) - r e p r e - .--O

s e n t a t i o n , o r i n words, t h e mixe c o o r d i n a t e - p r g g a t i o v c c t o r - r e p r e s e n t a t i o n , o f t h e t o t a l Grccn f u n c t i o n . I f ~ i e = o ~ k ( u ) and Z1~"=Z:jk';u) i n t h e whoie i n f i n i t e

P P

l10

' '

s p a c e , t n e c o r r c s p o n d i n g s o l i i t i o n o f e q . ( 2 5 ) i s d c n o t a d by G,, ( r - r ) and i s c a l l e d t!!e - d a r d Green f u n c t i o n o f t h e 11th k i n d . The ( x , k l l ) -r e p r e s e n t a ? i o n

G l l ~ -f

(x-xo;kll) o f t h i s f u n c t i o n i s t h e s o l u t i o n o f t h c e q u a t i o n

u

2 i k i j k l k i o i i

[m U, (u)+zIi (a) a:2:]Gu ( x ) = S ( x ) 6 O , a i = 6 j i o + i k j ax 11 , - a < x < a . (33) From h e r e on t h e v a r i a b l e

2

o f e v e r y f u n c t i o n i n t h e ( x , g ) - r e p r e s e n t a t i o n w i l l he

o m i t t e d . II !I

I n r c f s . / l , 2 / , we showed t h a t t h e a c o u s t i c v i b r a t i o n f i e l d Green f u n c t i o n i n t h e (x,!,, ) - r e p r e s e n t a t i o n , o f t h e p l a n e - s t r a t i f i e d medium a s m e n t i o n e d , s a t i s f i e s a c h a i n l i k e s e t o f n + l 3 x 3 - m a t r i x f u n c t i o n a l e q u û t i o n s o f t h e Byson t y p e , which i n - c l u d e b a t h t h e e q u a t i o n o f motion and t h c c o r r e s p o n d i n f i boundary c o n d i t i o n s a t e a c h i n t e r f a c e . I n d e r i v i n g t h a t s e t o f e q u a t i o n s , i t was e s s e n t i a l t h a t t h e e l a s t i c i t y t e n s o r was i n v a r i a n t u n d e r t h e p e r m u t a t i o n i j 4 , k Q ( s e e e q s . ( 3 0 ) and ( 3 1 ) ) . S i n c e t h e m a t e r i a l t e n s o r z l l k R a s d e f i n e d hy e q . ( 2 7 ) p o s s e s s e s t h e same symmetry p r o p e r t y ( s e e e q s . ( 2 9 ) ) . t h e s e t o f f u n c t i o n a l e q u a t i o n s o f r e f s . / l , 2 / remain.~, v a l i d a l s o i n t h e c a s e o f an e l e c t r o m a g n e t i c f i e l d . Onc s h o u l d o n l y s i l b s t i t i i t e C 110 ( x , x O ) f o r

D l l ~ "0 110

( x , x o ) , and (; Ii (x) f o r Il ( x ) (u=O, 1 , .

. .

, n )

.

Li i i o

Thus, i\re have t h e f o l l o w i n r i s e t o f e q u a t i o n s f o r G [ x . x 1 :

(6)

ii (u-1) iio ( ~ + l ) T i o ii s,, ( 4 G O (x, xo) + B ~ ( ~ - d ~ - ~ ,xo) - B

1-i (x-d x ) = s (x )G O (x-xo) ,

1 - i Y o 1 - i O 1 - i

x=d i s t h e ç e p a r a t i o n p l a n e between t h e u t h and t h e ( p + l ) t h l a y e r . The z e r o t h (p=b) and t h e l a s t (p=n) l a y e r a r e supposed t o b e s e m i - i n f i n i t e spaceç x<do and

~ > d , - ~ , r e s p e c t i v e l y (d-l=-m, cin=-). Equations (38) a r e t h e usual boundary condi- t i o n s of c o n t i n u i t y f o r t h e t a n g e n t i a l components of

8

and

2

( o r correspondingly

8

and Ï$+ i n t h e c a s e , when

3

i s t h e Green f u n c t i o n of t h e E-type ( o r correspondingly, when H i s t h e Green f u n c t i o n o f - t h e H-type). A t t h e same time, i t follows from

i l

eqs. (271, ( 3 9 ) , and (40) t h a t P1lO(r,~o)=O and T (x)=O. I n view o f t h e l a s t e q p a t i o n , e q . (37) does n o t involve Fi

G1lo

(dv+O,x ) . These p e c u l i a r i t i e s of e q s . (34)-(37) r e f l e c t t h e f a c t t h a t t h e e l e c - t r o m a g n e t i c O f i e l d i s t r a n s v e r s e . I n t h i ç connection, we may n o t i c e t h a t eqs. (34)-

(37) a r e , i n a s e n s e , complementary t o t h e corresponding e q u a t i o n s f o r t h e a c o u ç t i c v i b r a t i o n f i e l d Green f u n c t i o n i n a s t r a t i f i e d i d e a l f l u i d . The l a t t e r f i e l d i ç g u r e l y l o n g i t u d i n a l . Equations (34) (36) can b e çolved l a r g e l y by t h e same methods, which were suggested i n refç.11-3/. The Green f u n c t i o n t h e o r y o f e l e c t r o m a g n e t i c f i e l d s i n s t r a t i f i e d media w i l l be d i s c u s s e d i n d e t a i l i n f u r t h e r p u b l i c a t i o n s . This t h e o r y w i l l , a l s o , i n c l u d e t h e c a s e , when a s t r a t i f i e d medium i ç i n a s t a t i c external magnetic f i e l d .

References

1 . IOSILEVSKII YA. A . , Ann. Phys. (N.Y.),

107

(1976) 360.

2 . IOSILEVSKII YA. A . , Phys. Rev. (1979) 1473.

3 . IOSILEVSKII Y A . A . , Phys. Rev. (1979) 856.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to