• Aucun résultat trouvé

APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS

N/A
N/A
Protected

Academic year: 2021

Partager "APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00223230

https://hal.archives-ouvertes.fr/jpa-00223230

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SEMICONDUCTOR MATERIALS ANALYSIS

A. Rosencwaig

To cite this version:

A. Rosencwaig. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-437-C6-452.

�10.1051/jphyscol:1983671�. �jpa-00223230�

(2)

J O U R N A L DE P H Y S I Q U E

C o l l o q u e C6, supplement a u nO1O, T o m e 44, o c t o b r e 1983 page C6- 437

A P P L I C A T I O N S OF THERMAL-WAVE P H Y S I C S T O SEMICONDUCTOR M A T E R I A L S ANALYS I S

A. Rosencwaig

Therma-Wave, Inc., Fremont, CA 94539, U.S.A.

RGsum6 - On d 4 c r i t l e s a p p l i c a t i o n s d e s ondes t h e r m i q u e s 2 l ' i m a g e r i e e t aux m e s u r e s q u a n t i t a t i v e s d ' 4 p a i s s e u r d e f i l m s m i n c e s p a r d e s m a t 4 r i a u x s e m i c o n d u c t e u r s e t d e s composants.

A b s t r a c t - N o n s p e c t r o s c o p i c a p p l i c a t i o n s o f thermal-wave p h y s i c s , i n p a r t i c u l a r t h o s e i n v o l v i n g m a t e r i a l s a n a l y s i s t h r o u g h t h e r - mal-wave i m a g i n g , and q u a n t i t a t i v e t h i n - f i l m t h i c k n e s s measure- m e n t s , a r e d e s c r i b e d f o r t h e s t u d y o f semiconductor m a t e r i a l s and d e v i c e s .

I - INTRODUCTION

Thermal-wave p h y s i c s i s p l a y i n g a n e v e r - i n c r e a s i n g r o l e i n t h e s t u d y of m a t e r i a l p a r a m e t e r s . I t h a s been employed i n o p t i c a l i n v e s t i g a - t i o n s o f s o l i d s , l i q u i d s and g a s e s w i t h p h o t o a c o u s t i c 1 and t h e r m a l - l e n s 2 s p e c t r o s c o p y . Thermal waves have a l s o been used t o s t u d y t h e t h e r m a l and thermodynamic p r o p e r t i e s 1 f 3 o f m a t e r i a l s , and f o r imaging t h e r m a l and m a t e r i a l f e a t u r e s w i t h i n a s o l i d sample. 4

Thermal waves a r e p r e s e n t whenever t h e r e i s p e r i o d i c h e a t g e n e r a t i o n and h e a t f l o w i n a medium. There a r e , t h e r e f o r e , a m u l t i t u d e o f mechanisms by which t h e s e waves c a n be p r o d u c e d , w i t h t h e two most common i n v o l v i n g t h e a b s o r p t i o n by t h e sample o f e n e r g y from e i t h e r a n i n t e n s i t y - m o d u l a t e d o p t i c a l beam,' o r from an i n t e n s i t y - m o d u l a t e d e l e c t r o n S e v e r a l mechanisms a r e a l s o a v a i l a b l e f o r d e t e c t i n g , d i r e c t l y , o r i n d i r e c t l y , t h e r e s u l t i n g t h e r m a l waves. These i n c l u d e ; gas-microphone p h o t o a c o u s t i c d e t e c t i o n o f h e a t flow from t h e sample t o t h e s u r r o u n d i n g g a s i n which p r e s s u r e c h a n g e s a r e m o n i t o r e d ; l r 5 p h o t o t h e r m a l measurements o f i n f r a r e d r a d i a t i o n e m i t t e d from t h e h e a t - ed sample s u r f a c e ; 6 - 8 0 p t i c a l beam d e f l e c t i o n o f a l a s e r beam t r a v e r s i n g

t h e p e r i o d i c a l l y h e a t e d g a s e o u s o r l i q u i d l a y e r j u s t above t h e sample s u r f ace ; 9-11 .

l n t e r f e r o m e t r i c d e t e c t i o n o f t h e t h e r m o e l a s t i c d i s p l a c e - ments o f t h e s u r f a c e ; 12'13 o p t i c a l d e t e c t i o n o f t h e t h e r m o e l a s t i c d e f o r m a t i o n s o f t h e s u r f a c e ; 13-16 and p i e z o e l e c t r i c d e t e c t i o n o f t h e r m o a c o u s t i c s i g n a l s g e n e r a t e d i n t h e sample. 1 , 1 7 , 1 8

To d a t e , o n l y t h i s l a s t t e c h n i q u e i n v o l v i n g t h e r m o a c o u s t i c d e t e c t i o n h a s been used r o u t i n e l y f o r d e t e c t i n g h i g h - f r e q u e n c y ( i . e . MHz regime) t h e r m a l waves. The t h e r m o a c o u s t i c d e t e c t i o n methodology has. t h e r e -

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983671

(3)

14,19,20 at f o r e found i m p o r t a n t a p p l i c a t i o n s i n thermal-wave imaging

h i g h s p a t i a l r e s o l u t i o n where micron-sized t h e r m a l waves a r e needed, a s i n t h e s t u d y of semiconductor m a t e r i a l s and d e v i c e s .

I s h a l l h e r e d i s c u s s some n o n s p e c t r o s c o p i c a p p l i c a t i o n s o f h i g h f r e - quency t h e r m a l waves f o r imaging and t h i n - f i l m t h i c k n e s s measurements i n semiconductor m a t e r i a l s a n a l y s i s .

11. THERMAL-WAVE I M A G I N G

Thermal-wave imaging i s a new t e c h n i q u e whereby m i c r o s c o p i c t h e r m a l f e a t u r e s on o r b e n e a t h t h e s u r f a c e o f a sample c a n be d e t e c t e d and imaged. Thermal f e a t u r e s a r e t h o s e r e g i o n s o f an o t h e r w i s e homogen- e o u s m a t e r i a l t h a t e x h i b i t v a r i a t i o n s , r e l a t i v e t o t h e i r s u r r o u n d i n g s , i n e i t h e r t h e d e n s i t y t h e s p e c i f i c h e a t , o r , most i m p o r t a n t l y , t h e t h e r m a l c o n d u c t i v i t y of t h e sample. V a r i a t i o n s i n t h e s e t h e r m a l p a r a - m e t e r s c a n a r i s e from changes i n b a s i c m a t e r i a l c o m p o s i t i o n , from t h e p r e s e n c e of mechanical d e f e c t s such a s m i c r o c r a c k s , v o i d s and delam- i n a t i o n ~ , from changes i n c r y s t a l l i n e o r d e r o r s t r u c t u r e , and evenfrom t h e p r e s e n c e o f s m a l l c o n c e n t r a t i o n s o f f o r e i g n i o n s o r l a t t i c e d e f e c t s i n a n o t h e r w i s e p e r f e c t c r y s t a l .

I n thermal-wave microscopy a l a s e r 2 1 o r e l e c t r o n beam 2 2 1 2 3 i s i n t e n s i - ty-modulated i n t h e 100 kHz-10 MHz r a n g e , f o c u s e d , and scanned o v e r t h e s u r f a c e o f a sample. The p e r i o d i c s u r f a c e h e a t i n g t h a t r e s u l t s from t h e a b s o r p t i o n of t h e i n c i d e n t beam g e n e r a t e s t h e r m a l waves t h a t p r o p a g a t e from t h e i n i t i a l l y h e a t e d r e g i o n s . These d i f f u s i v e t h e r m a l waves a r e c r i t i c a l l y damped and p r o p a g a t e o n l y one t o two wavelengths b e f o r e t h e i r i n t e n s i t y becomes n e g l i g i b l y s m a l l . N e v e r t h e l e s s , w i t h i n t h e i r p r o p a g a t i o n r a n g e , t h e t h e r m a l waves w i l l s c a t t e r and r e f l e c t from t h e r m a l f e a t u r e s much l i k e c o n v e n t i o n a l p r o p a g a t i n g waves do from o p t i c a l o r a c o u s t i c f e a t u r e s . Imaging of t h e t h e r m a l f e a t u r e s t h u s r e - q u i r e s d e t e c t i o n o f t h e s c a t t e r e d and r e f l e c t e d thermal-waves. A Therma-Wave , 1nc. 2 4 thermal-wave microscope u s e s t h e e l e c t r o n beam i n a scanning e l e c t r o n mircoscope t o g e n e r a t e t h e t h e r m a l waves and d e t e c t s t h e s c a t t e r e d and r e f l e c t e d t h e r m a l waves t h r o u g h t h e i r e f f e c t on t h e t h e r m o a c o u s t i c s i g n a l s g e n e r a t e d i n t h e bulk o f t h e sample. The thermo- a c o u s t i c s i g n a l s a r e d e t e c t e d i n t u r n w i t h a s u i t a b l e p i e z o e l e c t r i c t r a n s d u c e r i n a c o u s t i c c o n t a c t w i t h t h e sample. The magnitude and phase of , t h e t h e r m o a c o u s t i c s i g n a l s a r e d i r e c t l y a f f e c t e d by t h e p r e s e n c e of s c a ' t t e r e d and r e f l e c t e d t h e r m a l waves. 25 Thus by measuring t h e magnitude and/or phase o f t h e t h e r m o a c o u s t i c s i g n a l a s a f u n c t i o n o f e l e c t r o n beam p o s i t i o n on t h e s u r f a c e of t h e sample, an image i s g e n e r a t e d t h a t d e p i c t s

t h e v a r i o u s thermal-wave s c a t t e r i n g and r e f l e c t i o n e v e n t s t h a t o c c u r a t e a c h p o i n t on t h e sample.

(4)

SUBSURFACE DEFECTS

S u b s u r f a c e mechanical d e f e c t s such a s v o i d s , c r a c k s and d e l a m i n a t i o n s r e p r e s e n t s u b s t a n t i a l t h e r m a l f e a t u r e s and t h u s a r e r e a d i l y d e t e c t e d w i t h a thermal-wave microscope. 4 ' 2 0 One i l l u s t r a t i o n o f t h i s a p p l i c a - t i o n i s shown i n F i g u r e 1. F i g u r e l a i s t h e e l e c t r o n image o f a GaAs d e v i c e , where t h e o n l y v i s i b l e d e f e c t s a r e two seemingly i n s i g n i f i c a n t c h i p - o u t s a t t h e edge o f t h e d e v i c e , one a l o n g t h e r i g h t - h a n d e d g e , and t h e o t h e r a l o n g t h e bottom. The thermal-wave image i n F i g u r e l b shows, however, t h a t t h e s m a l l c h i p - o u t a l o n g t h e r i g h t - h a n d s i d e i s a much l a r g e r s u b s u r f a c e d e l a m i n a t i o n which e x t e n d s i n t o t h e lower g a t e of t h e d e v i c e where it r e s u l t s i n a " l o o p - l i k e " s u b s u r f a c e f l a w . The s m a l l c h i p - o u t a l o n g t h e bottom i s a l s o s e e n t o be t h e o r i g i n o f a long s u b s u r f a c e c r a c k . T h e r e f o r e , where o p t i c a l and e l e c t r o n images show o n l y two i n s i g n i f i c a n t d e f e c t s , t h e thermal-wave image shows t h e p r e s e n c e of s e r i o u s s u b s u r f a c e d e f e c t s .

F i g . 1 - Examples o f s u b s u r f a c e d e f e c t s i n a GaAs d e v i c e . The e l e c - t r o n micrograph ( a ) shows o n l y 2 s m a l l edge c h i p - o u t s , one a l o n g t h e r i g h t - h a n d s i d e , t h e o t h e r a t t h e bottom. The thermal-wave image ( b ) shows more s e r i o u s d e f e c t s - t h e c h i p - o u t a l o n g t h e r i g h t - h a n d s i d e i s s e e n a s a s u b s t a n t i a l d e l a m i n a t i o n e x t e n d i n g i n t o t h e lower g a t e r e - g i o n where a " l o o p - l i k e " d e f e c t i s v i s i b l e ; t h e c h i p - o u t a t t h e bottom i s t h e o r i g i n of a l o n g s u b s u r f a c e microcrack r u n n i n g up i n t o t h e d e v i c e . ( M a g n i g i c a t i o n 220x)

(5)

CRYSTALLINE VARIATIONS

When a c r y s t a l l a t t i c e i s h i g h l y o r d e r e d , minor changes i n l a t t i c e s t r u c t u r e can produce measurable changes i n t h e l o c a l t h e r m a l conduc- t i v i t y of t e m a t e r i a l and t h u s c a n be imaged w i t h a thermal-wave microscope. T h i s c a p a b i l i t y i s i l l u s t r a t e d i n F i g u r e s 2 and 3 which show GaAs d e v i c e s . The o p t i c a l and e l e c t r o n micrographs image

t h e v i s i b l e f e a t u r e s of t h e g a t e s t r u c t u r e s i n t h e d e v i c e s . The t h e r - mal-wave images show, i n a d d i t i o n , t h e Si-doped r e g i o n s o f t h e G a A s ,

s i n c e t h e s e r e g i o n s have a d i f f e r e n t t h e r m a l c o n d u c t i v i t y t h a t t h e un- doped r e g i o n s . Such images p e r m i t a r a p i d and n o n d e s t r u c t i v e a n a l y s i s of t h e e f f e c t s of l a t e r a l d i f f u s i o n s o f d o p a n t s i n semiconducting c r y s t a l s .

F i g . 2 - Images o f GaAs d e v i c e . The o p t i c a l ( a ) and e l e c t r o n micro- g r a p h s ( b ) show t h e v i s i b l e f e a t u r e s . The thermal-wave image ( c ) shows i n a d d i t i o n t h e Si-doped r e g i o n s o f t h e GaAs. ( M a g n i f i c a t i o n 4 0 0 x 1

.

(6)

F i g . 3 - Images o f a g a t e r e g i o n i n a GaAs d e v i c e . The o p t i c a l ( a ) and e l e c t r o n micrographs ( b ) show t h e v i s i b l e f e a t u r e s . The thermal- wave image ( c ) shows i n a d d i t i o n t h e l a t e r a l l y d i f f u s e d S i doped

r e g i o n around t h e g a t e s t r u c t u r e . ( M a g n i f i c a t i o n 500x).

(7)

Another i n t e r e s t i n g example o f thermal-wave d e t e c t i o n of l a t t i c e p e r - t u r b a t i o n s i s shown i n F i g u r e 4 . A sample o f GaAs was f i r s t masked i n a p a t t e r n and t h e n bombarded w i t h e n e r g e t i c p r o t o n s (40KeV) a t a f l u x

15 2

o f 10 /cm . These p r o t o n s p r o d u c e d a c o n t r o l l e d d e f e c t zone o f va- c a n c i e s and i n t e r s t i t i a l s a b o u t 0.5pm b e n e a t h t h e s u r f a c e wherever t h e GaAs was n o t p r o t e c t e d by t h e mask. The e l e c t r o n micrograph o f t h e GaAs shows, a f t e r removal o f t h e mask, no v i s i b l e p a t t e r n s ( F i g . 4 a ) . However, t h e thermal-wave image o f t h e same a r e a ( F i g . 4b) c l e a r l y shows t h e masking p a t t e r n ( w h i t e r e g i o n s ) . The image c o n t r a s t a r i s e s from t h e f a c t t h a t t h e proton-bombarded GaAs ( d a r k r e g i o n s ) now h a s a lower t h e r m a l c o n d u c t i v i t y t h a t t h e u n p e r t u r b e d GaAs ( w h i t e r e g i o n s ) .

F i g . 4 - Images o f a proton-bombarded GaAs w a f e r ; (a) e l e c t r o n m i c r o - g r a p h of t h e GaAs sample a f t e r removal o f t h e mask, showing no e v i - d e n c e of t h e masking p a t t e r n : ( b ) thermal-wave r e g i o n o f same re- g i o n s showing proton-bombarded ( d a r k ) r e g i o n s and u n p e r t u r b e d ( w h i t e ) r e g i o n s . ( M a g n i f i c a t i o n 100x) .

(8)

The imaging of c r y s t a l l i n e v a r i a t i o n s c a n a l s o be u s e f u l . i n m e t a l l o - graphy , 4 1 1 8 f 2 7 s i n c e d i f f e r e n t m e t a l l i c p h a s e s o r g r a i n s c a n be r e a d - i l y imaged w i t h no s p e c i a l sample p r e p a r a t i o n . We i l l u s t r a t e t h i s i n F i g u r e 5 where t h e columnar g r a i n s and t r a n s i t i o n zone i n a weld r e g i o n , o f an aluninum a l l o y a r e c l e a r l y v i s i b l e i n t h e thermal-wave image.

F i g . 5 - Thermal-wave image o f a weld r e g i o n i n an aluminom a l l o y . The columar g r a i n s i n t h i s r e g i o n a r e c l e a r l y v i s i b l e . ( M a g n i f i c a t i o n 30x).

(9)

Another example, F i g u r e 6 , shows t h e e l e c t r o n and thermal-wave images o f an Al-Zn a l l o y . The e l e c t r o n image ( a ) shows only topographical.

f e a t u r e s , w h i l e t h e thermal-wave image ( b ) c l e a r l y shows both t h e q r a i n s t r u c t u r e and, a t h i g h m a g n i f i c a t i o n , t h e p r e s e n c e o f Fe or Sn pre- c i p i t a t e s . Other s t u d i e s w i t h m e t a l s i n d i c a t e a p p l i c a t i o n s i n i n v e s t - i g a t i o n s of mechanical deformation2' and g r a i n boundaries. 19

F i g . 6 - E l e c t r o n ( a ) and thermal-wave (b) micrographs a t 50x o f an Al-Zn a l l o y . The thermal-wave micrqgraph shows t h e Al-Zn

g r a i n s , and t h e p r e s e n c e of F e o r Sn p r e c i p i t a t e s .

(10)

B O N D I N G INTEGRITY

Microscopic d e t a i l s i n a thermal-wave image a r e due t o r e f l e c t i o n and s c a t t e r i n g o f t h e r m a l waves from s u r f a c e and s u b s u r f a c e t h e r m a l f e a - t u r e s . I n a d d i t i o n , thermal-wave images o f t e n e x h i b i t l a r g e b r i q h t and d a r k a r e a s which r e p r e s e n t t h e a c o u s t i c modes o f t h e sample. 19 The i n c i d e n t e l e c t r o n beam i s v e r y e f f e c t i v e i n e x c i t i n g t h e p l a t e modes o f v i b r a t i o n s i n t h i n samples such a s I C c h i p s and w a f e r s . Thus, a t c e r t a i n r e s o n a n t f r e q u e n c i e s , v i b r a t i o n p a t t e r n s a r e s e t up on t h e sample c h a r a c t e r i z e d by r e g u l a r l y spaced nodes and a n t i n o d e s . When t h e e l e c t r o n beam i s a t a p l a t e node on t h e sample s u r f a c e , t h e r e i s no enhancement o f t h e t h e r m o a c o u s t i c s i g n a l . However, a t t h e a n t i - nodes t h e r e i s a c o n s i d e r a b l e enhancement, w i t h t h e enhancement b e i n g 180 0 out-of-phase between a p o s i t i v e and n e g a t i v e a n t i n o d e . Thus t h e p l a t e mode v i b r a t i o n i s s e e n a s a p a t t e r n o f b r i g h t and dark r e g i o n s i n t h e thermal-wave image, c o r r e s p o n d i n g t o t h e p o s i t i v e and n e g a t i v e a n t i n o d e r e g i o n s on t h e sample s u r f a c e . I f t h e sample i s a w i r e , t h e n t h e thermal-wave image d i s p l a y s t h e r a d i a l a c o u s t i c modes i n t h e w i r e .

Because of t h e i r s h o r t wavelength ( g e n e r a l l y <20pm), h i g h f r e q u e n c y t h e r m a l waves a r e u n a b l e t o p e n e t r a t e t h r o u g h an I C d i e t o probe t h e bonding between t h e d i e and i t s s u p p o r t s t r u c t u r e . However, I C d i e s a r e t h i n p l a t e s and t h u s w i l l e x h i b i t p l a t e mode v i b r a t i o n p a t t e r n s i n t h e i r thermal-wave images. The i n t e n s i t y of t h e s e v i b r a t i o n s i s a s e n s i t i v e f u n c t i o n o f t h e t h i c k n e s s of t h e sample, d e c r e a s i n g a s t h e t h i c k n e s s i n c r e a s e s . The same e f f e c t o c c u r s when t h e sample i s bonded t o a t h i c k e r s u b s t r a t e . The combination of t h e two s t r u c t u r e s now c o n s t i t u t e s a much t h i c k e r sample and t h e v i b r a t i o n i n t e n s i t i e s w i l l now d e c r e a s e . How s t r o n g t h i s e f f e c t w i l l be i s dependent on t h e

i n t e g r i t y and u n i f o r m i t y o f t h e bond between t h e d i e and i t s s u p p o r t - i n g s t r u c t u r e . The p l a t e mode p a t t e r n s s e e n i n t h e thermal-wave image can t h u s be used f o r comparative e v a l u a t i o n o f d i e a t t a c h .

F i g u r e s 7a and 7b show t h e thermal-wave images of two l a r g e s i l i c o n I C d i e s mounted i n l a r g e ceramic DIP packages. The d i e i n F i g u r e 7a i s known t o have a "poor" d i e - a t t a c h , w h i l e t h a t i n F i g u r e 7b i s a

"good" d i e - a t t a c h . I n agreement w i t h t h i s , t h e d i e i n F i g u r e 7a shows a s t r o n g p l a t e mode p a t t e r n i n d i c a t i v e o f a " t h i n - p l a t e " sample, t h a t i s , of a d i e t h a t i s p o o r l y a t t a c h e d . On t h e o t h e r hand, t h e d i e i n F i g u r e 7b shows l i t t l e e v i d e n c e o f a p l a t e mode p a t t e r n t h e r e b y i n d i c a t i n g a " t h i c k - p l a t e " sample, t h a t i s , a d i e f i r m l y and uniformly bonded t o i t s s u p p o r t s t r u c t u r e .

(11)

F i g . 7 - Examples o f a bonding i n t e g r i t y s t u d y . Thermal,-wave image of l a r g e IC d i e i n D I P package w i t h ( a ) p o o r d i e - a t t a c h a n d ex- h i b i t i n g s t r o n g p l a t e mode p a t t e r n ; and ( b ) b g o o d d i e - a t t a c h e x h i - b i t i n g no p l a t e mode p a t t e r n ( M a g n i f i c a t i o n '40x1.

(12)

Although s t i l l i n i t s f o r m a t i v e s t a g e , thermal-wave imaging h a s a l - ready demonstrated s e v e r a l i n t e r e s t i n g and u s e f u l a p p l i c a t i o n s f o r a v a r i e t y of m a t e r i a l s t u d i e s .

111. LASER BEAM DEFLECTION

The examples above were o b t a i n e d w i t h an e l e c t r o n beam t o g e n e r a t e t h e thermal waves. C l e a r l y t h e same images could have been o b t a i n - ed w i t h a l a s e r beam a s However i n b o t h c a s e s t h e u s e of a thermoacoustic probe t o d e t e c t t h e r e f l e c t i o n and s c a t t e r i n g of t h e thermal waves from t h e t h e r m a l f e a t u r e s s u f f e r s from t h e major draw- back of r e q u i r i n g a c o u s t i c ~ 0 u p l i n q between t h e sample and an u l t r a - s o n i c t r a n s d u c e r . I n t h e a n a l y s i s of semiconductor m a t e r i a l s and d e v i c e s , one would l i k e t o o p e r a t e i n a n open environment, employ completely c o n t a c t l e s s methods f o r thermal-wave g e n e r a t i o n and de- t e c t i o n , and be a b l e t o make measurements o r o b t a i n images a t high s p a t i a l r e s o l u t i o n . T h i s l a s t requirement n e c e s s i t a t e s t h e u s e of a h i g h l y focused beam f o r thermal-wave g e n e r a t i o n and t h e c a p a b i l i t y

f o r d e t e c t i n g high-frequency (>100kHz) thermal waves.

To s a t i s f y a l l of t h e above c o n d i t i o n s one needs t o u t i l i z e l a s e r s f o r both g e n e r a t i n g and d e t e c t i n g t h e t h e r m a l waves. The genera-, t i o n i s , of course, s t r a i g h t f o r w a r d . The d e t e c t i o n i s performed e i t h e r by l a s e r i n t e r f e r o m e t r i c d e t e c t i p n o f t h e t h e r m o e l a s t i c d i s - placements of t h e sample s u r f a c e , 12114*15 o r by l a s e r d e t e c t i o n of t h e l o c a l t h e r m o e l a s t i c d e f o r m a t i o n s o f t h e s u r f ace. 13-16 Both t e c h n i q u e s a r e analogous t o t h e o p t i c a l methods used f o r d e t e c t i n g

2 9 , 30

s u r f ace a c o u s t i c waves, a l t h o u g h h e r e t h e s u r f a c e d i s p l a c e m e n t s and deformations a r e due t o t h e thermal waves. A l l of t h e o t h e r methods f o r thermal-wave d e t e c t i o n s u f f e r from e i t h e r b e i n g l i m i t e d t o low modulation f r e q u e n c i e s o r from r e q u i r i n g c o n t a c t t o t h e sample.

There have been some i n i t a l s t u d i e s of thermal-wave d e t e c t i o n u s i n g t h e l a s e r techniques d e s c r i b e d above. Ameri e t a 1 have performed a rudimentary imaging experiment w i t h t h e l a s e r i n t e r f e r o m e t r i c t e c h n i - q u e , 1 2 while Arner and h i s c o l l e a g u e s have used both t h e l a s e r d e f l e c - t i o n ( s u r f a c e deformation d e t e c t i o n ) t e c h n i q u e and t h e l a s e r i n t e r - f e r o m e t r i c technique f o r s p e c t r o s c o p i c ~ t u d i e s . ' ~ - ~ ~ These i n v e s t i - g a t i o n s have a l l been performed a t low t o moderate modulation frequen- c i e s (<100kHz) only. We have employed t h e l a s e r d e f l e c t i o n t e c h n i q u e i n a somewhat d i f f e r e n t e x p e r i m e n t a l c o n f i g u r a t i o n a t h i g h thermal-wave f r e q u e n c i e s (up t o 10MHz) f o r q u a n t i t a t i v e measurements of t h i n - f i l m t h i c k n e s s e s . 1 6

(13)

I V . DEPTH-PROFILING AND THIN-FILM THICKNESS MEASUREMENTS

Semiconductor d e v i c e s a r e composed o f a c o m p l i c a t e d t h r e e - d i m e n s j o n a l a r r a y o f t h i n f i l m s . Thermal-wave p h y s i c s p r o v i d e s an i d e a l t o o l t o s t u d y s u c h s y s t e m s b e c a u s e o f i t s u n i q u e d e p t h - p r o f i l i n g c a p a b i l i t y . 3 1 We have employed t h e l a s e r d e f l e c t i o n method a t f r e q u e n c i e s a s h i g h a s lOMHz t o measure t h e t h i c k n e s s o f opaque and t r a n s p a r e n t f i l m s used i n s e m i c o n d u c t o r p r o c e s s i n g . 1 6 Using an i n c i d e n t h e a t i n g l a s e r beam o f a p p r o x i m a t e l y 30mW a t lMHz, we a r e a b l e t o d e t e c t l o c a l s u r - f a c e d e f o r m a t i o n s t h a t c o r r e s p o n d t o s u r f a c e d i s p l a c e m e n t s o f approx- i m a t e l y 10-*2/&, a s e n s i t i v i t y t h a t i s c o n s i d e r a b l y b e t t e r t h a n t h a t r e p o r t e d p r e v i o u s l y . 12,13-15

To make q u a n t i t a t i v e t h i n f i l m t h i c k n e s s measurements w i t h t h e l a s e r probe t e c h n i q u e we e x t e n d e d t h e Opsal-Rosencwaig thermal-wave d e p t h - p r o f i l i n g t o t h r e e d i m e n s i o n s , a n d i n c l u d e d t h e r m o e l a s t i c s u r f a c e d e f o r m a t i o n s , t h e r m a l l e n s e f f e c t s , o p t i c a l e f f e c t s and non- l i n e a r e f f e c t s a r i s i n g from t h e t e m p e r a t u r e dependence of t h e v a r i o u s m a t e r i a l p a r a m e t e r s . When a l l o f t h e s e e f f e c t s a r e p r o p e r l y i n c l u d e d i n t h e model, q u a n t i t a t i v e measurements on s i n g l e and m u l t i p l e f i l m s a r e t h e n p o s s i b l e . T h i s i s i l l u s t r a t e d i n F i g u r e 8 w h e ~ e we show t h e o r e t i c a l c u r v e s and d a t a o b t a i n e d f o r s i n g l e f i l m s of A 1 on S i and f o r f i l m s o f A 1 on S i 0 2 on S i . We have u s e d t h e magnitude of t h e thermal-wave s i g n a l r a t h e r t h a t t h e p h a s e i n t h e s e measure-

ments s i n c e t h e magnitude h a s a g r e a t e r r a n g e and c a n be measured more p r e c i s e l y . The d a t a i n F i g u r e 8 i s a n e x c e l l e n t agreement w i t h t h e t h e o r y b o t h f o r t h e s i n g l e and t h e d o u b l e fi.lms. The p r e c i s i o n of t h e r e a d i n g s o b t a i n e d w i t h a 1 - s e c a v e r a g i n g t i m e o v e r t h e t h i c k n e s s r a n g e o f 5002 - 1 5 , 0 0 0 8 i s 2 2 % f o r t h e s e A 1 f i l m s .

I n F i g u r e 9 , we show t h e t h e o r e t i c a l c u r v e s and t h e d a t a f o r a s e r i e s o f t r a n s p a r e n t S i 0 2 f i l m s on S i . Although o n l y a s i n g l e f i l m problem, t h e t h e o r y i n t h i s c a s e must i n c l u d e t h e r m o e l a s t i c d e f o r m a t i o n s a t b o t h t h e Si-SiO2 and t h e S i 0 2 - a i r i n t e r f a c e s , t h e r m a l l e n s e s i n b o t h t h e S i 0 2 and t h e a i r , and o p t i c a l i n t e r - f e r e n c e s e f f e c t s i n t h e S i 0 2 ( s e e R e f e r e n c e 1 6 ) . The f i t be- tween t h e o r y and e x p e r i m e n t i s s t i l l , w i t h a l l t h i s c o m p l e x i t y , q u i t e good, i n d i c a t i n g t h a t t r a n s p a r e n t a s w e l l as opaque f i l m s c a n be measured w i t h thermal-wave t e c h n o l o s v . -- The t h i c k n e s s s e n s i t i v i t y f o r S i 0 2 f i l m s o n S i a p p e a r s t o be 5 2 % o v e r t h e r a n g e 500g - 15,OOOg.

(14)

0 .5 1 .O 1.5 2.0 2.5 THICKNESS (microns)

F i g . 8 - R e l a t i v e a m p l i t u d e a t 1 MHz o f l a s e r beam d e f l e c t i o n s i g n a l a s a f u n c t i o n of A 1 f i l m t h i c k n e s s f o r a s e r i e s o f Al-on-Si and A l - on-Si02-on S i f i l m s . C i r c l e s a r e e x p e r i m e n t e d d a t a and c u r v e s a r e

from t h e extended Opsal-Rosencwaig model.

(15)

THICKNESS (microns)

F i g . 9 - R e l a t i v e amplitude a t 1 MHz of l a s e r beam d e f l e c t i o n s i g n a l a s a f u n c t i o n of S i 0 2 f i l m t h i c k n e s s f o r a s e r i e s of Si02-on-Si f i l m s . C i r c l e s a r e e x p e r i m e n t a l d a t a and c u r v e s a r e from t h e extended Opsal- Rosencwaig model.

(16)

V. CONCLUSIONS

Thermal-wave p h y s i c s h a s b e e n a p p l i e d , f o r s e v e r a l y e a r s , t o t h e s t u d y of many m a t e r i a l s i n c l u d i n q s e m i c o n d u c t o r m a t e r i a l s . U n t i l r e c e n t l y , t h e s e s t u d i e s h a v e b e e n c o n f i n e d p r i m a r i l y t o s p e c t r o - s c o p i c i n v e s t i g a t i o n s . The e x a m p l e s p r e s e n t e d above i l l u s t r a t e t h a t thermal-wave p h y s i c s c a n a l s o p l a y a m a j o r r o l e i n o t h e r i m - p o r t a n t a p p l i c a t i o n s r e l a t e d t o s e m i c o n d u c t o r m a t e r i a l s , s u c h a s

i m a g i n g a n d q u a n t i t a t i v e t h i n - f i l m m e a s u r e m e n t s . R e f e r e n c e s

A. Rosencwaig, P h o t o a c o u s t i c s and P h o t o a c o u s t i c S p e c t r o s c o p y W i l e y , New York, 1 9 8 0 .

R.L. S w o f f o r d , M.E. Long a n d A.C. A l b r e c h t , J . Chem. P h y s . 65,

1 7 9 ( 1 9 7 9 ) .

P. K o r p i u n and R. T i l g n e r , J. Appl. P h y s . 51, 6115 ( 1 9 8 0 ) . A. Rosencwaig, S c i e n c e 218, 223 ( 1 9 8 2 ) .

O p t o a c o u s t i c S p e c t r o s c o p y a n d D e t e c t i o n ; ( Y . H . P a o , e d ) , Acade- mic P r e s s , New York, 1 9 7 7 .

M. L u u k k a l a , i n Scanned Image M i c r s c o p y , (E.A. Ash, e d ) p . 273, Academic P r e s s , London, 1980.

G . B u s s e , i n i b i d , p . 341.

P.-E.Norda1 a n d S.O. K a n s t a d , i n i b i d , p . 331.

D . F o u r n i e r a n d A.C. B o c c a r a , i n i b i d , p . 347.

W.B. J a c k s o n , N.M. Amer, A.C. B o c c a r a , a n d D. F o u r n i e r , Appl.

Opt. 1 3 3 3 ( 1 9 8 1 ) .

J . C . Murphy a n d L - C Aamodt, Appl. P h y s . L e t t . 38, 196 ( 1 9 8 1 ) . S. Ameri, E.A. Ash, V . Neuman a n d C.R. P e t t s , E l e c t . L e t t . 11,

337, ( 1 9 8 1 ) .

M.A. O l m s t e a d , S.E. Kohn a n d N.M. Amer, B u l l . Am. Phys. Soc.

z,

227, ( 1 9 8 2 ) .

M.A. Olmstead a n d N.M. Amer, J. Vac. S c i . T e c h n o l . , a c c e p t e d f o r p u b l i c a t i o n .

M.A. O l m s t e a d , N.M. Amer, S . Kohn, D . F o u r n i e r a n d A.C. B o c c a r a , Appl. Phys. A, a c c e p t e d f o r p u b l i c a t i o n .

A. Rosencwaig, J. O p s a l a n d D.L. F J i l l e n b o r g , 1 9 8 3 P h o t o a c o u s t i c s C o n f e r e n c e , p a p e r , 1 9 8 3 .

A. H o r d v i c k a n d H a S c h l o s s b e r q , Appl. Opt. 1 6 , 1 0 1 ( 1 9 7 7 ) . -

C . K . N . P a t e 1 a n d A.C. Tam, Rev. Mod. Phys. 53, 517 ( 1 9 8 1 ) . G.S. C a r g i l l , P h y s i c s Today, 34, 27 ( O c t o b e r , 1 9 8 1 ) . A. Rosencwaig, S o l i d S t a t e T e c h n o l . 25, 9 1 (March, 1 9 8 2 ) . G. Busse and A. Rosencwaig, Appl. P h y s . L e t t . 36, 815 ( 1 9 8 0 ) .

(17)

E . B r a n d i s a n d A. R o s e n c w a i g , i b i d , 37, 9 8 ( 1 9 8 0 ) . G . S . C a r g i l l , N a t u r e ( L o n d o n ) 286, 6 9 1 ( 1 9 8 0 ) .

T h e r m a - W a v e , I n c . , 4 7 7 3 4 W e s t i n g h o u s e D r i v e , F r e m o n t , CA 9 4 5 3 9 . J. O p s a l a n d A. R o s e n c w a i g , J . A p p l . P h y s . 53, 4 2 4 0 ( 1 9 8 2 ) . A. R o s e n c w a i g a n d R.M. White, A p p l . P h y s . L e t t . 38, 1 6 5 ( 1 9 8 1 ) . G.S. C a r g i l l , i n EMSA C o n f e r e n c e P r o c e e d i n g s 1 9 8 1 , 3 9 0 ( 1 9 8 1 ) . A. R o s e n c w a i g a n d G. B u s s e , A p p l . P h y s . L e t t . 36, 7 2 5 ( 1 9 8 0 ) . R.M. De l a R u e , R.F. H u m p h r e y s , I.M. M a s o n a n d E . A . A s h , P r o c . I E E ( L o n d o n ) 1 1 9 , 1 1 7 ( 1 9 8 2 ) . -

R.L. W h i t m a n a n d A. K o r p e l , A p p l . O p t . 8 , 1 5 6 7 ( 1 9 6 9 ) . A. R o s e n c w a i g and A. G e r s h o , J . A p p l . P h y s . 47, 6 4 ( 1 9 7 6 ) .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to