• Aucun résultat trouvé

THE MASS FLOW FIELD OF THE FULL CIRCLE ARC

N/A
N/A
Protected

Academic year: 2021

Partager "THE MASS FLOW FIELD OF THE FULL CIRCLE ARC"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219129

https://hal.archives-ouvertes.fr/jpa-00219129

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE MASS FLOW FIELD OF THE FULL CIRCLE ARC

W. Tiller

To cite this version:

W. Tiller. THE MASS FLOW FIELD OF THE FULL CIRCLE ARC. Journal de Physique Colloques,

1979, 40 (C7), pp.C7-313-C7-314. �10.1051/jphyscol:19797154�. �jpa-00219129�

(2)

JOURNAL

DE

PHYSIQUE CoZZoque C7, suppZ6ment

au

n07, Tome

40,

JuiZZet

1979,

page C7- 313

THE

MASS FLOW FIELD OF

THE

FULL CIRCLE ARC

W.

Tiller.

HochschuZe der Bundemehr, Miinchen,

F.R. G.

Introduction

As reported i n former papers /1,2/ a radial f r e e f u l l c i r c l e a r c was operated in an argon atmosphere.

Due to the experimental conditions and with respect t o cylindrical coordinates r, 9 , z the statements

a / 3 t

=

0 and 3 /3p = 0 hold f o r t h i s arc. The mass flow in the a r c cross section as a r e s u l t should prove Waecker's theory /3/ of a r c motion anc displacement. Therefore one must know the tempera- t u r e d i s t r i b u t i o n . I t can be measured spectroscopi- c a l l y as described i n /2/. One has t o consider t h a t those measurements a r e correct only i n the case of local thermal equilibrium. For a r c currents g r e a t e r than 50 A t h i s condition i s f u l f i l l e d .

Results of Temperature Measurements

In continuation t o the measurements reported in /2/

the a r c was investigated a t ' c u r r e n t s between 50 W and 100 A and a r c r a d i i from 35 mm t o 45 mm. As an example f i g u r e 1 shows the temperature f i e l d f o r an a r c current I

=

75 A and a radius of 4G mm.

r l rn rn

f i g . 1 temperature d i s t r i b u t i o n

111 a d d i t i o n t o former r e s u l t s f i g u r e 2 g i v e s t h e c o r r e l a t i o n of t h e maximum temperature i n t h e a r c core with t h e a r c c u r r e n t and t h e c u r v a t u r e o f t h e a r c .

f i g . 2 temperature maxima vs. c u r r e n t and c u r v a t u r e of t h e a r c

The Mass Flow Field

By use of the known temperature d i s t r i b u t i o n the velocity of the mass flow can be evaluated from the convective term of the energy equation:

% 3.0s = G E ' * v ~ $

-U

and from the continuity equation: v . ~ ? = 0 The expressions

V S

and v 2 S (S = heat f l u x poten- t i a l ) a r e derived from the measured temperature f i e l d T ( r , z ) . The c o e f f i c i e n t s A(T)

=

thermal con- d u c t i v i t y , 6 (T)

=

e l e c t r i c a l conductivity, u(T)

=

s p e c i f i c radiation and y (T)

=

mass density a r e t a - ken from the l i t e r a t u r e . The e l e c t r i c a l f i e l d strength E i s measured by means of probeetech- niques. One has t o s t a r t the evaluation in the cen- t e r plane (z=O) which i s a l s o the plane of symmetry of the a r c . There, the velocity has only a radial component vr, t h a t means v,(,,~) = 0. Using t h e ve- l o c i t y d i s t r i b u t i o n v r ( r ) a t z

=

0 a s an i n i t i a l value one can compute the QV, and pvr components i n small steps

A Z ,

solving a l t e r n a t e l y the two equations ventioned above. Introducing the vector potential 3 f o r t h e mass flow by

= V X $

, the evaluation of stream 1 ines including a constant mass flow becomes possible. Because of 3 /3p

=

0 , the vector? has only an azimuthal component, and so one has only t o solve a plane problem. The d i - stance (z2-zl) between two stream l i n e s a t a spe- c i a l radius ro i s given by the integral

:

IL

LYi,zL-Yr,,&,

have t o be chosen i n a way t h a t t h e difference ~ 5 6 , ~ ~ - y6,% i s constant.This evaluation was done f o r a constant mass flow of 0.05 mg/s per cm a r c column. As a r e s u l t one gets a symmetric quadrupol whirl in the a r c cross sec- tion as shown i n f i g u r e 3 .

--..- rl mm

f i g . 3 mass flow f i e l d i n t h e a r c c r o s s s e c t i o n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797154

(3)

In addition t o the stream l i n e s several isothermes and a l s o the curve y$.vS

=

0 a r e shown i n t h i s figure. This curve i s the locus of a l l pointswith- out convective energy transport, i . e . there occurs only thermal conduction. By forming the 1 imi t i n g value, i t can be shown t h a t the temperature maximum as well as the whirl centers and the stagnation point a r e extraordinary points of t h i s curve.

Interpretation of the Mass Flow Field

Discussing the conservation equation of momentum, one has a p o s s i b i l i t y t o i n t e r p r e t the mass flow f i e l d and t o v e r i f y the r e s u l t s . Neglecting the small temperature dependence of viscosity 7 i n the a r c , the equation of conservation of momentumreads:

pd.od = j'* d -vp+ ,Z ( $ & - v x v ~ $ )

j =

e l e c t r i c a l current density, B

=

magnetic f i e l d , p

=

pressure. Taking the curl of the l e f t and r i g h t hand term and neglecting the curl of the i n e r t i a l force (low Reynolds number), one gets:

o = v x ( ] x P ) -q(v%v'v'f 1 .

The introduction of the v o r t i c i t y by:

t%

= v x 3

leads t o the Poisson equ.

:

v2&=-$

V X ( + X

4i 5 ) .

The curl of the Lorentz force

p r

( i x 8 ) which has azimuthal direction can be evaluated as f o l l ows: From the temperature d i s t r i b u t i o n and the measured e l e c t r i c a l f i e 1 d strength one knows the e l e c t r i c a l current density. Soluiion O F the Gio t Savart equation y i e l d s the magnetic f i e l d of the a r c . The external magnetic f i e l d i s known from the experiment. Therefore a1 1 terms- of the curl

v%@.(;.)

= ; f ( ~ r ( a ~ - k)+ ~~k J

can he coiputed. Because 7 i s constant, one can t a k e - as an analogon t o the d i f f e r e n t i a l equation of the e l a s t i c membrane -, the curl of the Lorentz force as an area force on such a membrane. The de- f l e c t i o n of the membrane i s then proportional t o the value of the v o r t i c i t y & . The curl of t h e Lo- rentz force as well a s i t s two terms as functions of the radius f o r a plane z

=

0.86 mm, which con- t a i n s approximately the whirl centers and the s t a - gnation point, i s shown in f i g u r e 4.

For the same plane, figure 4 shows a l s o the d i s t r i - bution of the v o r t i c i t y , calculated from t h e mass flow f i e l d ( f i g . 3 ) . A comparison of the two curves by use of the membrane model mentioned above

A 4

( (

i + . V . ~ { s d )

)

=

area force, ' e p w

=

de-

f l e c t i o n ) shows qua1 i t a t i v e l y ( i .e. without respect t o the boundary values of ) the r o l e of t h e curl

11

O C, .GI v-(j-8)1 relal~ve unils

rlmm

, . 1 . 1 . 8 , 1 , 1 . I . I . 1 . , . ,

35 '0 65

f i g . 4 curl of the Lorentz force and v o r t i c i t y of the Lorentz force in generating the quadrupol whirl. Horeover one r e a l i z e s , evidently shown by the unsymmetry of the term Br ( a j / a r - j / r ) which i s caused by t h e curvature of the a r c , t h a t j u s t t h i s curvature i s the reason f o r a quadrupol whirl contrary t o a double whirl as formerly expected.

Conclusion

The experiment shows, t h a t a magnetically deflected curved a r c can be fixed i n a equilibrium position.

This equilibrium i s determined by the f a c t t h a t there i s a magnetohydrodynamic mass flow through the a r c core which compensates the a r c motion to- wards the center of curvature due t o thermodynami- cal e f f e c t s .

/1/

W.

T i l l e r , Proc, of the Xlrh Int. Conf. on Phen. in Ionized Gases (1973) /2/ W . T i l l e r , Proc. of the XIIth I n t . Conf. on

Phen. in Ionized Gases (1975) /3/ H. Maecker, Proc. of t h e IEEE 59, 439 - 449

(1971)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to