• Aucun résultat trouvé

METAL TRACE ANALYSIS BY FLAME/GRAPHITE FURNACE OG SPECTROSCOPY

N/A
N/A
Protected

Academic year: 2021

Partager "METAL TRACE ANALYSIS BY FLAME/GRAPHITE FURNACE OG SPECTROSCOPY"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00223289

https://hal.archives-ouvertes.fr/jpa-00223289

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

METAL TRACE ANALYSIS BY FLAME/GRAPHITE FURNACE OG SPECTROSCOPY

I. Bykov, A. Skvortsov, Yu. Tatsii, N. Chekalin

To cite this version:

I. Bykov, A. Skvortsov, Yu. Tatsii, N. Chekalin. METAL TRACE ANALYSIS BY

FLAME/GRAPHITE FURNACE OG SPECTROSCOPY. Journal de Physique Colloques, 1983, 44

(C7), pp.C7-345-C7-352. �10.1051/jphyscol:1983732�. �jpa-00223289�

(2)

JOURNAI- D€ PHYSIQUE

Colloque C7, supplCment au n O 1 l , Tome 44, novembre 1983 page C7-345

METAL TRACE A N A L Y S I S BY FLAME/GRAPHITE FURNACE OG SPECTROSCOPY

I.V. Bykov, A.B. Skvortsov, Yu.G. T a t s i i and X.V. chekalinr

V . I . Vernndr;ky I n s t i t u t e of C e ~ c h e m i s L r y qnd AnaigLicnl L%ernist,r~2,

U S F Xcclderny g f S c i e n c e s , !4gscow, U.S.S.R.

R6surn6 - A l ' a i d c d c d i f f g r c n t s s c h e m a s d ' e x c i t a t i o n l a d E t e c - t i o n o p t o g a l v a n i q u c d c s t r a c e s d 1 6 1 6 m e n t s a 6 t E e f f e c t u E e d a n s d e s s o l u t i o n s d ' c a u p u r e a i n s i clue d a n s d e s m a t r i c e s c o m p l c x e s p a r a t o m i s a t i o n d c s 6 c h n n t i l l o n s d a n s u n e flamme e t un f o u r 6 l c c t r o t h c r m i q u e c n g r a p h i t e .

Abstract - The optogalvanic d e t e c t i o n of t r a c e elements with

- various e x c i t a t i o n schemes i s i n v e s t i g a t e d f o r pure water s o l u t i o n s and f o r matrix i n flame and electrothermal graphite furnace.

I n t h e reviews /l-3/ t h e perspective8 of optogalvanic d e t e c t i o n of atoms i n flames were shown f o r t r a c e element a n a l y s i s . Now it i s important t o i n v e s t i g a t e t h e p o s s i b i l i t i e s of t h e method more care- f u l l y and t o f i n d t h e ranges of i t s optimum application. I n t h i s work we s t u d i e d various o p t i c a l schemes of e x c i t a t i o n of Na, I n , CS, Yb atoms i n air-acetylene flame and determined t h e conditions of e f f e c t i v e i o n i z a t i o n of atoms i n water s o l u t i o n s and i n matrix. The matrix i n t e r f e r e n c e s were i n v e s t i g a t e d f o r I n i n SnC12 and SnSO4 matrices and f o r CS i n NaCl matrix. The experiments with t h e e l e c t r o - thermal g r a p h i t e furnace a r e a l s o described.

Experimental Apparatus. The experimental apparatus i s schematically shown i n f i g . 1. IPwo various systems were used a s e x c i t a t i o n sources:

1) dye l a s e r s with a prism telescope pumped by N2-laser; 2 ) grazing incidence dye l a s e r s , pumped by t h e second harmonic of Nd-YAG l a s e r . The dye l a s e r r a d i a t i o n was amplified and could be doubled i n KDP c r y s t a l . The main c h a r a c t e r i s t i c s of both l a s e r systems a r e shown i n t a b l e 1. An air-acetylene flame was used a s a source of f r e e atoms.

Table 1 C h a r a c t e r i s t i c s of l a s e r s used

Nd-YAG Grazing i n c i - 2nd harmo- N l a - Dye l a s e r l a s e r dence dye n i c of dye 2-ser with prism (532 nm) l a s e r l a s e r 337 nm telescope Pulse energy

E~ 1 0 0.1-1 .O 0.05-0.1 4 0.03-0*1

Pulse dura-

t i o n 'Zrp ,ns 15 13 11 8 5

Line width

~3 , cm-' - 0.35 - - 0.5

Repetition

r a t e f , K 4 2-50 1-12

*Mr. C h e k a l i n w a s unfortunately u n a b l e t o come to the C o l l o q u i u m but has w r i t t e n the lecture h e w o u l d have presenred w h i c h is published in the Proceedings.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983732

(3)

JOIJHNAIL Dt PHYSIQUE

Fig. l - The experimental apparatus.

Dissolved samples were a s p i r a t e d i n t o a standard premix s l o t burner l1 cm long. Two collimated dye l a s e r beams were d i r e c t e d c o l l i n e a r l y along t h e burner a x i s by a system of mirrors. The i o n s a r i s i n g in t h e r a d i a t e d zone were c o l l e c t e d on t h e watercooled s t a i n l e s s s t e e l e l e c t r o d e , being under t h e negative p o t e n t i a l (-800 - -1200 V). The e l e c t r i c a l l y grounded burner head served a s an anode. The electrode had a form of p a r a l l e l e p i p e d 4x20fl20 mm and could be placed e i t h e r in t h e flame, o r on one s i d e of t h e flame. Ion c u r r e n t p u l s e s were removed from t h e capacitance e l e c t r o d e - burner head (-- 25pF), then they preamplified and a f t e r passing through t h e cut-off HF f i l t e r s were observed on t h e C-1-70 oscilloscope o r processed with a box-car averager, having 1 ~ gate width. The time constants of t h e f i l t e r s s provided t h e i n t e g r a t i n g of input s i g n a l s .

Results and discussion. The e x c i t a t i o n schemes f o r elements used and corresponding d e t e c t i o n limits (DL) (36 c r i t e r i a ) a r e given i n Table 2. Let us consider t h e r e s u l t s f o r p a r t i c u l a r atoms i n more d e t a i l . Indium. The schemes of e x c i t a t i o n a r e shown on f i g . 2. To compare

various excitation-ionization schemes we can, besides of DL, use t h e e f f i c i e n c y of i o n i z a t i o n , determined as a p a r t of e x c i t i n g atoms N~~ converted i n t o ions. When t h e o p t i c a l s a t u r a t i o n was reached, t h e N~~ number could be e a s i l y estimated. When t h e r e were no o p t i c a l

s a t u r a t i o n we could get only t h e lower estimation of

J-

.

For one-step e x c i t a t i o n (A =303.9 m) t h e A B value ( s e e Table 2) i s much higher than kT=0.22 eV. Yet t h e e f f i c i e n c y of i o n i z a t i o n from 5 d * ~ ~ , - l e v e l and 5 d 2 ~ % l e v e l , which i s probably i n equilibrium with t h e former i s high enough (- 4%) and provides t h e low DL f o r t h i s scheme. The cross-section of a l a s e r beam i n which t h e o p t i c a l satu- r a t i o n was reached i s 0.08 cm , but a s one can see from f i g . 3 , t h e cross-section of t h e flame i n which atom concentration i s s u b s t a n t i a l i s much l a r g e r . The use of more powerful l a s e r s w i l l r e s u l t i n t h e s i g n i f i c a n t lowering of DL i n t h i s case.

Note t h a t DL on 1 =303.9 nm f o r t p = l l n s ( t h i s work) a r e n e a r l y equal t o DL f o r Z p =800 n s from CMX-4 flash-lamp l a s e r /3/, i n s p i t e of t h e f a c t t h a t T p values d i f f e r more than 70 times. It would be more

c o r r e c t , of course, t o compare t h e e f f i c i e n c y of i o n i z a t i o n , but it

i s impossible t o do on t h e b a s i s t h e d a t a /3/.

(4)

Table 2. The experimental conditions and results obtained - efficiency of atomization in acetylene-air flame; Ei - energy of ionization; dE=Ei - zex ; DL - limit of detection; E, and E:, - laser pulse energies for 1st and 2nd steps; rp - the time width of laser pulse.

E ,v 1.7 0 .6 0.6 0.4 0.4 0.3 0.3 1.17 -0.25 0.86

DL pg/a 7 3 1 l0 3 30 7 2 100 I 0.6

A2 - 57208 571.0 526.3 525.4 502.3 501.8 - 581 82 581 82 568.2 568.8

3 I nm 303.9 451 ,I 451. 'l 451 1 455.5 555 6 589.6

Element In C S Pb N a 7pP3/T4d2Dj,2,5/, 1 589.0 I

%p as 11 5 5 5 5 5 13 5

&I W 70 27 27 30 30 30 30 120 200 35 35

Excitation scheme 5$Pk - 5d2~y2

/

8p2p?2 5~2 P72- 8p2 p%

/

S p2 ?$P%- 6s2S1/ 2'gp2 p,/2 ,l0 p2Py2 sp2pi/,- 6~2s4/2\ 40 p2p7/2 6s2S,1/2-7p2Py2 4fd4('s)6s2 - 4f 14(' s)6~6~ - ~-F'''GF$&Js*~~~/~ - AI, level 3 p2~ii2-4d2D 3/2 ~S~SI/~

d.lo2 8.5 2 100

62 yJ 65 65 52 52 47 47 - 500 35 35

Ei eV 5.78 3.89 6-25 5.l4

(5)

C7-348 JOCJRNAI- DE PHYSIQUE

4eVl In even .,., ... .

Fig, 2 - The schemes of e x c i t a t i o n f o r I n and Yb,

C , , -4i

%l

I

Fig. 3 - Space p r o f i l e of I n atoms d i s t r i b u t i o n i n air-acetylene flame, obtained by monitoring t h e l a s e r beam ( 3 =303,9 nm) over t h e flame and detecting t h e a r i s i n g ions. The electrode-burner head distance i s 11 mm.

I n two-stepped schemes we investigated t h e e x c i t a t i o n of I n atoms on 8p, gp and l o p l e v e l s with a corresponding diminution of A E values ( s e e t a b l e 2). We could not reach t h e o p t i c a l s a t u r a t i o n of these l e v e l s - it was reached only f o r t h e first s t e p of e x c i t a t i o n ( f i g , 4). Under t h e s e experimental conditions we don't observe t h e increase of t h e a n a l y t i c a l signal with a growth of e x c i t a t i o n level.

It i s d i f f i c u l t t o compare t h e population of exciting l e v e l s with- ou-j s a t u r a t i o n , but t h e estimation of i o n i z a t i o n e f f i c i e n c y f o r 8p P312 l e v e l brings t o 0.8 (we suppose t h a t t h e r e i s no mixing between 5p2pdI2 and 5p2~3/2 l e v e l s during t h e l a s e r pulse z p =5 n s , and t h a t 8#p3/,level i s i n saturation. We a l s o suppose t h a t t h e efficiency of atomization f o r I n i s 0.085). It i s c l e a r t h a t even f o r aE=0.6 eV t h e e x c i t i n g l e v e l i s i n equilibrium with t h e continuum system of l e v e l s , A f u r t h e r r i s e of t h e e x c i t a t i o n l e v e l i s e f f e c t - l e s s , because t r a n s i t i o n p r o b a b i l i t i e s f a l l quickly with n ( l e v e l

numbec) . So, t h e 8p2p3/2 l e v e l i s optimum f o r t h i s two-step scheme

and p::ovides m i n i m u m DL. It i s i n t e r e s t i n g t o estimate f o r t h i s case

t h e minimum detected number of atoms and ions. Using t h e expression

(6)

Fig. 4 - Saturation curves f o r I n and Yb.

f o r atom concentration i n flame from /4/ we found t h a t m i n i m u m i o n number i s - 100, minimum atom number -- 250 and minimum detected concentration - 5.10 cm-' f o r our experimental conditions.

A s one can see from f i g . 4 d i f f e r e n t a n a l y t i c a l s i g n a l s were observed from doublet components 8p2~4/2 ( A =572.8 nm) and 8p2p3,, ( 1 2571.0 m). The r a t i o of this s i g n a l s i s equal t o 2.8 f o r t h i s doublet.

Analogous r e s u l t s were a l s o obtained f o r 9p and l o p doublets. It i s evident t h a t + e $ r a t e s of c o l l i s i o n a l mixing of t h e components a r e l e s s than C$ but what mechanisms bring about t h e r a t i o observed, i s not c l e a r . T h i s problem i s now under consideration.

Ytterbium. The e x c i t a t i o n scheme i s shown on f i g . 2. I n t h i s scheme except of c o l l i s i o n a l i o n i z a t i o n f ram 4f '3 (2F712 )6s2 6p

T,,~

l e v e l (two- s t e p e x c i t a t i o n ) , t h e r a d i a t i v e t r a n s i t i o n i s a l s o possale from t h i s l e v e l t o autoionizing ( A I ) l e v e l with E=6.5 eV. The wavelength of t h i s t r a n s i t i o n coincides with t h e second s t e p wavelength (581.2 m) so only two dye-lasers a r e needed f o r such three-step excitation. I n general t h i s scheme i s more complex and demands t h e use of t h r e e l a s e r s , but it provides higher s e l e c t i v i t y and r a t e of ionization.

This scheme can be used when c o l l i s i o n a l i o n i z a t i o n i s e f f e c t i v e l e s s .

For Y b atom t h i s scheme provides a low DL-O.l ng/ml i n s p i t e of t h e

f a c t t h a t atomization of YbCl5 i n air-acetylene flame i s verg poor.

The e x c i t a t i o n conditions a r e near t h e optimum - t h e o p t i c a l satu-

r a t i o n having been reached i n a l l t h r e e steps. The estimated cross-

section of A I t r a n s i t i o n i s 6 gIcv10-~cm2.

(7)

JOURNAIL D€ PHYSIQUE

Sodium. The minimum d e t e c t e d concentration i s l i m i t e d by blank (Na -nation i n deionized water being-'l0 ng/ml). The DL obtained by e x t r a p o l a t i o n of a s i g n a l t o n o i s e l e v e l i s low enough, being

l e s s t h a n 1 pg/ml f o r two-step e x c i t a t i o n . The o p t i c a l s a t u r a t i o n i s reached e a s i l y f o r both steps. The l i n e a r p a r t of c a l l b r a t i o n curve extends t o 3yg/ml. For higher concentrations t h e n o n l i n e a r i t y appears due t o t h e space charge e f f e c t s . The space charge b r i n g s about t h e broadening of t h e e x c i t a t i o n s p e c t r a and i o n c u r r e n t p u l s e s /6/. The broadening of t h e l a s e r p u l s e s can be used f o r c o n t r o l of t h e e f f e c t .

Note, t h a t v a r i o u s two-step e x c i t a t i o n schemes (through t h e 3 ~ ~ ~ 1 1 ~ and 3p2~5/2 l e v e l s - see t a b l e 2) provides d i f f e r e n t magnitudes of

a n a l y t i c a l s i g n a l s . This f a c t shows, t h a t mixing time f o r t h e s e l e v e l s i n flame i s more t h a n T p =5 ns,

Caesium. The one-step e x c i t a t i o n was used and t h e o p t i c a l s a t u r a t i o n was reached. The e f f i c i e n c of c o l l i s i o n a l i o n i z a t i o n from 7p2P3/!

l e v e l i s very high ( -- 'l.0y and i n s p i t e of l a r g e n E value and low e f f i c i e n c y of atomization of CS i n air-acetylene flame ( 2%) t h e DL i s t h e same a s i n /5/ f o r propane-butane-air flame.

The matrix i n t e r f e r e n c e s . The low DL i n water s o l u t i o n s doesn't quarantee bhe low DL i n r e a l samples where matrix i n t e r f e r e n c e s occur. W e i n v e s t i g a t e d t h e determination of I n i n presence of Sn having high i o n i z a t i o n p o t e n t i a l and influence of Na on a n a l y t i c a l s i g n a l of CS. For In-Sn system t h e matrix i n t e r f e r e n c e s depend on t h e e x c i t a t i o n scheme. The s o l u t i o n s of SnCle and SnSO i n I M a c i d s were used.

A. One-step e x c i t a t i o n ( 3 =303.9 v). For SnC12 s o l u t i o n s t h e con%inuous background w a s observed I n t h e e n t i r e tuning range of t h e dye used (285-310 nm). The magnitude of this background depends t o a l a r g e extent on a p o t e n t i a l U of electrode - it r i s e s a s U6 and t h e n i s s a t u r a t e d . The second i n t e r f e r e n c e f a c t o r i s supression of s e l e c t i v e I n s i g n a l when matrix concentration a r i s e s ( f i g . 5).

For 10 @;/l of Sn t h e s i g n a l of I n drops t o 30%,and when Sn concen- t r a t i o n a r i s e s it i s completely recovered, A s a r e s u l t of t h e s e i n t e r f e r e n c e s t h e DL of I n i n SnCl2 s o l u t i o n (10 @;/l Sn) i s 1m

times higher t h a n it i s i n water s o l u t i o n . The n a t u r e of continuous background i s unknown. It may be connected with l a r g e q u a n t i t i e s of

& C l 2 molecules i n flame a s only about 4% of molecules a r e atomized.

The wide W absorption band of t h e s e molecules overlapps t h e tuning range of t h e dye l a s e r and multiphoton i o n i z a t i o n i s possible. Even i f t h e e f f i c i e n c y of t h i s process i s 10-7thi.s i s q u i t e enough t o provide t h e observed amplitude of t h e background. The SnC12 can a l s o serve a s t h e e f f e c t i v e quencher of e x c i t i n g I n atoms and b r i n g s about suppression of t h e a n a l y t i c a l signal. For SnS04 molecules t h e continuous background i s absent.

B. WO-step e x c i t a t i o n . The matrix i n t e r f e r e n c e s a r e much smaller i n t h i s case ( f i g . 3 ) . For SnS04 t h e suppression of t h e a n a l y t i c a l s i g n a l only about 10% w a s observed up t o Sn concentration 10 g/l.

This suppression r i s e s t o 15% f o r 45 g / l Sn. For SnCl:! s o l u t i o n s

t h e suppression i s higher - up t o 25%. No continuous background i s

observed. The c a l i b r a t i o n curves f o r pure I n s o l u t i o n s and f o r

( I n + 10 g / l Sn) s o l u t i o n s a r e given i n Fig. 6.

(8)

Fig. 5 - The matrix i n t e r f e r e n c e s in In-Sn system.

M * .

Iridium

DL /IniSn)&D L (In)

2

Q3

PI", %t

Fig. 6 - The c a l i b r a t i o n curves.

The curves a r e p a r a l l e l and DL f o r water s o l u t i o n s and matrix a r e p r a c t i c a l l y equal. T h i s provides t h e determination of I n t r a c e i n Sn up 60 10-~%. The s y p l e s of Sn, which w e i n v e s t i g a t e d so far, had I n contamination-10- 1. The r e a l measurable concentration of I n a r e l i m i t e d i n our experiments by burner vmemoryw and a r e equal t o 10 pg/

m l - more t h a n order of magnitude higher t h a n DL.

Cs+Na S stem. Both atoms e f f e c t i v e l y i o n i z e i n flame, c r e a t i n g t h e

& n e a r t h e electrode. The range, where CS a n a l y t i c a l s i g n a l can be detected, diminishes, when Na concentration increases.

This e f f e c t depends on t h e e l e c t r o d e configuration and i t s p o s i t i o n i n flame ( s e e a l s o /3/. I n our experimental conditions t h e a n a l y t i - c a l s i g n a l from 20 ng/ml CS independent on Na was observed up t o I pg/ml Na. I n concentration range 1-200 pg/ml N a t h e 18% i n c r e a s e i n s i g n a l w a s observed. (Che f u r t h e r Na concen r a t i o n increase give8 dropped t o 1096).

r i s e t o suppression of CS s i g n a l ( f o r 2.10 X )~g/ml th e CS s i g n a l

Experiments with flameless atomizer. The first attempt of optogal-

vanic d e t e c t i o n with g r a p h i t e c r u c i b l e w a s reported i n / 7 / . We used

two modifications - t h e g r a p h i t e c r u c i b l e and g r a p h i t e furnace

(9)

C7-352 JOURNAL DE PHYSIQUE

HGA-72. The c o n f i g u r a t i o n of apparatus i s presented i n f i g . 7. For g r a p h i t e c r u c i b l e t h e s t a i n l e s s p l a t e w a s used as a e l e c t r o d e a t t h e

+U

- .

with sampt~

d i s t a n c e 4 mm above c r u c i b l e . The l a s e r beams propagated 4 mm above c r u c i b l e n e a r t h e e l e c t r o d e n o t touching i t , The s i g n a l s were obser- ved f o r p o s i t i v e and negative p o t e n t i a l up t o 1 kV. The experiments were c a r r i e d i n a i r ( t h e c r u c i b l e being changed a f t e r 2-3 experi- ments) and n i t r o g e n atmospheres.

For g r a p h i t e tube t h e t u n g s t e n rod (diameter 1 mm) along tube exis was used a s anode. The l a s e r beams propagated along t h e rod. Maximum p o t e n t i a l on t h e rod i n t h a t c a s e was l e s s t h a n 300 V t o avoide t h e breakdown between r o d and furnace. The volume of t h e sample t o be analysed was 20-30 rl. The e q e r i m e n t s were c a r r i e d out i n gas-stop mode, i n argon atmosphere.

The Na, CS, I n , Yb water s o l u t i o n s were i n v e s t i g a t e d with one-step and two-step e x c i t a t i o n s . It w a s found t h e a n a l y t i c a l s i g n a l t o be 10-100 times h i g h e r , compared t o flame atomization, but; t h e p r e c i s i o n was notj4very ood. Evaluated a b s o l u t e d e t e c t i o n are 10- - 10- g, and p r a c t i c a l l y t h e r e i s no memory e f f e c t . The a limits of Na and I n r e s u l t s obtained a r e promising but it i s necessary t o improve p r e c i - s i o n f o r r e a l samples a n a l y s i s .

References

/l/ TRAVIS J,C . , TURP; G.C., GFBEN R.B. Anal. Chem, Zft (1982) 1006A.

/2/ ZOROV N.B., KUZYAKOV YU.YA., MATVEEV 0.1, Zh. Anal. Khim. 2

(1982) 520 (Sov.)

/3/ TURF; G.C., TRAVIS J.C. , DE VOE J.R., 0 'HAVER T.C. Anal. Chem. 2

(1979) 7890.

/4/ OMENETTO N., WINEFORDNER J.D. Progr. Anal. Atom. Spectr. (1979) 1,

/5/ Z ~ R O V N.B., KUZYAKOV M.YA., CHAPLYGIN V.I. zh. Anal. m m . 3

(1983) 802 (Sov.).

/6/ VAN DIJK C .A., C U R W F.M. L I N K.C. GROUCH S .R. Anal. Chem. 2

(1981) 1275.

/7/ GONCHAKOV A.S., ZOROV N.B., KUZYAKOV YU.YA., MATVEEV 0.1. Jh.

-1. Khim. 2 (1979) 2312 (Sov.)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to