• Aucun résultat trouvé

Role of the UPS proteolytic pathway during muscle atrophy: from animal models to human diseases

N/A
N/A
Protected

Academic year: 2021

Partager "Role of the UPS proteolytic pathway during muscle atrophy: from animal models to human diseases"

Copied!
36
0
0

Texte intégral

(1)

HAL Id: hal-01508164

https://hal.archives-ouvertes.fr/hal-01508164

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License

Role of the UPS proteolytic pathway during muscle atrophy: from animal models to human diseases

Daniel Taillandier

To cite this version:

Daniel Taillandier. Role of the UPS proteolytic pathway during muscle atrophy: from animal models to human diseases. Journée du Club neuro-musculaire, Apr 2017, Lyon, France. �hal-01508164�

(2)

D. Taillandier - Human Nutrition Unit

UMR 1019 INRA/Université d’Auvergne Clermont-Ferrand - France

Role of the UPS proteolytic pathway

during muscle atrophy: from animal

models to human diseases

Journée Club Neuromusculaire 13 Avril 2017  

(3)

Background

Protein synthesis   Proteolysis   Fasting   Diabetes   Immobilization   Sepsis  

Chronic Renal Failure  

Free Amino Acids Energy   Immune response   Vital organs Protein synthesis  

Reduced efficiency of treatments and of the immune response  

General weakness   Increased Morbidity & Mortality High health care costs Protein synthesis   Proteolysis  

Muscle main functions:

-  Force generation (locomotion, etc.)

-  Amino acids reservoir  

(4)

Background

Proteolytic Systems involved

ü  Calpains (cytosolic, Ca

2+

-dependent)

ü  Cathepsins (lysosomes, endosomes)

ü  Caspases (cytosolic)

ü  Proteasome

(cytosolic, self-compartmentalized)

UPS: Ubiquitin Proteasome System

Proteolysis is the main determinant

(5)
(6)

Ubiquitin Proteasome System (UPS)

Peptides  

Bohn et al. PNAS 2010

26S Proteasome   20S Proteasome (28 subunits)   19S Regulatory Complex (18 subunits)   Ub   Ub   Ub   Ub   Ub   Ub   Ub   Ub   Ub   Substrate   Ub   Ub   Ub   Ub   Ub  

(7)

Implication of the UPS during muscle wasting

Fasting

Denervation atrophy

Acidosis

Burn injury

Diabetes

Cancer

Infection

Unweighting

Wing & Goldberg 1993

Medina et al. 1995

Mitch et al. 1994

Fang et al. 1995

Price et al. 1996

Temparis et al. 1994

Voisin et al. 1996

Taillandier et al. 1996

Etc.

(8)

Implication of the UPS during muscle wasting

Important disease-linked muscle loss (10-60%) in animal models  

Recruitment of the UPS: ATP-dependent proteolysis using incubated muscles mRNA levels of various components

- Ub

- Ubiquitinating Enzymes - Deubiquitinating Enzymes - 20S Proteasome subunits

- 19S Regulatory Complex subunits Proteasome activity  

mRNA levels of selected components - Ub

- Ubiquitinating Enzymes - Deubiquitinating Enzymes - 20S Proteasome subunits

- 19S Regulatory Complex subunits

 

(9)

Implication of the UPS during muscle wasting

The atrophy-related genes “atrogenes”  

(10)

Implication of the UPS during muscle wasting

The “Atrophy-related genes “atrogenes” in atrophying rats (Fasting, Tumor bearing, Uremia, Diabetes)  

Lecker et al. FASEB J, 2004  

Ubiquitin  

26 Proteasome  

Ubiquitinating

enzymes  

(11)

Implication of the UPS during muscle wasting

The E3 ligases MAFbx and MuRF1 are the more reliable atrogenes in rodents

Anabolic  situa-ons     Catabolic  situa-ons     Non  pathological   states     Pathological  and   injury  states     Atrogenes   Condi7ons     Insulin,  IGF-­‐1     Fas7ng   Vitamin  D  deficiency   Immobiliza7on  /  unweigh7ng   Aging   Burn  injury   Head  trauma   Hyperthermia   Mechanical  ven7la7on   Glucocor7coid  treatment   Diabetes   Cancer   Sepsis   Biliary  cirrhosis  

(12)

Implication of the UPS during muscle wasting

The “Atrophy-related genes “atrogenes” (Unweighting – rat soleus muscle)  

Polge & Taillandier, Int. J. Biochem. Cell Biol., 2016

Some Atrogenes are strictly restricted to the atrophying program  

Some Atrogenes are still recruited after 7 days of recovery - Proteasome subunits

- Ub

- Specific ubiquitinating enzymes

(13)

Targets of the UPS during muscle wasting

The UPS controls all the key processes for the development of the

atrophying program

Cell Cycle / Signal transduction / DNA repair / DNA replication / Apoptosis / Chromatin organization /

Translation / Protein folding / Histones / Kinases / Energy metabolism / Transcription factors / UPS

UPS targets  

Myofibrillar proteins: α-actin, myosin heavy and light chains, troponin I, telethonin

Energy metabolism: MCK,

Transcription factors: SRF, myoD, Translation factors: eIF3f,

Signal transduction: IRS1, NF-kB, IKK, TRAF3, Muscle UPS targets  

(14)

Implication of the UPS on muscle wasting in humans

The “Atrophy-related genes “atrogenes” MuRF1 and/or MAFbx

Catabolic  situa-ons     Non  pathological   states     Pathological  and   injury  states     Atrogenes   Condi7ons     Bed  rest   Immobiliza7on  /  unweigh7ng   Aging   COPD  

Spinal  cord  transec7on   Spinal  muscle  atrophy  

Smoking   Myosi7s   Sta7ns  

Cancer  

Pulmonary  arterial  hypertension   Knee  arthroplasty  

(15)

E3 ligase Targeted protein

or pathway Ubiquitin chain type Disease

FANCL FANCD2, FANC1 monoUb Fanconi anemia

DDB2 Chromatin monoUb Xeroderma pigmentosum

Cbl family RTKs monoUb Cancer

Nedd4 PTEN, α-synuclein monoUb, Lys63, polyUb Cowden syndrome, Parkinson

Rabex-5 Ras monoUb Cancer

HDM2 p53 Lys48 Cancer

APC/C10 Cyclin–CDK Lys48 Genomic instability

SOCS1/3 IRS2 Lys48 Metabolic syndrome

MG53 IR, IRS1 Lys48 Metabolic syndrome

pVHL15 HIF Lys48 Von Hippel Lindau

IAPs NIK Lys48 Multiple myeloma

Rnf168 Histones Lys63, polyUb Cancer, RIDDLE syndrome

TRAF6 TRAF6, NEMO, Lys63, polyUb Inflammatory disease,

huntingtin Huntington’s disease

Itch, IAPs RIP2 Lys63, polyUb Crohn’s disease

Parkin Mitochondrial Lys63, polyUb Parkinson’s disease

outer membrane proteins

CHIP, Parkin Huntingtin, Lys63, polyUb Huntington’s disease,

β-amyloid, tau Alzheimer’s disease

BRCA1 BRCA1 Atypical polyUb Breast and ovarian cancer

LUBAC NEMO Linear polyUb Autoinflammation, muscular

amylopectinosis, bacterial infections

(16)

Implication of the UPS on muscle wasting following

chronic kidney disease in humans

•  In France :

–  Chronic Kidney Disease: 3 Millions

–  Terminal Renal Deficiency: 30,000

•  Muscle atrophy within dialysis: 20% incidence

Several Pathologies à Kidney lesions and insufficiency

Progressive pathology

Proteolysis induction? UPS involvement?

Long lasting induction of atrogenes?

(17)

Implication of the UPS on muscle wasting upon chronic

kidney disease in rats

↗ Proteolysis = ↗ UPS

Bailey et al, J Clin Invest 1996

MG132

Acidosis is crucial for UPS-dependent

protein breakdown

(18)

Implication of the UPS on muscle wasting upon acute

kidney disease in rats

MuRF1 and MAFbx are overexpressed during Acute Kidney Injury in rats and their expression levels are correlated to the severity of kidney injury

Aniort et al, Int. J. Biochem. Cell Biol. 2016

(19)

Implication of the UPS on muscle wasting following

chronic kidney disease in humans

Proteolysis induction? UPS involvement?

Long lasting induction of atrogenes?

Common biomarkers with more aggressive conditions/pathologies? Human vs. rodent biomarkers ?

(20)

Implication of the UPS on muscle wasting following

chronic kidney disease in humans: the PROMETHE cohort

    CT  (n=13)   Cancer  (n=14)   Hemodialysis  (n=7)   Men  /  Women   7  /  6          9  /  5   6  /  1   Age  (Years)        69  ±  11            63  ±  10   68  ±  8   Weight  (kg)        77  ±  14            67  ±  13   70  ±  9   Size  (cm)   168  ±  8   170  ±  7   162  ±  9   Hemoglobin  (g/dL)   12  ±  8    13  ±  2   13  ±  2   Crea-nine  levels  (µmol/L)      66  ±  14          72  ±  16   658  ±  254*   glomerular  filtra-on  rate  

(MDRD)  (ml/min)        80  ±  18            82  ±  12   -­‐   CRP  (mg/L)   12  ±  6            61  ±  72   18  ±  14   Alkaline  reserve  (mmol/L)   28  ±  1        29  ±  4   27  ±  6  

VIH  serology   -­‐   -­‐   -­‐  

 Hepa--s  B  and  C  serologies   -­‐   -­‐   -­‐  

-  Control patients (CT)

-  Hemodialysis patients (CKD)

-  Cancer patients (pulmonary neoplasia, C)

Muscle biopsies following surgery Blood samples

Transcriptomic and Proteomic Analysis

(21)

Implication of the UPS on muscle wasting in CKD and

cancer patients

mRNA levels from different proteolytic pathways

- UPS (proteasome subunits, E2-conjugating enzymes, E3 ligases) - Autophagy (cathepsins, autophagosome formation)

- Caspases - Calpains 0   0,5   1   1,5   2   2,5   3   3,5  

MuRF1   MAFbx   Nedd4   Mdm2   E4B  

Ar bi tr ar y   un its     E3  Ligases   CT   C   CKD  

a   a   a   a   b   b   b   b   b   b   a   a   b   b   a   CT C CKD CT C CKD     Immunoblot: MuRF1  

MuRF1, MAFbx and Mdm2 exhibit sustained overexpression during catabolic situations whatever the pathology

(22)

Implication of the UPS on muscle wasting in CKD and

cancer patients

0   0,2   0,4   0,6   0,8   1   1,2   1,4   1,6   UBE2B   UBE2D   Ar bi tr ar y   un its  

E2  ubiqui-n  conjuga-ng  enzymes    

CT   C   CKD   a   a   a   a   a   a  

UBE2B, an E2 known to be part of the atrophying program, is not overexpressed in cancer and CKD patients

(23)

Implication of the UPS on muscle wasting in CKD and

cancer patients

0   0,5   1   1,5   2   2,5   C2   C5   C8   Ar bi tr ar y   un its   20S  Proteasome  Subunits   CT   C   CKD  

a   a   a   a   a   a   a   a   a   0   0,2   0,4   0,6   0,8   1   1,2   1,4   S2   S4   S5a   S11   S12   Ar bi tr ar y   un its  

19S  Regulatory  Complex  Subunits  

CT   C   CKD   a   a   a   a   a   a   a   a   a   b   ab   b   b   a   a  

The Proteasome (20S core and 19S RC) is not a good predictor of muscle atrophy for long term UPS induction

(24)

Implication of proteolytic systems on muscle wasting in

CKD and cancer patients

Cancer  (n=14)   CKD  (n=7)   C2,  C5,  C8   →   →   S2   →   ↗   S4   →   →   S5a   →   ↗   S11   →   ↗   S12   →   →   Casp3   →   ↗   Casp9   →   ↗   Cancer  (n=14)   CKD  (n=7)   MAFbx   ↗   ↗   MuRF1   ↗   ↗   Mdm2   ↗   ↗   Nedd4   →   ↗   E4B   →   ↗   UBE2B   →   →   UBE2D2   →   →  

So far, only a limited number E3 ligases are good biomarkers of muscle atrophy

(25)

 MuRF1   MAFbx    C5    UBE2D    Nedd4   Mdm2    UBE2B   Cas3   Cas9    S12   S11    S5a   S4    S2   C8   C2    E4B   -­‐1   -­‐0,75   -­‐0,5   -­‐0,25   0   0,25   0,5   0,75   1   -­‐1   -­‐0,75   -­‐0,5   -­‐0,25   0   0,25   0,5   0,75   1   F2  (3 0, 28  %)   F1  (69,72  %)  

Discriminant analysis of mRNA levels confirm that some E3 ligases (MuRF1, MAFbx and Mdm2) are the best predictors for muscle atrophy in

CKD and cancer patients  

Catabolic/control expression ratio of proteolytic enzymes  

Transcription analysis of muscles from CKD and cancer

patients

(26)

Discriminant analysis of mRNA levels from 17 actors of proteolytic systems

(UPS and caspases) efficiently separates the 3 populations  

-­‐6   -­‐4   -­‐2   0   2   4   6   8   -­‐8   -­‐6   -­‐4   -­‐2   0   2   4   6   8   F2  (3 0, 28  %)   F1  (69,72  %)   CT   CKD   Cancer  

Expression of proteolytic enzymes combined and used as two variables for

each patient  

Transcription analysis of muscles from CKD and cancer

patients

(27)

Proteomic analysis of muscles from CKD and cancer

patients

•  21 patients (n = 7 per group)

•  Cytoplasmic, myofibrillar and UPS substrates

•  Shot gun analysis using nanoLC-­‐MS/MS  (Ul7mate3000  system  coupled  to  an  

LTQ-­‐Orbitrap  Velos  mass  spectrometer)  

•  MaxQuant (Max Planck Institute) and Proline (EDyP-Grenoble,

(28)

0   1   2   3   4   5   6   -­‐5   -­‐4   -­‐3   -­‐2   -­‐1   0   1   2   3   FDR  =0.05   Log10  T-­‐te st  p-­‐value  

-­‐Log2  Ra-o  (Cancer/Temoin)  

Mass  spectrometry  analysis  -­‐  Volcano  Plot  -­‐  Cancer  /  CT  Proline  

(29)

Proteins  differen7ally  expressed  in  both  cancer  and  CKD  pa7ents  observed  either  with  Proline  and  MaxQuant   Ca ncer   CKD   Proline   MaxQuant   1713  proteins  analyzed  

53  differen-al  proteins  between  CT  and  CKD  pa-ents   24  differen-al  proteins  between  CT  and  C  pa-ents   13  proteins  common  to  CKD  and  C  pa-ents    

(30)

Proteins differentially expressed in both

CKD and cancer patients compared to controls

Dermcidin  *  

Kera7n  type  I  cytoskeletal  epidermal  10  *   Kera7n  type  II  cytoskeletal2  epidermal  *   Protein  S100  A8    

Suprabasin  *  

Guanine  deaminase  *    

Prolac7n  inducible  protein  *          

Biglycan  **   Talin  2  **  

Kera7n  type  II  cytoskeletal  71*    

Cysteine  and  glycine-­‐rich  protein  3***    

Car7lage  intermediate  layer  protein  1***   Parathymosin*  

Carcinogenesis/Tumor  cell  survival   Cancer  cell  invasion/Tumor  growth  

Posi-ve  regulator  of  myogenesis    

Extracellular  matrix  

Cytoskeletal  organiza-on  

Antagonist  of  IGF-­‐1  and  TGFbeta   Tumor  markers  –  unknown  func-on  

(31)

Conclusions

Common  markers  can  be  found  between  different  pathologies  in  humans  independently  of   the  stage  of  the  illness,  sex,  BMI  and  throughout  a  large  scale  of  age  (46-­‐76)  

 -­‐  mRNA  levels:    

   Increased  expression  of  specific  actors  of  proteoly-c  pathways  

   MuRF1  and  MAFbx  are  the  best  (but  not  the  only)  biomarkers  as  in  animal  models  

   A  combina-on  of  proteolysis-­‐linked  proteins  discrimates  healthy  and  pathology-­‐

developing  pa-ents  but  also  between  pathologies    

 -­‐  Protein  levels:    

   Down  regula-on  of  several  proteins  involved  in  cell  growth/prolifera-on  and  

organiza-on  

(32)

Perspectives

•  Including  other  proteoly-c  actors:  -­‐>  beler  isola-on  of  specific  popula-ons?  

•  Using  more  pa-ents/other  cohorts  for  strengthening  the  conclusions  

•  Applica-on  to  other  pathologies  

•  Finding  biomarkers  in  more  accessible  compartments  (e.g.  blood)  

•  Comple-ng  the  proteomic  analysis  of  soluble  proteins      

•  Iden-fica-on  of  UPS  substrates  common  to  the  two  pathologies  

   Purifica-on  of  Ub-­‐conjugates  using  an  in-­‐house  affinity  matrix  followed  by  mass   spectrometry  analysis      

mRNAs:  

(33)

Julien  Aniort     Carole  Philipponnet   Anaïs  Poyet       Didier  Alaix   Daniel  Béchet   Lydie  Combaret   Anne-­‐Elisabeth  Heng   Cécile  Polge   Daniel  Taillandier     Agnès  Claustre   Cécile  Coudy   Chris-ane  Deval    

Odile  Schiltz  (Toulouse)   Alexandre  Stella(Toulouse)    

Stéphanie  Cabantous  (Toulouse)    

 

Simon  S.  Wing  (Montreal,  Canada)  

Acknowledgements  

Lab  members   Students   Collaborators  

(34)
(35)

mTOR-­‐Akt  axis  respond  differen-ally  

in  the  EDL  and  soleus

 

p-­‐AKT/AKT   p-­‐S6K/S6K  

(36)

MAFbx MuRF1 Fbxo30/MUSA1 SMART E4b/UFD2a ASB2 Ozz  Muscle   Regenera-on   Muscle-specific E3s

E3 ligases impact muscle protein homeostasis

Trim32 Nedd4   Ubiquitous E3s Myofibrillar   organiza-on   Myogenesis   Cardiac  development   Differen-a-on   process   Muscle  atrophy  

The FASEB Journal Research Communication

Muscle actin is polyubiquitinylated in vitro and in vivo

and targeted for breakdown by the E3

ligase MuRF1

Ce´cile Polge,*,†,1 Anne-Elisabeth Heng,*,†,‡,1 Marianne Jarzaguet,*,† Sophie Ventadour,†,*

Agne`s Claustre,†,* Lydie Combaret,†,* Daniel Be´chet,†,* Mariette Matondo,§,!

Sandrine Uttenweiler-Joseph,§,! Bernard Monsarrat,§,! Didier Attaix,*,† and

Daniel Taillandier*,†,2

*Institut National de la Recherche Agronomique (INRA), Unite´ Mixte de Recherche (UMR) 1019, Unite´ de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH)

Auvergne, Clermont-Ferrand, France;†Clermont Universite´, Universite´ d’Auvergne, UNH, BP 10448,

Clermont-Ferrand, France;‡Service de Ne´phrologie Re´animation Me´dicale, Poˆle Respiratoire,

Endocrinologie-Diabe´tologie, Urologie, Ne´phrologie-Dialyse, Nutrition Clinique, Infectiologie,

Re´animation Me´dicale, Hygie`ne Hospitalie`re (REUNNIRH), Clermont-Ferrand, France; and§Centre

National de la Recherche Scientifique (CNRS) and!Universite´ de Toulouse, Universite´ Paul Sabatier

(UPS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France

ABSTRACT Muscle atrophy prevails in numerous diseases (cancer cachexia, renal failure, infections, etc.), mainly results from elevated proteolysis, and is accelerated by bed rest. This largely contributes to increased health costs. Devising new strategies to pre-vent muscle wasting is a major clinical challenge. The ubiquitin proteasome system (UPS) degrades myofi-brillar proteins, but the precise mechanisms respon-sible for actin breakdown are surprisingly poorly characterized. We report that chimeric flag-actin was destabilized and polyubiquitinylated in stably transfected C2C12 myotubes treated with the catabolic agent dexa-methasone (1 !M) and that only proteasome inhibitors blocked its breakdown. Actin polyubiquitinylation was also detected in wild-type C2C12 myotubes and human muscle biopsies from control participants and patients with cancer. The muscle-specific E3 ubiquitin ligase MuRF1 is up-regulated in catabolic conditions and poly-ubiquitinylates components of the thick filament. We also demonstrate that recombinant GST-MuRF1 physically in-teracted and polyubiquitinylated actin in vitro and that MuRF1 is a critical component for actin breakdown, since MuRF1 siRNA stabilized flag-actin. These data identify unambiguously the abundant contractile protein actin as a target of the UPS in skeletal muscle both in vitro and in vivo, further supporting the need for new strategies blocking specifically the activation of this pathway in muscle wasting conditions.—Polge, C., Heng, A.-E., Jar-zaguet, M., Ventadour, S., Claustre, A., Combaret, L., Be´chet, D., Matondo, M., Uttenweiler-Joseph, S., Monsar-rat, B., Attaix, D., Taillandier, D. Muscle actin is poly-ubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J. 25, 000–000 (2011). www.fasebj.org

Key Words: proteasome ! C2C12

Skeletal muscle atrophyoccurs on disuse

(denerva-tion, unloading) and in various diseases (cancer, sepsis, diabetes, kidney failure, etc.). An increased proteolysis is mainly responsible for this muscle wasting (1), and several studies suggest that the ubiquitin proteasome system (UPS) is responsible for most of this adaptation, including in humans (2). However, this assessment is mostly based on indirect measurements, and a key question is to unambiguously identify the targets of the UPS in skeletal muscle. An accumulation of polyubiq-uitin (poly-Ub) conjugates has been observed in the myofibrillar fraction, which mainly contains contractile proteins (3–5). However, few sarcomeric proteins [i.e., troponin I, myosin heavy chains (MHCs) and tele-thonin] were definitively demonstrated to be degraded by the 26S proteasome in skeletal and/or cardiac muscles.

An attractive hypothesis is that the UPS controls the degradation of the whole contractile structure. How-ever, data are still lacking for most myofibrillar pro-teins, a big gap being the degradation of actin, the most abundant protein in skeletal muscle. Few data exist about the degradation of muscular actin and the pro-teolytic systems involved. Previous studies have shown that muscular (!) and cytoskeletal (") actin could be cleaved by caspase 3 under apoptotic conditions (8). Actin cleavage by caspase-3 was also observed in skeletal muscles from diabetic rats, and the UPS was

presum-1These authors contributed equally to this work.

2Correspondence: Unite´ de Nutrition Humaine, INRA,

CRNH Auvergne, BP10448, F-63000 Clermont-Ferrand, France. E-mail: daniel.taillandier@clermont.inra.fr

doi: 10.1096/fj.11-180968

This article includes supplemental data. Please visit http://

www.fasebj.org to obtain this information.

1 0892-6638/11/0025-0001 © FASEB

Références

Documents relatifs

Figure (13) : Plan factoriel 1 x2 de l’Analyse Factorielle des Correspondances (AFC) des micros habitats utilisés par la Foulque macroule Fulica atra dans le Barrage de Beni

Anno domie tussind fünffhundert vnd jm fierden jar vff sunntagvff sant lorentzen tag habend min heren von Zürich ein frigschiessen vssgschriben jnn alle land armbrust schützen

“Stories About not Being Afraid of Ghosts” did not only renew the relevance of ghost stories to modern China, it also demonstrated the high malleability of (literary) ghost

If there is only one infected site (thus, leftmost and rightmost infected site coincide), both with positive probability the next change in number of infected sites might result in

Exploratory tests were carried out on seven different types of factory-sealed double-glazed units to obtain informa- tion on the dew points of the space be-

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The ultimate resolution limit of Taylor dispersion for uniform particle systems...2 The stability and hydrodynamic radius of citrate-capped silver nanoparticles in water ...3...

As we already mentioned, the special role played by time in sound signals does not permit to model the flow of information as a pure hypoelliptic diffusion, as was done for