• Aucun résultat trouvé

A PROTOTYPE COIL FOR THE SUPERCONDUCTING SEPARATED SECTOR CYCLOTRON SuSe

N/A
N/A
Protected

Academic year: 2021

Partager "A PROTOTYPE COIL FOR THE SUPERCONDUCTING SEPARATED SECTOR CYCLOTRON SuSe"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223699

https://hal.archives-ouvertes.fr/jpa-00223699

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A PROTOTYPE COIL FOR THE

SUPERCONDUCTING SEPARATED SECTOR CYCLOTRON SuSe

U. Trinks, W. Czech, G. Hinderer, E. Kellner, P. Kienle, J. Labedzki, A.

Mitwalsky, F. Nolden, U. Schneider, W. Schott, et al.

To cite this version:

U. Trinks, W. Czech, G. Hinderer, E. Kellner, P. Kienle, et al.. A PROTOTYPE COIL FOR THE SU-

PERCONDUCTING SEPARATED SECTOR CYCLOTRON SuSe. Journal de Physique Colloques,

1984, 45 (C1), pp.C1-217-C1-220. �10.1051/jphyscol:1984143�. �jpa-00223699�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, suppl6ment au n o I, Tome 45, janvier 1984 page Cl-217

A PROTOTYPE COIL FOR THE SUPERCONDUCTING SEPARATED SECTOR CYCLOTRON SuSe

U. T r i n k s , W. Czech, G. Hinderer, E . K e l l n e r , P . K i e n l e , J . Labedzki, A. Mitwalsky, F. Nolden, U. Schneider, W. S c h o t t , E . Smolic, W. Wiedemann and C.H. ~ustmann'

Phys. D e p t . of Techn., Univ. Wnchen,

8046

Garching, F.R.G.

'BBC, 6800

Mannheim, F.R. G.

R6sum6

-

L1@tude du p r o j e t d ' u n c y c l o t r o n d f o c a l i s a t i o n p a r q u a t r e s e c t e u r s skpar6s (SuSe) pour p r o t o n s e t i o n s l o u r d s d ' u n e knergie maximale de 450 MeV e t 300 MeV/u respectivement (pour l e s i o n s avec Q/A = 0 . 5 ) e t avec une q u a l i - t 6 e x c e l l e n t e du f a i s c e a u e s t en c o u r s . Les aimants d e s s e c t e u r s comprennent deux grandes bobines supra-conductrices ( a n g l e du s e c t e u r 50 degrgs, rayon e x t g r i e u r 2 , 8 m ) , deux couches de b o b i n e s c o r r e c t r i c e s , des p d l e s e n f e r r e - f r o i d l s e t un c i r c u i t m a g n B t i q u e c h a u d (300 t n ) . Le champ m a x i m a l s e r a 4 , 8 T.

D a n s l e c a d r e d ' u n e Btudeexpdrimentaleun p r o t o t y p e d e b o b i n e d e s e c t e u r a dtB c o n s t r u i t .

A b s t r a c t

-

A p r o j e c t s t u d y on a superconducting s e p a r a t e d f o u r s e c t o r cyclo- t r o n (SuSe) f o r p r o t o n s and heavy i o n s with maximum e n e r g i e s of 450 MeV r e - s p e c t i v e l y 300 MeV/u ( f o r i o n s with Q/A = 0 . 5 ) and e x c e l l e n t beam p r o p e r t i e s i s under way. The s e c t o r magnets c o n s i s t o f two l a r g e superconducting s e c t o r c o i l s ( s e c t o r a n g l e -50°, o u t e r r a d i u s 2.8 m ) , two l a y e r s of superconducting t r i m c o i l s , c o l d i r o n p o l e p i e c e s and a warm i r o n yoke (-300 t n ) . The maximum f i e l d w i l l be 4.8 T. A s p a r t of a f e a s i b i l i t y s t u d y a p r o t o t y p e s e c t o r c o i l has been b u i l t .

I

-

INTRODUCTION

A t t h e Munich A c c e l e r a t o r Laboratory a p r o j e c t s t u d y on a superconducting s e p a r a t e d s e c t o r c y c l o t r o n (SuSe) f o r t h e e x i s t i n g 13 MV-tandem i s under way / I / . SuSe s h a l l a c c e l e r a t e p r o t o n s and heavy i o n s t o s p e c l f i c e n e r g i e s o f up t o 450 MeV and 300 MeV/u r e s p e c t i v e l y with e x c e l l e n t beam p r o p e r t i e s . SuSe c o n s i s t s of f o u r superconducting s e c t o r magnets and two a c c e l e r a t i n g c a v i t i e s

-

p o s i t i o n e d i n two opposing intermedzate s e c t o r s . The mean i n j e c t i o n r a d i u s i s r l = 40 cm, t h e mean e x t r a c t i o n r a d i u s i s r2 = 240 cm ( w i t h

;

= circumference/2?i). A p l a n view of SuSe i s given i n f i g . 1 , t h e main f e a t u r e s of t h e c y c l o t r o n a r e summarized i n t a b . 1.

Table 1: Main f e a t u r e s of SuSe I n j e c t i o n r a d i u s rl

-

E x t r a c t i o n r a d i u s - r 2 Maximum f i e l d a t 52 Average f i e l d a t r2 S e c t o r a n g l e p e r magnet 2 a c c e l e r a t i n g c a v i t i e s Resonant frequency range Harmonic o p e r a t i o n modes Max. a c c e l . v o l t . p e r t u r n a t

il

Max. a c c e l . v o l t . p e r f u r n a t r2 Beam s e p a r a t i o n a t

Beam s e p a r a t i o n a t r2

0.4

m

2.4

m

4.8 T 2.25 T

-50"

TElOl mode 59. .74 MHz 5 . , 6 .

, .

.16.

500 kV 2 MV

>

9

mm

> 2 . 5

mm

Fig.1 Top view of SuSe. Sc: supercond.coi1, Y: i r o n yoke, RF: a c c e l . c a v i t y .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984143

(3)

(21-218 JOURNAL DE PHYSIQUE

Compared t o a superconducting compact c y c l o t r o n , s e p a r a t e d s e c t o r c y c l o t r o n s a s SuSe have s e v e r a l advantages, two of them we mention h e r e : f i r s t l y , due t o t h e f a c t , t h a t p a r t of t h e r e t u r n i n g magnetic f l u x can be l e d through t h e i n t e r m e d i a t e s e c t o r s by p r o p e r adjustment of t h e c r o s s s e c t i o n of t h e i r o n yoke, t h e azimuthal f i e l d v a r i - a t i o n can be made l a r g e enough t o provide e a s i l y t h e a x i a l f o c u s i n g f o r c e s even f o r t h e f a s t e s t p a r t i c l e s . Secondly, t h e open d e s i g n a l l o w s t h e i n s t a l l a t i o n o f l a r g e ca.

v i t i e s w i t h extreme high a c c e l e r a t i n g v o l t a g e s , t h u s p r o v i d i n g c l e a n i n j e c t i o n and e x t r a c t i o n , which a r e e s s e n t i a l i n o r d e r t o achieve t h e good beam p r o p e r t i e s .

I n t h i s paper t h e superconducting magnets a r e d e s c r i b e d . Another paper of t h i s confe- rence d e a l s with superconducting channel magnets without s t r a y f i e l d s a s i n j e c t i o n elements f o r SuSe / 2 / .

I1

-

THE SECTOR MAGNETS

Each of t h e f o u r s e c t o r magnets c o n s i s t s of a p a i r of superconducting main c o i l s w i t h two l a y e r s of superconducting t r i m c o i l s i n between, c o l d i r o n p o l e p i e c e s i n - s i d e t h e c o i l cases of t h e main c o i l s , and a l a r g e warm i r o n yoke. Fig. 2 shows two c r o s s s e c t i o n s o f t h e magnets, t a b . 2 g i v e s some d a t a of t h e magnets.

Table 2: Some d a t a of t h e magnets -300 t n

S t o r e d energy 5 2 5 MJ

Max.field a t r=2.5m, z=y=O 4.8 T

" " "

t h e conductor 6 . 6 , T

T o t a l weight -2 t n

C o i l c a s e AlSi9Mg

T o t a l h e i g h t Active h e i g h t

"

width

O v e r a l l c u r r e n t d e n s i t y Ampere t u r n s

Number of t u r n s C u r r e n t i n t h e c a b l e Average t u r n l e n g t h Min.bending r a d i u s of cond

-

M a g ~ e t i c p r e s s u r e , r a d i a l

5

a x i a l

(Im I

Fig.2 Cross s e c t i o n s of a magnet. S: main c o i l , Y: yoke, T: t r i m c o i l , P: c o l d i r o n p o l e p i e c e

A l l f i e l d c a l c u l a t i o n s were performed u s i n g t h e computer code GFUN3D f o r magnets with t h r e e dimensional c o i l s w i t h i r o n

/ 3 / .

Each

s e t

of superconducting c o i l s , c o n s i s t i n g of

a

main and a

t r i m

c o i l , i s enclosed by a s e p a r a t e d , w e l l f i t t i n g c r y o s t a t . The gap f o r t h e i o n s between t h e upper and lower c r y o s t a t i s 8 cm high.

I11

-

THE MAIN COILS

The width of t h e c r o s s s e c t i o n of t h e main c o i l s i s l i m i t e d t o b = 6 . 5 cm f o r two reasons. F i r s t l y t h e minimum bending r a d i u s of t h e conductor ( i n t h e c e n t r a l t i p of t h e s e c t o r ) should n o t be l e s s t h a n 7 cm. Secondly t h e d i s t a n c ' e between two magnets i n t h e c e n t r a l r e g i o n h a s t o be a t l e a s t 10 cm i n o r d e r t o g e t enough space f o r t h e a c c e l e r a t i n g c a v i t i e s . I n f i r s t o r d e r approximation t h e number of n e c e s s a r y Ampere

(4)

t u r n s ( a s w e l l a s t h e s t o r e d energy) i s p r o p o r t i o n a l t o t h e gap h e i g h t of t h e i r o n yoke and t h u s t o t h e t o t a l h e i g h t of t h e c o i l s . From

-

j a h gap

.

B max' ( h c o i 1s

-

b . ~ , )

-

( 1 )

f o l l o w s with h /h . = 1 . 5 f o r t h e o v e r a l l c u r r e n t d e n s i t y : j z 8 8 A/mm 2

,

which r u l e s o u t t h e ~ ? ~ o s ~ ~ $ ~ ? s t a b i l i s a t i o n method f o r t h e c o i l s ( B = 4.8T, b = 6.5cm).

The computer c a l c u l a t i o n s y i e l d an e f f e c t i v e heigh5 of each ma!??ixcoil of 294

mm,

which g i v e s f o r t h e maximum f i e l d with j = 84 A/mm a t o t a l c u r r e n t of Itot=1.6.10 A p e r main c o i l . The s t o r e d energy p e r magnet t h e n i s E magn

*

25 M J .

A s a worst c a s e e s t i m a t i o n t h e h o t s p o t temperature i n c a s e of a quench y i e l d s a maximum temper t u r e of T

1

0300 K, i f t h e copper c r o s s s e c t i o n of t h e conductor

i s

a t l e a s t 15

mm .

The con%$tor ( f i g . 3 )

i s

f a b r i c a t e d by c a b e l i n g 23 superconducting NbTi-strands (8 0.7 mm, Cu/Sc = 1.9 and 1.3, 1 = 11 cm) around a copper t u b e , c a l i - b r a t i n g and soldering.The conductor i n s u l a t i o n W i s a one l a y e r h a l f overlapped g l a s s / c a p t o n / g l a s s sandwich t a p e . A s a r e s u l t from s h o r t sample measurements t h e c r i t i c a l c u r r e n t i n dependence of t h e magnetic f i e l d normal t o t h e c u r r e n t

i s

given i n f i g . 4 , t o g e t h e r with t h e working r e g i o n of t h e main c o i l (shadowed). The maximum c u r r e n t needed w i l l be 2675 A.

F i g . 3 Cross s e c t i o n of t h e SuSe-cable Fig.4 I (B) of t h e SuSe-cable a t T=4.5K Each main c o i l c o n s i s t s of 23 double pancakes with 26 windings each ( t h u s 598 win- d i n g s i n t o t a l ) . The c o i l c a s e i s c a s t i n one p i e c e , made from AlSi9Mg. I t d i v i d e s t h e c o i l i n t o t h r e e p a r t s , c o n t a i n i n g 8 , 7 and 8 double pancakes a s shqwn i n f i g . 5 . The outward d i r e c t e d e l e c t r o m a g n e t i c f o r c e s (maximum p r e s s u r e -12 N/mm

1 ,

which t r y t o make t h e c o i l s more c i r c u l a r , a r e taken up by beams of aluminium a l l o y , which a r e f i x e d t o t h e c o i l former by a x i a l b o l t s . The a x i a l f o r c e s a c t i n g between t h e upper and lower s e t of c o i l s a r e r e p e l l i n g a t t h e t i p of t h e s e c t o r c o i l s . Along t h e s i d e s t h e a x i a l f o r c e s a r e i n c r e a s i n g a t t r a c t i v e w i t h t h e r a d i u s . A t t h e o u t s i d e a r c of

t h e s e c t o r c o i l s t h e a t t r a c t i v e f o r c e s ary?

Fig.5 Cross s e c t i o n of t h e s e c t o r c o i l . DP: double pancake, He: l i q u i d helium

s t r o n g e s t (maximum a x i a l p r e s s u r e -20

~ / m m ~ ) .

A t t h e t i p and a l o n g t h e o u t s i d e a r c a x i a l c o l d s u p p o r t s between t h e two s e t s of c o i l s t a k e up t h e s e f o r c e s . I n t h e c a s e of symmetri- c a l alignment t h e r e a r e no a x i a l f o r c e s b e s i - d e s t h e g r a v i t a t i o n , which i s taken up by a x i a l s u p p o r t s t o t h e warm yoke. I n azimuthal d i r e c t i o n t h e c o i l s a r e i n a s t a b l e p o s i t i o n w i t h r e s p e c t t o t h e i r o n yoke. The r a d i a l f o r - c e s a r e d i r e c t e d outward and taken up by r a - d i a l r o d s t o t h e i r o n yoke.

The i n s u l a t i o n of t h e p o t t e d c o i l s i s matched s o t h a t t h e A l - c o i l c a s e p r e s t r e s s e s t h e c o i l when cooled from 300K t o 4.5K. The c o i l c a s e i s cooled by means of p i p e s w i t h f o r c e d flow of two phase helium a t 4.5K, 1.2bar. Thus a l l h e a t from o u t s i d e

i s

screened. The helium in- s i d e t h e conductor s e r v e s a s a h e a t s i n k i n c a s e of a s m a l l h e a t i n p u t i n s i d e t h e c o i l s .

(5)

Cl-220 J O U R N A L DE PHYSIQUE

The two c i r c u i t s w i t h L ' r ~ / 4 = 2 H a r e coupled v i a t h e mutual inductance M with t h e c o u p l i n g c o e f c i c i e n f E = 1

-

( M / L ' ) 2

<

0.02. From t h ? two e q u a t i o n s /4/:

R l I l

+

L ' I I

+

MI2 = 0 R212

+

L ' I 2

+

MI1 = 0 ( 2 )

I f t h e r e i s a l a r g e r h e a t i n p u t , which d r i v e s p a r t of t h e conductor i n t o normal con- d u c t i v i t y , t h e magnets have t o be deenergized immediately. I n o r d e r t o achieve a more uniform h e a t i n g throughout t h e c o i l s , t h e double pancakes a r e connected i n se- r i e s n o t one a f t e r a n o t h e r , b u t each second, t h u s g e t t i n g two groups, t h e odd num- bered and t h e even numbered double pancakes. Both groups have t h e i r own shunt r e s i - s t a n c e s with R l z 0 . 4 f i > > R 2 ~ 0 . 0 4 f i , t h e y a r e p u t i n s e r i e s again a s shown i n f i g . 6.

and t h e s t a r t i n g c o n d i t i o n s 1 1 ( 0 ) = I 2 ( 0 )

= I, t h e development of t h e c u r r e n t s f o l - lows a s shown i n f i g . 7. During t h e f i r s t s h o r t p e r i o d t h e c u r r e n t s r e d i s t r i b u t e w i t h t h e time c o n s t a n t TSh= & ' L ' . / ( R 1 + ~ 2 ) s0.09 s e c such, t h a t 11 becomes very s m a l l , while I 2 i n c r e a s e s n e a r l y t o 2x1, t h e n d e c r e a s i n g with t h e time c o n s t a n t T 1 = L 1 / R l + ~ ' / R 2 z 5 5 s e c . The f a s t r e d i - s t r i b t u t i o n c a u s e s eddy c u r r e n t s i n t h e conductor, t h u s h e a t i n g it and s p r e a d i n g t h e quench throughout t h e c o i l s . D u e t o t h e good thermal coupling, t h e h e a t pro- duced i n t h e high c u r r e n t p a r t i s d i s t r i - buted a l s o i n t o t h e o t h e r . The maximum temperature of t h e conductor w i l l be T c 140 K .

max

To prove t h e f e a s i b i l i t y of t h e magnets one main c o i l was o r d e r e d from B~c/Mann-

2 10-

N ,.-

a

-

R,(j*+R. :

I0

Fig.8 View of t h e supercond.prototype c o i l heim a t t h e end of 1980. I t was d e l i v e r e d i n December 1982 and was prepared f o r t e s t s i n our Laboratory s i n c e t h e n ( s e e f i g . 8 ) . I n J u l y it was cooled down f o r t h e

&

r---

, I 2

I -- -

--

I

-- -

t

f i r s t time. Unfortunately s e v e r a l l e a k s i n t h e helium system hindered t h e o p e r a t i o n of t h e c o i l u n t i l now. F i r s t r e s u l t s a r e expected d u r i n g t h e n e x t weeks.

Fig.6 C i r c u i t of t h e c o i l s w i t h two I W

shunt r e s i s t a n c e s

t = O t

Fig.7 The development of c u r r e n t s

Work supported by t h e Federal Government of Germany.

REFERENCES

/1/ T r i n k s U . , Daniel H . , Graw G . , Hinderer G . , Huenges E., Kienle P., Korner H . J . , Morinaga H . , Nolden F., Nolte E . , S c h e e r e r H . J . , Schneider U . , S c h o t t W . , Skorka S., Wilhelm W . , W i l l e r s H.G., Zech E., IEEE, NS-30, No4 (1983), 2108

/2/ Nolden F., Hinderer G . , Labedzki J . , T r i n k s U . , Zech E . , t h i s conference

/ 3 / Armstrong A.G.A.M., C o l l i e C . J . , Diserens N . J . , Newman M . J . , Simkin J . , Trow-

b r i d g e C.W., Proceedings of t h e F i f t h 1ntern.Conf.on Magn.Techn., Rome 1975, 168 /4/ Turowski P . , IEEE, MAG-15, No1 (1979), 864

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to