• Aucun résultat trouvé

Field measurements of electrical freezing potentials in permafrost areas

N/A
N/A
Protected

Academic year: 2021

Partager "Field measurements of electrical freezing potentials in permafrost areas"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Permafrost: 4th International Conference, Proceedings, pp. 962-967, 1983

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ff330ce3-2067-43bb-9fcf-24cc0f4796ae

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ff330ce3-2067-43bb-9fcf-24cc0f4796ae

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Field measurements of electrical freezing potentials in permafrost

areas

(2)

Ser

I

T H l

N21d

1

,

.

XITO

$

National Research

Conseil national

c .

2

I

Council Canada

de recherches Canada

FIELD MEASUREMENTS OF ELECTRICAL FREEZING POTENTIALS

I N PERMAFROST AREAS

by V.R. Parameswaran and J.R. Mackay

. A

Reprinted from

Permafrost: Fourth International Conference

%

-

6

*

1

I

Fairbanks, Alaska, July 17

-

22,1983

Proceedings, p. 962

-

967

DBR Paper No. 1170

Division of Building Research

Price $1

.OO

OTTAWA

NRCC 23091

(3)

1

I

Q

&sUMf5

L e s t e n s i o n s ' e l e c t r i q u e s q u i a p p a r a i s s e n t p e n d a n t l a cong'elation d e s s o l s n a t u r e l s o n t Qt'e mesur'ees dans deux zones d e perg'elisol: l ' u n e situ'ee dans l e s a b l e s a t u r ' e d'un l a c a s s ' e c h k ( I l l i s a r v i k ) s u r l ' l l e R i c h a r d s

03

i l y a Q p a i s s i s s e m e n t du pergZeliso1 v e r s

l e

b a s

3

5,65

m

s o u s l a s u r f a c e du s o l e t l ' a u t r e dans un t e r t r e d e v a s e d a n s l a zone a c t i v e

1 Inuvik.

On a mesur'e, au moyen d ' b l e c t r o d e s plac'aes s u r l e f r o n t d e congaatlon

1

I l l l s a r v l k , d e s t e n s i o n s d e p o l n t e a t t e l g n a n t 1350 mV.

A

I n u v i k , o n a mesur'e d e s t e n s i o n s d e c o n g ' e l a t i o n m a x i m a l e s a t t e i g n a n t 700 mV p e n d a n t l a cong'elatlon d e l a zone a c t i v e e n h i v e r . On a Zigalement observ'e d e s i n d i c e s d e m i g r a t i o n v e r s l e b a s e t d e cong'etation d e l ' e a u a u moment du d'ebut du d06gel du t e r r a i n e n s u r f a c e au printemps. -

.

1 C / - - - - - - - - -

I

(4)

Reprinted from:

Permafrost: Fourth International Conference, Proceedings

ISBN

0-309-03435-3 National Academy Press Washington,

D.C.

1983 FIELD MEASUREMENTS OF ELECTRICAL

FREEZTNG POTENTIALS I N PERMAFROST AREAS V. R. parameswaranl and J. R. Mackay2

l ~ i v i s i o n of Building Research, National Research Council Canada, Ottawa, Ontario, Canada KIA OR6 2 ~ e p a r t m e n t of Geography, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B r i t i s h Columbia, Canada V6T 1W5

E l e c t r i c a l p o t e n t i a l s developed d u r i n g f r e e z i n g of n a t u r a l s o i l s have been measured i n two permafrost areas: one i n a s a t u r a t e d sand i n a d r a i n e d l a k e ( I l l i s a r v i k ) on Richards I s l a n d where permafrost was aggrading downward 5.65 m below ground; t h e o t h e r , i n a mud hummock i n t h e a c t i v e l a y e r a t Inuvik. Peak p o t e n t i a l s of up t o 1350 mV were measured on e l e c t r o d e s l o c a t e d on t h e advancing f r e e z i n g f r o n t a t I l l i s a r v i k . A t I n u v i k , maximum f r e e z i n g p o t e n t i a l s of up t o 700 mV were measured a s t h e a c t i v e l a y e r f r o z e i n winter. There was a l s o evidence of downward water m i g r a t i o n and f r e e z i n g a s t h e ground s t a r t e d t o thaw a t t h e s u r f a c e i n spring.

INTRODUCTION

The phenomenon of e l e c t r i c a l p o t e n t i a l s g e n e r a t e d d u r i n g f r e e z i n g of aqueous s o l u t i o n s and o t h e r systems such a s moist s o i l s has been known f o r some time, although t h e e x a c t mechanism of

development is not f u l l y understood. S e v e r a l p l a u s i b l e e x p l a n a t i o n s have been proposed f o r pure water and d i l u t e aqueous s o l u t i o n s , but no such theory has been suggested f o r s o i l s .

When water f r e e z e s on t h e s u r f a c e of a s o l i d , t h e d i p o l e f i e l d of t h e o r i e n t e d w a t e r molecules i n t h e i n i t i a l i c e l a y e r causes r o t a t i o n and

r e o r i e n t a t i o n of t h e molecules i n t h e l i q u i d a d j a c e n t t o t h e i c e . An e l e c t r i c a l double-layer of a few nanometers i s formed a t t h e i n t e r f a c e between t h e f r o z e n and unfrozen p a r t s . It behaves l i k e a semipermeable membrane, allowing one k i n d of charge t o pass through more r e a d i l y than t h e o t h e r , and c a u s e s s e l e c t i v e i n c o r p o r a t i o n of a n e x c e s s charge of one s i g n i n t h e f r o z e n p a r t and an e q u a l and o p p o s i t e charge i n t h e unfrozen p a r t . The p o t e n t i a l developed i n t h i s way i s commonly c a l l e d t h e

f r e e z i n g e l e c t r i c a l p o t e n t i a l . During f r e e z i n g , t h e r e is a tendency f o r water t o migrate t o t h e f r e e z i n g f r o n t , and t h u s s e v e r a l e l e c t r o k i n e t i c e f f e c t s (such a s e l e c t r o p h o r e s i s , electro-osmosis, streaming p o t e n t i a l , and sedimentation p o t e n t i a l ) may a l s o a r i s e a s a r e s u l t of t h e r e l a t i v e motion between w a t e r and s o l i d phase.

E a r l y measurements of f r e e z i n g p o t e n t i a l s were c a r r i e d o u t i n water and i n d i l u t e aqueous s o l u t i o n s c o n t a i n i n g d i f f e r e n t kinds of i o n s , f o r example, a l k a l i metals, ammonia, halogens, and hydroxyl i o n s

( f o r e a r l y r e f e r e n c e s , s e e Parameswaran 1982). The e a r l y i n v e s t i g a t i o n s showed t h a t t h e magnitude and s i g n of t h e f r e e z i n g p o t e n t i a l depend upon v a r i o u s f a c t o r s , i n c l u d i n g t h e t y p e of i o n i n s o l u t i o n , t y p e and d i s t a n c e between e l e c t r o d e s , c o n c e n t r a t i o n of e l e c t r o l y t e s o l u t i o n , and r a t e of cooling.

Reports on t h e o b s e r v a t i o n of f r e e z i n g p o t e n t i a l s i n s o i l s and r o c k s a r e meagre and

inconclusive. Jumikis (1958) measured p o t e n t i a l s of 40-120 mV d u r i n g f r e e z i n g of Dunellen s i l t y s o i l ( a g l a c i a l t i l l ) and suggested t h a t such p o t e n t i a l s could enhance moisture t r a n s p o r t i n t h e m a t e r i a l .

Korkina (1975) s t u d i e d t h e f r e e z i n g e l e c t r i c a l p o t e n t i a l s i n suspensions c o n t a i n i n g p a r t i c l e s of l e s s than a micron and s a t u r a t e d w i t h d i f f e r e n t k i n d s of i o n s such a s 17e3+, ~ a + + , ~ a + , and NH,++.

The magnitude and p o l a r i t y of t h e induced v o l t a g e depended on t h e d e n s i t y of t h e suspensions, t y p e of p a r t i c l e s , and type of ions. Under l a b o r a t o r y c o n d i t i o n s , B o r o v i t s k i i (1976) measured f r e e z i n g v o l t a g e s of 150-200 mV i n a r g i l l a c e o u s r o c k s , and Yarkin (1974, 1978) measured f r e e z i n g v o l t a g e s of up t o 325 mV i n powdered sand c o n t a i n i n g about 23% moisture and s m a l l e r f r e e z i n g v o l t a g e s i n o t h e r s o i l s . More r e c e n t l y , Hanley and Ramachandra Rao

(1980, 1981) s t u d i e d t h e e f f e c t s of v a r i o u s c a t i o n s on t h e g e n e r a t i o n of f r e e z i n g p o t e n t i a l s i n a b e n t o n i t e clay. The maximum p o t e n t i a l s were i n t h e range of 30-50 mV, and they concluded t h a t t h e development of f r e e z i n g p o t e n t i a l and m i g r a t i o n of moisture a r e c l o s e l y a s s o c i a t e d phenomena, e,;

i n f l u e n c i n g t h e o t h e r . Parameswaran (1!362) h a s .>so r e p o r t e d l a b o r a t o r y measurements of e l e c t r i c a l f r e e z i n g p o t e n t i a l s i n w a t e r and s o i l s under v a r i o u s r a t e s of cooling. I c e - p o s i t i v e p o t e n t i a l s of 4-19 V developed i n pure w a t e r under r a p i d c o o l i n g ; and i n moist sands and s o i l s i c e - n e g a t i v e p o t e n t i a l s of

100-200 mV were measured. Under slow c o o l i n g a t -2.2OC r e c o n s t i t u t e d n a t u r a l s o i l s from permafrost a r e a s showed f r e e z i n g v o l t a g e s of 200-300 mV. The f r e e z i n g p o t e n t i a l s i n water could be due t o a combination of t h o s e r e l a t e d t o t h e phase change of water and those a r i s i n g out of charge s e p a r a t i o n and i o n i n c o r p o r a t i o n from t r a c e s of i m p u r i t i e s (known a s Workman-Reynolds e f f e c t ) . I n a d d i t i o n t o p o l a r i z a t i o n of w a t e r molecules and alignment of d i p o l e s a c r o s s t h e p o t e n t i a l b a r r i e r a t t h e f r e e z i n g boundary, charges i n h e r e n t l y p r e s e n t a t t h e s u r f a c e of mineral p a r t i c l e s i n s o i l s could a l s o c o n t r i b u t e t o t h e development of f r e e z i n g p o t e n t i a l s by exchange a b s o r p t i o n processes. The development of c o n t a c t e l e c t r i c a l p o t e n t i a l s during f r e e z i n g i s of c o n s i d e r a b l e importance i n many c o n s t r u c t i o n problems i n n o r t h e r n North America, t h e USSR, and Europe, where v a s t a r e a s a r e u n d e r l a i n by p e r e n n i a l l y and s e a s o n a l l y f r o z e n ground. Under t h e i n f l u e n c e of a n e l e c t r i c a l g r a d i e n t such a s t h a t caused by f r e e z i n g , w a t e r i s

.

(5)

transported through frozen clay and s i l t towards t h e f r e e z i n g f r o n t where segregated i c e can form

(Verschinin e t a l . 1949, Hoekstra and Chamberlain 1963). Such movement of water under t h e influence of g e o e l e c t r i c f i e l d s i n t h e presence of a thermal gradient could a l s o cause electro-osmotic drainage of unfrozen and f r o z e n s o i l s (Nersesova and Tsytovich 1966). The a d d i t i o n a l heave caused by such processes could n e c e s s i t a t e s p e c i a l

construction techniques f o r p i p e l i n e s , foundations f o r buildings, and o t h e r s t r u c t u r e s i n ~ e r m a f r o s t areas. ~ e o e l e c t r i c f i e l d s generated near buried p i p e l i n e s could a l s o a f f e c t t h e i r cathodic protection.

FIELD STUDIES

Very few measurements of e l e c t r i c a l f r e e z i n g p o t e n t i a l s under n a t u r a l conditions have been published. The only documented r e p o r t t o t h e authors' knowledge i s t h a t of B o r o v i t s k i i (1976), who measured t h e inherent e l e c t r i c a l f i e l d s developed i n t h e a c t i v e l a y e r between frozen and thawed p a r t s i n a permafrost region of t h e USSR. The measured values did not exceed 50 mV, although t h e value of the p o t e n t i a l varied with depth i n t h e ground. This he a t t r i b u t e d t o d i f f e r e n c e s i n q u a n t i t y and d i r e c t i o n of moisture movement. Mackay has a l s o c a r r i e d o u t measurements of t h e p o t e n t i a l s developed i n e l e c t r o d e s embedded t o d i f f e r e n t depths i n t h e a c t i v e l a y e r and i n perennially frozen ground i n t h r e e d i f f e r e n t a r e a s of t h e Northwest

T e r r i t o r i e s . When e l e c t r o d e s were placed i n t h e a c t i v e layer, he observed a p o t e n t i a l change a s t h e f r e e z i n g f r o n t passed the e l e c t r o d e s . Values of p o t e n t i a l s measured i n t h e f i e l d were of t h e same order of magnitude a s values measured i n t h e laboratory on n a t u r a l s o i l s (Parameswaran 1982). This s i m i l a r i t y of t h e f r e e z i n g p o t e n t i a l s measured i n t h e laboratory and i n t h e f i e l d prompted t h e author- t o i n s t a l l f i e l d e l e c t r o d e assemblies i n two

L r r o & a r e a s and t o measure f r e e z i n g p o t e n t i a l s

$I

an attempt t o understand t h e physical processes $ t h a t occur during f r e e z i n g of t h e ground. One

chosen a r e a was t h e middle of an a r t i f i c i a l l y &rained l a k e ( I l l i s a r v i k ) on Richards I s l a n d , N.W.T., where permafrost was aggrading from t h e top down (Mackay 1981). The o t h e r a r e a was a t Inuvik, N.W.T., where t h e a c t i v e l a y e r i n a mud hummock was monitored. This paper d e s c r i b e s t h e equipment and some of t h e r e s u l t s .

resin. The tubes were designed t o be joined with p l e x i g l a s couplings a s they were i n s t a l l e d .

Wires from t h e e l e c t r o d e s were connected t o a r o t a r y switch having 24 terminals (Figure l b ) . The bottom e l e c t r o d e was connected t o the common p o i n t (-); t h e o t h e r s were connected t o switch p o i n t s 1 t o 21. The c e n t r a l switch contact p o i n t was made t h e (+) terminal. The s h i e l d s from a l l t h e cables were connected t o t h e ground terminal, which was i n t u r n

connected t o a grounding s t e e l post a t t h e l a k e I s i t e .

Two thermistor cables were i n s t a l l e d near t h e

h

e l e c t r o d e s f o r temperature measurements. The f i r s t

cable had 12 thermistors (YSI 44033, c a l i b r a t e d t o

+O.Ol°C a t O°C), each i n s i d e a s o i l s a l i n i t y sensor

*1

(Soilmoisture No. 5100-A). These were embedded i n a

30 mm diam WC rod a t 500 mm i n t e r v a l s . The rod (with s a l i n i t y s e n s o r s ) was i n s t a l l e d i n a hole d r i l l e d by water-jet 0.4 m from t h e e l e c t r o d e assembly (Figure 2). A second temperature cable with 26 thermistors (YSI 44033) spaced 150 mm a p a r t was i n s t a l l e d

4

m from t h e e l e c t r o d e assembly.

Depth of permafrost was 5.65 m when t h e e l e c t r o d e s were i n s t a l l e d i n June 1981. The uppermost e l e c t r o d e (21) was a t a depth of 6.11 m and t h e bottom e l e c t r o d e (0) was 9.31 m below ground l e v e l (lake bottom). This placement ensured t h a t t h e O°C isotherm would soon reach t h e uppermost e l e c t r o d e . The m a t e r i a l i n which t h e e l e c t r o d e s were i n s t a l l e d was a s a t u r a t e d sand with mediuorto- f i n e g r a i n s i z e .

Inuvik S i t e

I

This s i t e i s about 3 b n o r t h of t h e town of Inuvik i n an a r e a of colluvium t h a t has developed a p a t t e r n of m d hummocks. The e l e c t r o d e probe consisted of a WC tubing (20.6 mm OD, 12.7 mm I D , 3 m long, closed a t one end) on which 12 copper e l e c t r o d e s i n t h e form of bands o r r i n g s (12.7 mm

wide and about 1 mm t h i c k ) were i n s t a l l e d i n s u i t a b l g grooves 150 mm a p a r t . Coaxial cables were soldered t o t h e e l e c t r o d e s and t h e wires were l e d out through a c e n t r a l hole and connected t o t h e terminals of a r o t a r y switch. The o u t e r s h i e l d s of t h e cables were grounded t o a s t e e l post a t t h e s i t e . A thermistor c a b l e with 13 thermistors (YSI-44033) was a l s o made. The e l e c t r o d e probe and t h e thermistor c a b l e (Figure 3) were i n s t a l l e d (by hand d r i l l i n g ) i n August 1981 i n t h e c e n t r e of a mud hummock about 2 m i n diameter.

I l l i s a r v i k Lake S i t e , Richards I s l a n d RESULTS AND DISCUSSIONS

I

An e l e c t r o d e probe c o n s i s t i n g of f i v e p l e x i g l a s

tubes, each 1.93 m long, 38 Imn OD and 25 mm I D , was i n s t a l l e d a t t h e s i t e , t h e middle of a drained lake, on 20 June 1981. Twenty-two copper e l e c t r o d e s i n t h e form of c i r c u l a r bands (12.5 mm wide) were i n s t a l l e d on the probe i n s u i t a b l e grooves 1 mm

deep. The bottom e l e c t r o d e (numbered zero) was 89 mm from the t i p of t h e plug c l o s i n g t h e f i r s t tube. A l l t h e o t h e r s , numbered 1 t o 21 from t h e bottom upwards, were s e t 150 mm a p a r t . A shielded c o a x i a l c a b l e (RG 174lU) was connected t o each e l e c t r o d e through a s l a n t e d hole i n t h e wall of t h e tube and t h e soldered j o i n t s were protected by epoxy

I l l i s a r v i k Lake S i t e , Richards I s l a n d

Owing t o t h e thermal disturbance of t h e ground caused by d r i l l i n g and t h e r e s u l t i n g freeze-back, t h e readings taken i n August 1981 a r e questionable and a r e not reported here. The I l l i s a r v i k s i t e i s

r e l a t i v e l y i n a c c e s s i b l e and frequent readings were impossible, s o t h a t t h e next readings were taken 23 March 1982, 8 June 1982, and 12 August 1982. The temperature and f r e e z i n g p o t e n t i a l p r o f i l e s f o r t h e s e d a t e s a r e p l o t t e d i n Figure 4(a-c). None of t h e t h r e e temperature p r o f i l e s shows any change i n g r a d i e n t i n c r o s s i n g O°C, from p o s i t i v e t o negative

(6)

temperatures. I n F i g u r e 4 ( a ) t h e r e i s a g r a d u a l change i n t h e p r o f i l e at about -0.l0C; and i n F i g u r e 4(b, c ) a d e f i n i t e i n f l e c t i o n p o i n t a t -O.l°C. With l i t t l e doubt t h i s marks t h e f r e e z i n g p o i n t d e p r e s s i o n s o commonly observed i n s o i l s . The I l l i s a r v i k sediments c o n s i s t mainly of sand, and t h e f r e e z i n g p o i n t d e p r e s s i o n i s s l i g h t l y lower t h a n might be expected. Since t h e sub-permafrost pore w a t e r h a s a n i n c r e a s e d s a l i n i t y from i o n r e j e c t i o n d u r i n g permafrost aggradation, however, a f r e e z i n g p o i n t d e p r e s s i o n below t h a t of t h e o r i g i n a l sands i s

t o be expected. To i l l u s t r a t e , i n t h e summer of 1982 t h e s p e c i f i c conductance of t h e p o r e w a t e r j u s t below permafrost, a s measured w i t h t h e s o i l s a l i n i t y s e n s o r s , was about 300 pohm-l cm-l; s a l i n i t y had i n c r e a s e d a p p r e c i a b l y s i n c e t h e previous summer. Nearby measurements of heave of t h e ground s u r f a c e suggest t h a t most of t h e i c e formed d u r i n g t h e downward growth of permafrost was pore i c e and n o t s e g r e g a t e d i c e .

F i g u r e 4(a-c) s h m s p l o t s of peak p o t e n t i a l s and temperature g r a d i e n t s . On 23 March 1982 t h e r e was a very pronounced peak i n t h e p o t e n t i a l a t

1.08 V a t a depth j u s t 15 cm below t h e 0 deg isotherm. A s t h e temperature measurements were taken 0.4 m from t h e e l e c t r o d e s , t h e agreement seems good. By way of c o n t r a s t , on 8 June 1982 t h e peak p o t e n t i a l (about 1.35 V) occurred a t a ground temperature of -O.l°C, t h e peak c o i n c i d i n g c l o s e l y w i t h t h e i n f l e c t i o n p o i n t on t h e temperature curve. By 12 August 1982, however, t h e peak p o t e n t i a l was unchanged a t t h e same depth a s on 8 June 1982, although permafrost had aggraded 50 cm and t h e ground temperature had decreased t o about -0.4"C. I n summary, t h e r e s u l t s from t h e I l l i s a r v i k s i t e i n d i c a t e t h a t f r e e z i n g p o t e n t i a l s develop on e l e c t r o d e s l o c a t e d a t t h e f r e e z i n g f r o n t , b u t t h e s e r e s u l t s a r e by no means conclusive. I n u v i k S i t e The I n u v i k s i t e c o n t r a s t s w i t h t h e I l l i s a r v i k s i t e i n s o i l t y p e and t h e placement of t h e e l e c t r o d e s . Here t h e s o i l i s a s i l t y c l a y , w i t h p a r t i c l e s about 50 % f i n e r t h a n 0.002 mm and a s p e c i f i c s u r f a c e a r e a of about 120 m2/g. The amount of unfrozen p o r e w a t e r i n t h e c l a y , u s i n g t h e s p e c i f i c s u r f a c e a r e a method of Anderson and Tice (19721, i s e s t i m a t e d a t about 9 % a t -5°C and 7 % a t -lO°C. Voltage and temperature readings were t a k e n every two weeks by t h e s t a f f of t h e I n u v i k

S c i e n t i f i c Resource Centre. V a r i a t i o n s of v o l t a g e and temperature w i t h depth below s u r f a c e were much more p r e d i c t a b l e and s y s t e m a t i c t h a n t h o s e a t t h e I l l i s a r v i k Lake s i t e . Figure 5(a-e) shows t h e v a r i a t i o n s of v o l t a g e and temperature a t v a r i o u s depths a s t h e ground f r o z e and thawed i n t h e 1981- 1982 season. A t d e p t h s of 0.05 and 0.20 m,

r e s p e c t i v e l y , a f r e e z i n g p o t e n t i a l developed a s t h e temperature passed through O°C i n t h e month of October 1981 (Figure 5 ( a , b ) ) . The maximum f r e e z i n g p o t e n t i a l s developed were a s high a s 650 mV. A s t h e ground temperature a t t h e s e l o c a t i o n s dropped i n w i n t e r , t h e p o t e n t i a l dropped t o o and remained a t t h e lower l e v e l . I n s p r i n g (May 1982), a s t h e ground s t a r t e d t o thaw and t h e temperature r o s e above O0C, t h e p o t e n t i a l s a g a i n r o s e t o values of up t o 700 mV. The i n t e r p r e t a t i o n of t h i s p o t e n t i a l i s u n c e r t a i n , but t h e r e i s c o n s i d e r a b l e evidence t h a t

d u r i n g t h e summer thaw period water may m i g r a t e ftom t h e thawed a c t i v e l a y e r i n t o t h e s t i l l - f r o z e n a c t i v e l a y e r t o f r e e z e and i n c r e a s e t h e i c e c o n t e n t (Cheng 1982, Mackay, i n p r e s s ; Parmuzina 1978, Wright 1981). A minor f r e e z i n g p o t e n t i a l may t h u s develop d u r i n g t h e summer thaw period. T h i s behaviour of meltwater, p o s s i b l y p e r c o l a t i n g downwards and f r e e z i n g t o g e n e r a t e a f r e e z i n g p o t e n t i a l , was n o t observed a t t h e e l e c t r o d e s a t lower l e v e l s . For example, i n Figure 5 ( c ) t h e f r e e z i n g p o t e n t i a l on t h e e l e c t r o d e a t a d e p t h of 0.51 m below s u r f a c e l e v e l r o s e t o 700 mV a s t h e ground temperature passed through -O.l°C. With f u r t h e r d e c r e a s e i n ground temperature t h e f r e e z i n g p o t e n t i a l remained unchanged. A s l i g h t drop i n p o t e n t i a l was noted when t h e temperature passed through O°C i n June 1982 a s t h e ground thawed, but e s s e n t i a l l y t h e v o l t a g e was c o n s t a n t around 700 mV even when t h e ground

s t a r t e d t o f r e e z e a g a i n i n October 1982. The same type of behaviour was observed 0.96 m below ground l e v e l ( F i g u r e 5 ( d ) ).

Figure 5 ( a , b ) shows t h e development of

pronounced f r e e z i n g p o t e n t i a l s a t d e p t h s of 0.05 and 0.20 m, r e s p e c t i v e l y , i n t h e upper p a r t of t h e a c t i v e l a y e r where i c e l e n s i n g connnonly t a k e s place. I n a d d i t i o n , p o t e n t i a l s a t 0.51 and 0.96 m remained a t 600-700 mV d u r i n g t h e w i n t e r , a f t e r temperatures dropped below O°C. Measurements c a r r i e d o u t a t I n u v i k f o r many y e a r s have shown a prolonged and very g r a d u a l f r o s t heave i n t h e w i n t e r months l o n g a f t e r t h e temperature h a s dropped below 0°C (Mackay e t a l . 1979). This s u g g e s t s t h a t , i n w i n t e r , upward m i g r a t i o n of unfrozen w a t e r from t h e f r e e z i n g f r o n t i n t o t h e f r o z e n a c t i v e l a y e r could cause a minor f r e e z i n g p o t e n t i a l t o develop. At l e v e l s c l o s e t o t h e permafrost t a b l e , where ground temperature i s maintained a t o r below O°C, no f r e e z i n g p o t e n t i a l s developed on t h e e l e c t r o d e 1.42 m below grdund l e v e l

(Figure 5 ( e ) ) . F i g u r e 5(a-e) a l s o shows t h a t a s d e p t h i n c r e a s e s below ground l e v e l t h e minimum

temperature, a s expected, becomes higher. For example, a t 0.05 m t h e lowest ground temperature measured was -lO°C, whereas a t 0.96 and 1.42 m t h e lowest s o i l temperatures measured were -3.5 and -2.5"C, r e s p e c t i v e l y .

CONCLUSION

Freezing p o t e n t i a l s appear t o have developed on e l e c t r o d e s i n s t a l l e d i n s a t u r a t e d sand a t I l l i s a r v i k where t h e 0°C i s o t h e r m was t h a t of a n aggrading lower permafrost s u r f a c e , but t h e r e s u l t s a r e inconclusive. Peak p o t e n t i a l s of up t o 1350 mV were measured on e l e c t r o d e s l o c a t e d on t h e advancing f r e e z i n g f r o n t . A t I n u v i k , t h e e l e c t r o d e s were placed i n t h e a c t i v e l a y e r on top of permafrost, i n a s i l t y c l a y . The e l e c t r o d e s i n t h e upper p a r t of t h e a c t i v e l a y e r where l e n s i c e forms i n t h e freeze- back p e r i o d r e g i s t e r e d s u b s t a n t i a l i n c r e a s e s i n p o t e n t i a l a s t h e f r e e z i n g f r o n t passed t h e

e l e c t r o d e s . The maximum f r e e z i n g p o t e n t i a l measured h e r e was about 500 mV when t h e ground temperature was about -O.l°C. There was a l s o evidence of downward water m i g r a t i o n and f r e e z i n g , a s evidenced by a r i s e i n f r e e z i n g p o t e n t i a l a t l e v e l s below t h e s u r f a c e a s t h e ground thawed a t t h e s u r f a c e . These f i e l d measurements i n d i c a t e t h a t by s u i t a b l y modifying e l e c t r o d e probes and improving measuring

(7)

techniques i t

i s

p o s s i b l e t o l o c a t e and study t h e advancing f r e e z i n g f r o n t and water migration a t d i f f e r e n t l e v e l s below t h e s u r f a c e a s ground f r e e z e s and thaws.

ACKNOWLEDGEMENTS

The a u t h o r s would l i k e t o express t h e i r s i n c e r e thanks t o t h e following: C. Hubbs, J.C. P l u n k e t t , and G.H. Johnston; t h e DBRINRCC Workshop s t a f f , and t h e s t a f f of t h e I n u v i k S c i e n t i f i c Resource Centre. F i e l d support f o r J.R. Mackay from t h e Geological Survey of Canada, t h e P o l a r C o n t i n e n t a l Shelf P r o j e c t (Department of Energy, Mines and Resources) and t h e N a t u r a l Sciences and Engineering Research Council is g r a t e f u l l y acknowledged. This paper i s a c o n t r i b u t i o n from t h e D i v i s i o n of Building Research, National Research Council Canada, and i s published w i t h t h e approval of t h e D i r e c t o r of t h e Division.

REFERENCES

Anderson, D.M. and T i c e , A.R., 1972, P r e d i c t i n g unfrozen water c o n t e n t s i n f r o z e n s o i l s from s u r f a c e a r e a measurements: Highway Research Record No. 393, p. 12-18.

B o r o v i t s k i i , V.P., 1976, The development of inherent e l e c t r i c a l f i e l d s d u r i n g t h e f r e e z i n g of rocks i n t h e a c t i v e l a y e r and t h e i r r o l e i n t h e migration of t r a c e elements: J o u r n a l of Geochemical Exploration, v. 5, p. 65-70. Cheng, C., 1982, The forming process of t h i c k

layered ground i c e : S c i e n t i a S i n i c a ( S e r i e s B), v. 25, No. 7, p. 777-788.

Hanley, T. O'D. and Ramachandra Rao, S., 1980,

Freezing p o t e n t i a l s i n wet clays: I. Early r e s u l t s , and 11. S p e c i f i c systems: Cold Regions Science and Technology, v. 3, p. 163-

168, 169-175.

Hanley, T. O'D. and Ramachandra Rao, S., 1981, Freezing p o t e n t i a l s t u d i e s i n wet c l a y systems: Presented ASME (Heat T r a n s f e r D i v i s i o n ) , 16- 21 Nov. 1980, Chicago ( P r e p r i n t

No. 80-WAlHT-81, 5 p.

Hoekstra, P. and Chamberlain, E., 1963, Electro- osmosis i n f r o z e n s o i l s : Nature, v. 203, p. 1406.

Jumikis, A.R., 1958, So= concepts p e r t a i n i n g t o t h e f r e e z i n g s o i l systems: Highway Research Board, S p e c i a l Report 40, p. 178-190.

Korkina, R.1

.

,

1975, E l e c t r i c a l p o t e n t i a l s i n f r e e z i n g s o l u t i o n s and e f f e c t on migration. U.S. Army, Cold Regions Research and

Engineering Laboratory, Draft T r a n s l a t i o n 490, 15 p.

Mackay, J.R., 1981, An experiment i n l a k e drainage, Richards I s l a n d , Northwest T e r r i t o r i e s ; Progress Report: Current Research, P a r t A , Geological Survey of Canada, Paper 18-lA,

p. 63-68.

Mackay, J.R., I n p r e s s , Downward water movement i n t o f r o z e n ground, Western A r c t i c c o a s t , Canada. Mackay, J.R., O s t r i c k , J., Lewis, C.P. and MacKay,

D.K., 1979, F r o s t heave a t ground temperatures below O°C, I n u v i k , Northwest T e r r i t o r i e s : Current Research, P a r t A, Geological Survey of Canada, Paper 79-lA, p. 403-405.

Nersesova, Z.A. and Tsytovich, N.A., 1966, Unfrozen

water i n f r o z e n s o i l s : Permafrost, Proceedings of t h e F i r s t I n t e r n a t i o n a l Conference, National

Academy of Sciences, Washington, D.C., p. 230-

234.

Parameswaran, V.R., 1982, E l e c t r i c a l f r e e z i n g p o t e n t i a l s i n water and s o i l s : Presented, Third I n t e r n a t i o n a l Symposium on Ground

Freezing, Hanover, N.H. (To be published i n

Proceedings, Vol. 2, 1983)

Pa-zina, 0. Yu., 1978, [ c r y o g e n i c t e x t u r e and some c h a r a c t e r i s t i c s of i c e formation i n t h e a c t i v e l a y e r ] ( i n Russian) : P r o b l e w k r i o l i t o l o g i i , No. 7, p. 14 1-164. (Translated i n Polar Geography and Geology, July-September 1980, p. 131-152.)

Verschinin, D.V.

,

Deriagin, B.V., and V i r i l e n k o , N.V., 1949, The non-freezing water i n s o i l : U.S. Army, Cold Regions Research and Engineering Laboratory, T r a n s l a t i o n No. 30. Wright, R.K., 1981, The water balance of a l i c h e n

tundra u n d e r l a i n by permafrost: McGill University, McGill S u b a r c t i c Research Paper No. 33, Climatological Research S e r i e s No. 11, 110 p.

Yarkin, I.G., 1974, Physico-chemical processes i n

f r e e z i n g s o i l s and ways of c o n t r o l l i n g them:

Collected papers, No. 64, N.M. Gersevanov

Foundation and Underground S t r u c t u r e Research I n s t i t u t e , Moscow,

p. 59-81.

Yarkin, I.G., 1978, E f f e c t of n a t u r a l e l e c t r i c a l p o t e n t i a l s on water migration i n f r e e z i n g s o i l s : Permafrost

,

Proceedings of t h e Second I n t e r n a t i o n a l Conference, National Academy of

(8)

FIGURE l ( a ) The I l l i s a r v i k electrode assembly. FIGURE l ( b ) Switching box. ROZM GROUND APPROXiMATE PM ITION OF WE FRFEZING FRONT AWAtKING DOWNWARDS. UNFRaZM GRWND

FIGURE 2 Schematic diagram showing the location of FIGURE 3 Schematic diagram showing the location of

electrodes and thermistors a f t e r i n s t a l l a t i o n , electrodes and thermistors a f t e r i n s t a l l a t i o n a t the

(9)

1200

-

8 JUNE 1982 1200

,

,

,

, ,

,

,

,

, , , ,

,

,

,

,

, ,

1000 23 MARCH 1982 l a 1 800

:

600 M Y 400 200

----

0

---.

'Y,

-

',

ELECTRODE LOCATION 1981 1982 - 0 . 2 0 u' - 4 . 2

2

C - 0 . 4

2

Y a

FIGURE 4 Variation of voltage and temperature with FIGURE 5 Variation of voltage and temperature with

depth below ground surface a t the I l l i s a r v i k s i t e , time a t d i f f e r e n t depths below the surface, Inuvik ( a ) 9 months, (b) about 1 year, and ( c ) 14 months s i t e .

a f t e r i n s t a l l a t i o n .

I , l l l , l l , t l l l l l , , l , b , , , , , , l , , , , , l , ,

(10)

This paper, while being distributed in

reprint form by the Division of Building

Research, remains the copyright of the

original publisher.

It should not be

reproduced in whole or in part without the

permission of the publisher.

A

list of all publications available from

the Division may be obtained by writing to

the Publications Section, Division of

Building Research, National Research

Council of Canada, Ottawa, Ontario,

Figure

FIGURE  l ( a )   The  I l l i s a r v i k   electrode  assembly.  FIGURE  l ( b )   Switching  box
FIGURE  4  Variation  of  voltage  and  temperature  with  FIGURE  5  Variation  of  voltage  and  temperature  with  depth  below  ground  surface  a t   the  I l l i s a r v i k   s i t e ,   time  a t   d i f f e r e n t   depths  below  the  surface,

Références

Documents relatifs

Here, using representational similarity analysis we ask which MEG oscillatory components (power and phase, across various frequency bands) correspond to low or high-level

Toute différence de pression entre l'intérieur et l'extérieur d u bâtiment en raison de la pression d u vent, de la ventilation mécanique ou en raison d u phénomène

En effet, des résistances peuvent se créer si le professionnel parle de manière inadéquate (Hétu, 2000). Émotionnelle : qui permet de ressentir les émotions de l’autre, elle permet

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

By introducing a second subsurface H co-adsorbed with a HCOO in its bidentate state, we studied the second hydrogenation leading from formate to formic acid.. The presence of

We show that strict partial comparative plausibility and qualitative likelihood relations coincide on pairs of dis- joint sets and are in bijection with one another, and we provide

The values obtained with this method have not been rigorously compared with laboratory tests; however, measurements have been made on several pieces of insulation in

We show that standard Finite Element Heterogeneous Multiscale Method (FE-HMM) can be used to approximate the effective behavior of solutions of the classical Helmholtz equation