• Aucun résultat trouvé

Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice

N/A
N/A
Protected

Academic year: 2021

Partager "Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02325190

https://hal.archives-ouvertes.fr/hal-02325190

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in

mice

Stijn Smulders, Camille Larue, Géraldine Sarret, Hiram Castillo-Michel, Jeroen Vanoirbeek, Peter H.M. Hoet

To cite this version:

Stijn Smulders, Camille Larue, Géraldine Sarret, Hiram Castillo-Michel, Jeroen Vanoirbeek, et al..

Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung ex- posure in mice. Toxicology Letters, Elsevier, 2015, 238 (1), pp.1-6. �10.1016/j.toxlet.2015.07.001�.

�hal-02325190�

(2)

Lung distribution, quanti fi cation, co-localization and speciation of silver nanoparticles after lung exposure in mice

Stijn Smulders

a,1

, Camille Larue

b,1

, Geraldine Sarret

b

, Hiram Castillo-Michel

c

, Jeroen Vanoirbeek

a

, Peter H.M. Hoet

a,

*

aCenterforEnvironmentandHealth,KULeuven,Leuven,Belgium

bISTerre,UniversitéGrenobleAlpes,CNRS,F-38041Grenoble,France

cEuropeanRadiationSynchrotronFacility,Grenoble,France

HIGHLIGHTS GRAPHICAL ABSTRACT

LocalAgdistribution,andco-localiza- tionwithFe,CuandS,wasdetermined.

XRF,mXANES,andmPIXEtechniques wereused.

Aquarterofallmacrophagesinthe lumenoftheairwayscontainedENPs.

A large part of the ENPs was dis- solvedandcomplexedtothiol-con- tainingmolecules.

Ag,S-richspotswereenrichedinFe andCu,suggestiveformetallothio- neins(MTs).

ARTICLE INFO

Articlehistory:

Received14May2015

Receivedinrevisedform30June2015 Accepted2July2015

Availableonline7July2015

Keywords:

Nanoparticles Silver

MicroX-rayfluorescence(mXRF) MicroX-rayabsorptionnearedgestructure spectroscopy(mXANES)

Microproton-inducedX-rayemission (mPIXE)

ABSTRACT

Largeknowledgegapsstillexistonthetoxicologicalmechanismsofsilver(Ag)engineerednanoparticles (ENPs);acomprehensiveunderstandingofthesources,biodistribution,toxicityandtransformationofAg ENPsalongtheirlifecycleandaftertransferinlivingorganismsisneeded.Inapreviousstudy,micewere pulmonaryexposedtoAgENPsandlocal(lung)andsystemictoxiceffectstogetherwithbiodistribution toorgansincludingheart,liver,spleenandkidneywereinvestigated.Here,Aglungdistribution,local concentration,co-localizationwithotherelementssuchasFe,CuandS,andspeciationweredetermined afterlungexposuretoAgENPsusingmicroX-rayfluorescence(mXRF),microX-rayabsorptionnearedge structurespectroscopy(mXANES)andmicroproton-inducedX-rayemission(mPIXE)techniques.We foundthatapproximatelyaquarterofallmacrophagesinthelumenoftheairwayscontainedENPs.High localconcentrationsofAgwerealsodetectedinthelungtissue,probablyphagocytizedbymacrophages.

ThelargestpartoftheENPswasdissolvedandcomplexedtothiol-containingmolecules.Increased concentrations of Fe and Cu observed in the Ag-rich spots suggest that these molecules are metallothioneins(MTs).TheseresultsgivemoreinsightsonthebehaviorofAgENPsinthelungin vivoandwillhelpintheunderstandingofthetoxicologicalmechanismsofAgENPs.

ã2015ElsevierIrelandLtd.Allrightsreserved.

* Correspondingauthorat:DepartmentofPublicHealthandPrimaryCareCenterforEnvironmentandHealth,Herestraat49mailbox706,B-3000Leuven,Belgium.

E-mailaddresses:stijn.smulders@med.kuleuven.be(S.Smulders),camille.Larue@ruhr-uni-bochum.de(C.Larue),geraldine.sarret@ujf-grenoble.fr(G.Sarret), hiram.castillo-michel@esrf.fr(H.Castillo-Michel),jeroen.vanoirbeek@med.kuleuven.be(J.Vanoirbeek),peter.hoet@med.kuleuven.be(P.H.M. Hoet).

1 Theseauthorscontributedequallytothismanuscript.

http://dx.doi.org/10.1016/j.toxlet.2015.07.001

0378-4274/ã2015ElsevierIrelandLtd.Allrightsreserved.

ContentslistsavailableatScienceDirect

Toxicology Letters

j o u r n al h o m e p a g e :w w w . el s e v i e r . c o m / l o c a t e / t o x l e t

(3)

1.Introduction

Due totheirantimicrobialproperties, silver(Ag) engineered nanoparticles(ENPs)areoneofthemostwidelyusedENPswith applicationsinpaintsandcoatings,cosmetics,electronics,water disinfection,foodpackagingandtextiles(HanusandHarris,2013;

Sometal.,2011;Lietal.,2008).Furthermore,AgENPscanbefound inbiomedicalapplicationsincludingprostheses,wounddressings andsurgicalinstruments(ChenandSchluesener,2008; Ahamed etal.,2010).

The growing use of Ag ENPs in commercial products will inevitablyleadtoincreasedexposuretoAgintheenvironmentand thegeneralpopulation(Larueetal.,2014).Topredicttheriskon human health, a comprehensive understanding of the source, biodistribution,toxicityandtransformationofAgENPsalongtheir lifecycleandaftertransferintolivingorganismsisneeded.The debateis going onabout the sourceof AgENP toxicityand it remainsuncleartowhatextentAgENPsorthereleasedAgionsare responsibleforthetoxiceffects(Yuetal.,2013).Inparticular,Ag ionsreleasedfromthe ENPswereshown tointeract withvital enzymes and proteins, affecting cellular respiration and ion transport,finally resultingin thedeathofbacteria, virusesand fungi(Levardetal.,2012).

Several studies have been conducted investigating the dissolution of Ag ENPs in artificial body fluids such as fluids representingtheenvironmentofthestomach,bloodandairways (Stebounova et al., 2011a; Leo et al., 2013). Leo et al. (2013) studiedtheeffectofamodelpulmonarysurfactantonAgENPs, andshowed a decrease in the kinetics of Ag ENP dissolution andof theiraggregation. Althoughtherearepublisheddataon Ag localization and speciation in plants exposed to Ag ENPs (Larueetal., 2014),equivalentdataonanimalcellsand tissues afterAgENPexposureislacking.Bothinvitroandinvivotoxicity of Ag ENPs has already been studied; toxic effects such as glutathionedepletion, mitochondrial deviations and damage to cellmembraneswereobservedinvitro(Wijnhovenetal.,2009).

Long-term or high-dose exposure to Ag ENPs in vivo leads to inflammation,smallgranulomatouslesionsandchangesin lung function(Sungetal.,2008;Sungetal.,2009;Stebounovaetal., 2011b).

Inapreviousstudy,weevaluatedthelocal(lung)andsystemic toxiceffectsalongwithbiodistributiontoorgansincludingheart, liver,spleenand kidneyafterlung exposuretoAgENPsinmice (Smuldersetal.,2014).Weobservedsometoxiceffectsasseenby anincreasedneutrophilcountanda 2-foldincrease inthepro- inflammatory cytokines keratinocyte chemoattractant (KC) and interleukin-1ß(IL-1ß)inthelungtissue,withnosystemictoxicity.

Moreover,extrapulmonarydistributionofAgtotheliver,spleen andkidneywasseen.Inthisstudy,micewereexposedtoAgENPs byoropharyngeal aspiration.Aglung distribution,localconcen- tration,co-localizationwithotherelementssuchasFe,CuandS, andspeciationweredeterminedusingseveraltechniquesinclud- ingmicroX-rayfluorescence(

m

XRF),microproton-inducedX-ray emission(

m

PIXE),Rutherford backscatteringspectroscopy(RBS) and micro X-ray absorption near edge structure (

m

XANES)

spectroscopy.Thisstudygivesmoreinsights onthebehaviorof AgENPsinthelunginvivoandwillhelpintheunderstandingofthe toxicologicalmechanismsofAgENPs.

2.MaterialsandMethods 2.1.Materials

AgENPswereprovidedbyindustrialprojectpartnersinvolved intheEuropeanFP7projectNanohouse.ThesameAgENPswere alreadyusedinnanotoxicologicalstudies(Smuldersetal.,2014;

Kaiseretal.,2013),ecotoxicologicalstudies(Larueetal.,2014)and a studyassessing therelease ofAg ENPsfromnano-containing paints(Zuinetal.,2013).Isoflurane(Forene1)wasobtainedfrom Abbott Laboratories (S.A. Abbott N.V., Ottignies, Belgium) and pentobarbital (Nembutal1) from Sanofi Santé Animale (CEVA, Brussels,Belgium).

2.2.Particlecharacterization

Dynamic light scatteringand zeta potential measurement wereperformed witha nanoZSinstrument (Malvern).Ag ENPs were suspended in saline (0.9% NaCl) at a concentration of 0.8mg/ml.

2.3.Mice

Male BALB/cOlaHsd mice(6weekold) wereobtainedfrom Harlan (Horst, The Netherlands). The mice were kept in a conventionalanimalhousewith12-hdark/lightcycles.Theywere housedinfiltertopcagesandreceivedlightlyacidifiedwaterand pelletedfood (TrouwNutrition,Ghent, Belgium)ad libitum. All experimental procedures were approved by the local Ethical CommitteeforAnimalExperiments.

2.4.Experimentalprotocol

Ondays0,7,14,21and28,micereceivedunderlightisoflurane anesthesia an oropharyngeal aspiration (25

m

l) of Ag ENPs

(0.8mg/ml)orvehicle(saline(0.9%NaCl)),thisresultsinatotal doseof100

m

gpermouse(4mg/kg).Miceweresacrificedbyan intraperitonealinjectionofpentobarbital(90mg/kgbodyweight) 2 days after the last exposure (day 30) and an autopsy was performed.

2.5.Bronchoalveolarlavage

Thelung waslavaged,insitu,three timeswith0.7mlsterile saline (0.9% NaCl), and the recovered fluid was pooled. The bronchoalveolar lavage (BAL) fluid was centrifuged (1000g, 10min) and 250

m

l of the resuspended pellets (100,000 cells/

ml)werespun(300g,6min)(Cytospin3,Shandon,TechGen,Zellik, Belgium)ontomicroscopeslides,air-driedandstained(Diff-Quik1 method, Medical Diagnostics, Düdingen, Germany) for macro- phageandneutrophilcellcounts.AftertakingBALfluid,thelungs wereinstilledwith4%formaldehydeuntilfullinflationofalllobes, asjudgedvisually,forfurtheranalyses.

2.6.

m

XRFand

m

XANES

m

XRFandAgLIII-edge

m

XANESmeasurementswereperformed onthescanningX-raymicroscopeonID21beamlineattheESRF (European Synchrotron Radiation Facility, France) in cryo-con- ditionsusinga vibration-free cryo-stage,passivelycooledbya liquidnitrogendewar.

Asmallpieceofthelungwasflash-frozeninliquidnitrogen, embeddedinOCT1resinandthencutinthinsections(20

m

m)

usingacryomicrotomeanddirectlytransferredtothecryo-stage.

m

XRFmapswererecordedwithvariousstepsizes(from0.3

m

mx

0.3

m

m to 3

m

m x 3

m

m) with incident energy of 3.42 keV,

and dwell time of 200ms.

m

XRF data were processed using

PyMcasoftware (Soleetal.,2007)asin(Larueet al.,2014).Ag LIII-edge

m

XANESspectrawererecordedinregionsofinterestof

the maps (Ag-rich regions).

m

XANES data processing and

linearcombinationfittingwereachieved withAthenasoftware using reference compounds acquired previously (Larue et al., 2014).

2 S.Smuldersetal./ToxicologyLetters238(2015)1–6

(4)

2.7.

m

PIXEandRBS

Distributionofendogenouselements(P,S,K,FeandCu)andAg wasmappedby

m

PIXEcoupledtoRBSrecordedsimultaneouslyon theAIFIRAnuclearmicroprobe(ApplicationsInterdisciplinairesde Faisceauxd’IonsenRégionAquitaine,CENBG,France).A2.5MeV protonbeam was focused to2.5

m

m2.5

m

m withan average

intensityof1000pA.Freeze-driedcross-sectionscuttedfromthe samples prepared during the synchrotron experiment were analyzed.DatawereprocessedusingSIMNRA(Mayer,1999)and Gupix(Campbelletal.,2000)softwares.

2.8.Statisticalanalysis

DatainTable1arepresentedasmeanandstandarddeviations (SD).Alldatawereanalyzedusingthenon-parametricKruskal– Wallis test followed by a Dunn’s multiple comparison test (GraphpadPrism4.01,Graphpad SoftwareInc.,SanDiego,USA).

Alevelofp<0.05wasconsideredsignificant.

3.Results

AnalysisoftheENPsbydynamiclightscattering(DLS)showeda polydisperse suspensie with 3 populations: 130nm (11% in number),506nm(89%innumber),and5180nm(0.1%innumber).

The particles werenegatively charged witha zeta potential of 31mV.Inductivelycoupledplasmaopticalemissionspectrosco- py(ICP-OES)measurementsshowedimpuritiesofCa(216.8

m

g/g),

Fe(23.8

m

g/g)andCu(0.6

m

g/g).Transmissionelectronmicroscopy (TEM)analysisofAgENPshasbeenpublishedbeforeby(Smulders et al., 2012) and showed a heterogenous composition with spherical(25nm)androd-shaped(80–90nm)ENPs(Fig.S1).

Increasesintotalcells(88.7(14.6)103vs38.2(15.4)x103), macrophages (75.8 (17.4)103 vs 37.9 (16.6)103) and neutrophils (12.9 (10.4)103 vs 0.3 (0.3)103) in the BAL fluidwereseeninAg-exposedmicecomparedtocontrolmice.In theAg-exposedgroup26%oftheBALmacrophagescontainedENPs asjudgedvisuallyusinglightmicroscopy(Fig.1).Notethatthis visualexaminationdetectslargeagglomeratesorprecipitatesofAg only.NoincorporationofENPswasobservedinneutrophilsofthe BALfluid.

TheelementaldistributionofAginthelungafterlavagewas studiedby

m

XRFonthinsections.NospotsofAgwereobservedin

non-exposedcontrolanimals(Fig.S2).Lungslicesofmiceexposed to Ag ENPs showed clear round-shaped hot spots of Ag;

magnification of theAg-rich regionsshowspotsizesof around 5

m

m(Fig.2andFig.S3).LIII-edge

m

XANESspectrawererecorded

onthreeAg-richspotsidentifiedby

m

XRFandAgspeciationwas

determinedbylinearcombinationfits(Fig.3).Intwospots,Agwas stillpartiallypresentaselementalAg(spot2:37%,spot3:55%).

Spot1showed100%oxidativedissolutionandrecomplexationof Ag+ ions to thiol-containing molecules. These molecules may correspondtocysteine,glutathioneand/ormetallothionein(MT),

although XANES cannot distinguish among them. Spot 2 and 3showedrespectively63%and45% dissolutionandrecomplex- ationtothesametypeofligands.

m

PIXE and RBS analyses were used toobtain local concen-

trationsofAg.Threeoutofeightanalyzedregions(approximately 200

m

m200

m

m)inthelungtissueshowedthepresenceofAg

spotswithanaveragesizeof5

m

m.Twooftheseregionsareshown

inFig.S4.TheconcentrationofdifferentelementsinAg-richspots weredeterminedandcompared toconcentrationsin thewhole lungsection.SignificanthigherconcentrationsofCu,FeandSwere foundintheAg-rich spots(Table1).TheCu/Ag,Fe/AgandS/Ag ratiosweremuchhigherthanintheoriginalNPs,sotheseelements didnotcomefromtheimpuritiesdetectedinthem.

4.Discussion

AsforallENPs,nano-Agmayenterthehumanbodythrough inhalation,skincontactandingestion(food,drinkingwater),and havethepotentialtopasstheair–bloodandeventheblood–brain barrier(Yangetal.,2010).InhalationofdustcontainingAgENPs occursprimarilyinoccupationalsettingsincludingmanufacturing and application of Ag-containing products. Inhalation studies showed distribution of Ag toextrapulmonary organs including liver,kidney,spleen,brainandheart;however,thesestudiesdid not reveal whether Ag reached these organs as ions or ENPs (Sungetal.,2009;Takenakaetal.,2001;Jietal.,2007).AgENP exposurecancausegenotoxiceffectsandcellulardamagethrough generation of oxidative stress, resulting in inflammation and apoptoticornecroticdeath.Thesetoxiceffectsstronglydependon thephysico-chemicalcharacteristicsoftheAgENPs.

In this study, we investigated the distribution, speciation, concentrationandco-localizationwithotherelementsofAgENPs in the lungs of mice. We observed uptake of Ag ENPs by approximatelyaquarterofallmacrophagesinthelumenofthe airways (BALfluid),whilenoneutrophilscontainingENPswere found. Furthermore,Ag was also foundin thelung tissue; we assumethattheseAg-richspotsrepresentmacrophagesfilledwith ENPspresentinthelumen(notremovedbylavage)andinthelung tissue.However,uptakebylungepithelialcellscannotbeexcluded.

Table1

Elementalconcentrations(mg/gdryweight)inlungsectionsandAg-richspotsasdeterminedbythecombinationofmicroproton-inducedX-rayemission(mPIXE)with Rutherfordbackscatteringspectroscopy(RBS).ConcentrationsofAg,Cu,Fe,P,S,KandweredeterminedbothinwholelungsectionsandmorespecificinAg-richspots.

Element Wholelungsection Mean

Ag-richspots

Ag-richspot1 Ag-richspot2 Ag-richspot3

Ag 0.20.3 14.812.2* 27.9 13.0 3.6

Cu 0.100.03 0.230.04* 0.27 0.19 0.23

Fe 0.970.07 1.180.06* 1.12 1.22 1.19

P 27540 35527 325 376 364

S 20440 36260* 365 421 302

K 10833 14241 121 115 190

* p<0.05comparedtowholelungsection.n.d.:notdetermined.

Fig.1.Representative imageofmacrophagewithoutandwithAgENPs inits cytoplasm.

(5)

Otherinhalationandinstillationstudiesalreadyshowedthatthe largestpartof theENPs werephagocytized byalveolarmacro- phagesandtransportedtothedraininglymphnodesorremoved byrespiratorymucociliaryclearance(GeiserandKreyling,2010).

Onceremovedfromthelungs,theycan reachthestomachand gastrointestinaltract,canbetakenupinthegutorwillfinallybe excreted. Depending on the physicochemical properties of the particles(size,aggregationstatus,solubility,shape, ...),aminor fractionoftheparticlesthatisnotclearedfromthelungortaken upbymacrophagescantranslocatethroughtheair–bloodbarrier intothecirculationandwillaccumulateinsecondaryorgans(Luyts et al., 2013). In a previous Ag ENP biodistribution study, we hypothesizedthattheAgENPseasilydissolveandionscrossthe air–bloodbarrier(Smuldersetal.,2014).Here,

m

XANESanalyses

showedthat theadministeredAg ENPsweremostlypresent in macrophages,eitherpartiallyortotallydissolvedandchelatedby thiol-containingligandssuchascysteine,glutathioneorMT.The increasedamountofSobservedinthesespotswasconsistentwith the presence of thiol-containing molecules. The persistence of elementalAginmacrophagessuggeststhatsome(ifnotall)Agis takenupasENPbythesecells,andthatdissolutionandchelation occurshereafter.

MTs are a family of cysteine-rich proteins that cooperate with glutathione in maintaining the cellular redox state (Nordberg and Arner, 2001). Localized in the cell cytoplasm andin someorganellesincludingmitochondriaandlysosomes,

they play a role in a number of functions including (toxic) metal detoxification and protecting the cell against damage from reactive oxygen species (ROS) (Sutherland et al., 2010;

Namdarghanbari et al., 2011). In natural conditions, themetal binding siteconsisting of 20 cysteine residues is occupied by Zn ions (Babula et al., 2012). However, these ions can be substitutedforothermetalionssuchasAg,Cu,Cd,Hg,Pband Fe and protect cells againstthe toxicityof these metals. It is known that cysteine, and more generally thiol-containing molecules, are extremely strong binding ligands for Ag ions (AdamsandKramer,1999;Liuetal.,2012).

It has been shown that expression of MTs is induced in inflammatorylungdiseases(Inoueetal.,2008);Kaewamatawong et al. (2014) demonstrated the expression of MTs after lung exposure tocolloidalAgENPsin mice.In a previousstudy, we showedtheinflammatoryeffects ofpulmonaryadministeredAg ENPs,the sameENPs asused in this study, withinfiltrationof neutrophils and expression of the pro-inflammatory cytokine IL-1

b

(Smulders et al., 2014), a known inducer of MT gene

expression(Deetal.,1990).InadditionMTproductioncanalsobe up regulatedvia MTF-1 bindingtometal-response elementsin thepromoterregions ofMTgenesasshown inthepresenceof Ag-ionsin Drosophila (Atanesyanet al.,2011)In this study, we demonstrated that the administered Ag ENPs are partially or completely dissolved with chelation of the released Ag ions byMTsorotherthiol-containingmolecules.Furthermore,higher Fig.2.DistributionofAginthelungsusingmicroX-rayfluorescence(mXRF).

mXRFimagesofAgandSdistributionswithinlungtissue2daysafterthelastoropharyngealaspirationofAgENPs.a)Imagesofthescannedlungtissueasseenunderlight microscope.b)RightmapdisplaysmXRFimageoftheregionindicatedonimagea.UppermapsshowdistributionofAg(red)andS(green),lowermapsshowaheatmapofAg distribution.Theleftandmiddlemapsrepresentmagnificationsoftwospotsindicatedontherightmap.

4 S.Smuldersetal./ToxicologyLetters238(2015)1–6

(6)

concentrationsofthemetalsFeandCuwereobservedintheAg- richspots.AlthoughtheAgENPscontainimpuritiesofFeandCu, theconcentrationoftheseimpuritiesistoolowtofullyexplainthe observedincrease.Ashypothesizedbefore,weassumethathigher amountofMTsarepresentin theAg-richspots,explaining the co-localizationofotherendogenousmetalsincludingFeandCu.

5.Conclusion

Inconclusion,wedemonstratedthattheadministeredAgENPs are taken up by macrophages and are partially to completely dissolved and recomplexed to thiol-containing molecules

includingMTs.AsyntheticschemeinFig.4 gathersthepresent findingsincombinationwiththoseobtainedduringourprevious study.TheseresultsgivemoreinsightsonthebehaviorofAgENPs in vivoand willhelp in theunderstanding of the toxicological mechanismsofAgENPs.

Acknowledgements

ThisworkwassupportedbytheSeventhFrameworkProgramof the European Commission NanoHouse-Grant (Agreement No.

207816). We acknowledgethe EuropeanSynchrotronRadiation Facilitysynchrotronforprovisionofbeamtime(ID21beamline).

Fig.3.SpeciationbyAgLIII-edgemicroX-rayabsorptionnearedgestructure(mXANES)spectroscopy.

AgspeciationbymXANESofthreeAg-richspots(lowerlines)comparedtothereferences(upperlines).Forthethreeanalyzedspots,plainlinesshowexperimentaldataand dottedlinesrepresentthelinearcombinationfit.Spot1and2correspondtotheindicatedspotsinFig.2;spot3correspondstotheindicatedspotinFig.S2.

Fig.4.SyntheticschemeofthepotentialpathwaysoccurringinthelungsafterAgENPexposure.

LungexposuretoAgENPsinducesaninflammatoryresponsewithincreasesinmacrophages,neutrophilsandthecytokineIL-1b.ENPsarephagocytizedbymacrophages,and willpartiallytototallydissolve.TheAg+ionsarechelatedbythiol-containingmoleculessuchascysteine,glutathioneandmetallothionein(MT).ThescaleoftheAgENPsand ionsisnotrepresentative.

(7)

The authors are grateful toAIFIRA for providing access tothe nuclear microprobe. ISTerre is part of Labex OSUG@2020 (ANR10LABX56) and Labex Serenade (ANR-11-LABX-0064). We alsothankequipexNanoID(ANR-10-EQPX-39).

AppendixA.Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.

toxlet.2015.07.001.

References

Adams,J.R.,Kramer,N.W.H.,1999.Determinationofsilverspeciationinwastewater andreceivingwatersbycompetitiveligandequilibration/solventextraction.

Environ.Toxicol.Chem.18,2674–2680.

Ahamed,M.,Alsalhi,M.S.,Siddiqui,M.K.,2010.Silvernanoparticleapplicationsand humanhealth.Clin.Chim.Acta411,1841–1848.

Atanesyan,L.,Günther,V.,Celniker,S.E.,Georgiev,O.,Schaffner,W.,2011.

CharacterizationofMtnE,thefifthmetallothioneinmemberinDrosophila.J.

Biol.Inorg.Chem.16,1047–1056.

Babula,P.,Masarik,M.,Adam,V.,Eckschlager,T.,Stiborova,M.,Trnkova,L.,Skutkova, H.,Provaznik,I.,Hubalek,J.,Kizek,R.,2012.Mammalianmetallothioneins:

propertiesandfunctions.Metallomics4,739–750.

Campbell, T.L., Maxwell, J.A., Nejedly, Z., 2000. The Guelph PIXE software packageIII:alternativeprotondatabase.Nucl.Instrum.MethodsPhys.Res.

170,193–204.

Chen,H.J.,Schluesener,X.,2008.Nanosilver:ananoproductinmedicalapplication.

Toxicol.Lett.176,1–12.

De,S.K.,McMaster,M.T.,Andrews,G.K.,1990.Endotoxininductionofmurine metallothioneingeneexpression.J.Biol.Chem.265,15267–15274.

Geiser,W.G.,Kreyling,M.,2010.Depositionandbiokineticsofinhalednanoparticles.

Part.FibreToxicol.7,2.

Hanus,M.J.,Harris,A.T.,2013.Nanotechnologyinnovationsfortheconstruction industry.Prog.Mater.Sci.58,1056–1102.

Inoue,K.,Takano,H.,Kaewamatawong,T.,Shimada,A.,Suzuki,J.,Yanagisawa,R., Tasaka,S.,Ishizaka,A.,Satoh,M.,2008.Roleofmetallothioneininlung inflammationinducedbyozoneexposureinmice.FreeRadic.Biol.Med.45, 1714–1722.

Ji,J.H.,Jung,J.H.,Kim,S.S.,Yoon,J.U.,Park,J.D.,Choi,B.S.,Chung,Y.H.,Kwon,I.H., Jeong,J.,Han,B.S.,Shin,J.H.,Sung,J.H.,Song,K.S.,Yu,I.J.,2007.Twenty-eight-day inhalationtoxicitystudyofsilvernanoparticlesinSprague–Dawleyrats.Inhal.

Toxicol.19,857–871.

Kaewamatawong,T.,Banlunara,W.,Maneewattanapinyo,P.,Thammachareon,C., Ekgasit,S.,2014.Acuteandsubacutepulmonarytoxicitycausedbyasingle intratrachealinstillationofcolloidalsilvernanoparticlesinmice:

pathobiologicalchangesandmetallothioneinresponses.J.Environ.Pathol.

Toxicol.Oncol.33,59–68.

Kaiser,J.P.,Roesslein,M.,Diener,L.,Wick,P.,2013.Humanhealthriskofingested nanoparticlesthatareaddedasmultifunctionalagentstopaints:aninvitro study.PLoSOne8,e83215.

Larue,C.,Castillo-Michel,H.,Sobanska,S.,Cecillon,L.,Bureau,S.,Barthes,V., Ouerdane,L.,Carriere,M.,Sarret,G.,2014.FoliarexposureofthecropLactuca sativatosilvernanoparticles:evidenceforinternalizationandchangesinAg speciation.J.Hazard.Mater.264,98–106.

Leo,B.F.,Chen,S.,Kyo,Y.,Herpoldt,K.L.,Terrill,N.J.,Dunlop,I.E.,McPhail,D.S., Shaffer,M.S.,Schwander,S.,Gow,A.,Zhang,J.F.,Chung,K.F.,Tetley,T.D.,Porter, A.E.,Ryan,M.P.,2013.Thestabilityofsilvernanoparticlesinamodelof pulmonarysurfactant.Environ.Sci.Technol.47,11232–11240.

Levard,C.,Hotze,E.M.,Lowry,G.V.,BrownJr.,G.E.,2012.Environmental transformationsofsilvernanoparticles:impactonstabilityandtoxicity.

Environ.Sci.Technol.46,6900–6914.

Li,Q.,Mahendra,S.,Lyon,D.Y.,Brunet,L.,Liga,M.V.,Li,D.,Alvarez,P.J.,2008.

Antimicrobialnanomaterialsforwaterdisinfectionandmicrobialcontrol:

potentialapplicationsandimplications.WaterRes.42,4591–4602.

Liu,J.,Wang,Z.,Liu,F.D.,Kane,A.B.,Hurt,R.H.,2012.Chemicaltransformationsof nanosilverinbiologicalenvironments.ACSNano6,9887–9899.

Luyts,K.,Napierska,D.,Nemery,B.,Hoet,P.H.M.,2013.Howphysico-chemical characteristicsofnanoparticlescausetheirtoxicity:complexandunresolved interrelations.Environ.Sci.Process.Impacts15,23–38.

Mayer,M.,1999.SIMNRA,asimulationprogramfortheanalysisofNRA,RBSand ERDA.TheFifteenthInternationalConferenceontheApplicationofAccelerators inResearchandIndustry541–544.

Namdarghanbari,M.,Wobig,W.,Krezoski,S.,Tabatabai,N.M.,Petering,D.H.,2011.

Mammalianmetallothioneinintoxicology,cancer,andcancerchemotherapy.J.

Biol.Inorg.Chem.16,1087–1101.

Nordberg,E.S.,Arner,J.,2001.Reactiveoxygenspecies,antioxidants,andthe mammalianthioredoxinsystem.FreeRadic.Biol.Med.31,1287–1312.

Smulders,S.,Kaiser,J.P.,Zuin,S.,VanLanduyt,K.L.,Golanski,L.,Vanoirbeek,J.,Wick, P.,Hoet,P.H.,2012.Contaminationofnanoparticlesbyendotoxin:evaluationof differenttestmethods.Part.FibreToxicol.9,41.

Smulders,S.,Luyts,K.,Brabants,G.,Van,L.K.,Kirschhock,C.,Smolders,E.,Golanski, L.,Vanoirbeek,J.,Hoet,P.H.,2014.Toxicityofnanoparticlesembeddedinpaints comparedtopristinenanoparticlesinmice.Toxicol.Sci.141,132–140.

Sole,V.A.,Papillon,E.,Cotte,M.,Walter,P.,Susini,J.,2007.Amultiplatformcodefor theanalysisofenergy-dispersiveX-rayfluorescencespectra.Spectrochim.Acta PartB-AtomicSpectrosc.62,63–68.

Som,C.,Wick,P.,Krug,H.,Nowack,B.,2011.Environmentalandhealtheffectsof nanomaterialsinnanotextilesandfacadecoatings.Environ.Int.37(6),1131–

1142.

Stebounova,L.V.,Guio,E.,Grassian,V.H.,2011a.Silvernanoparticlesinsimulated biologicalmedia:astudyofaggregation,sedimentation,anddissolution.J.

Nanopart.Res.13,233–244.

Stebounova,L.V.,Mcakova-Dodd,A.,Kim,J.S.,Park,H.,O’Shaughnessy,P.T.,Grassian, V.H.,Thorne,P.S.,2011b.Nanosilverinducesminimallungtoxicityor inflammationinasubacutemurineinhalationmodel.Part.FibreToxicol.8,5.

Sung,J.H.,Ji,J.H.,Yoon,J.U.,Kim,D.S.,Song,M.Y.,Jeong,J.,Han,B.S.,Han,J.H.,Chung, Y.H.,Kim,J.,Kim,T.S.,Chang,H.K.,Lee,E.J.,Lee,J.H.,Yu,I.J.,2008.Lungfunction changesinSprague–Dawleyratsafterprolongedinhalationexposuretosilver nanoparticles.Inhal.Toxicol.20,567–574.

Sung,J.H.,Ji,J.H.,Park,J.D.,Yoon,J.U.,Kim,D.S.,Jeon,K.S.,Song,M.Y.,Jeong,J.,Han,B.

S.,Han,J.H.,Chung,Y.H.,Chang,H.K.,Lee,J.H.,Cho,M.H.,Kelman,B.J.,Yu,I.J., 2009.Subchronicinhalationtoxicityofsilvernanoparticles.Toxicol.Sci.108, 452–461.

Sutherland,D.E.,Willans,M.J.,Stillman,M.J.,2010.Supermetalationofthebeta domainofhumanmetallothionein1a.Biochemistry49,3593–3601.

Takenaka,S.,Karg,E.,Roth,C.,Schulz,H.,Ziesenis,A.,Heinzmann,U.,Schramel,P., Heyder,J.,2001.Pulmonaryandsystemicdistributionofinhaledultrafinesilver particlesinrats.Environ.HealthPerspect.109(Suppl.4),547–551.

Wijnhoven,S.W.P.,Peijnenburg,W.J.G.M.,Herberts,C.A.,Hagens,W.I.,Oomen,A.G., Heugens,E.H.W.,Roszek,B.,Bisschops,J.,Gosens,I.,VandeMeent,D.,Dekkers, S.,DeJong,W.H.,VanZijverden,M.,Sips,A.J.A.M.,Geertsma,R.E.,2009.Nano- silver—areviewofavailabledataandknowledgegapsinhumanand environmentalriskassessment.Nanotoxicology3,109–138.

Yang,Z.,Liu,Z.W.,Allaker,R.P.,Reip,P.,Oxford,J.,Ahmad,Z.,Ren,G.,2010.Areview ofnanoparticlefunctionalityandtoxicityonthecentralnervoussystem.J.R.

Soc.Interface7(Suppl.4),S411–S422.

Yu,S.J.,Yin,Y.G.,Liu,J.F.,2013.Silvernanoparticlesintheenvironment.Environ.Sci.

Process.Impacts15,78–92.

Zuin,M.,Ferrari,A.,Golanski,L.,2013.Leachingofnanoparticlesfromexperimental water-bornepaintsunderlaboratorytestconditions.J.Nanopart.Res.16.

6 S.Smuldersetal./ToxicologyLetters238(2015)1–6

Références

Documents relatifs

(1) POUR INFORMATION: A DÉFAUT DE PAIEMENT DANS LES 3 JOURS, VOUS RECEVREZ UN POÈME FORFAITAIRE MAJORÉ DU MONTANT INDIQUÉ CI-DESSUS. DANS TOUS LES CAS, IL N’Y A PAS DE

Cette activité mandataire repré- sente environ un cinquième de l’activité des particuliers employeurs : en 2004, les sala- riés gérés par des organismes mandataires ont réalisé

Les entrées en CI-RMA ont progressé en 2006, tandis que la présence des bénéfi- ciaires de minima sociaux dans les embauches en CIE s’est légèrement réduite. Champ : embauches

[r]

(A) Flow cytometry of monocyte/DC progenitors in the bone marrow of mice treated or not (controls) with 7-days oral vancomycin/colistin (VAN/ CST) followed by systemic

Dans cette dynamique, nous envisageons ici une analyse comparée de deux modules de formation qui intègrent l’appropriation d’un artefact comme élément déterminant du processus

L'objectif de ce chapitre est de d'effectuer un travail de clarification théorique tant de la notion de formation que de celle d'innovation. A l'issue d’une revue de la

Music must he taught by musicians who emphasize understanding and love of music as well as the ability to perform welle Art education must develop visual intelligence and