• Aucun résultat trouvé

ULTRASHORT HEAT TRANSIENTS IN METALS UNDER LASER IRRADIATION

N/A
N/A
Protected

Academic year: 2021

Partager "ULTRASHORT HEAT TRANSIENTS IN METALS UNDER LASER IRRADIATION"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00223154

https://hal.archives-ouvertes.fr/jpa-00223154

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ULTRASHORT HEAT TRANSIENTS IN METALS UNDER LASER IRRADIATION

L.F. Donà Dalle Rose

To cite this version:

L.F. Donà Dalle Rose. ULTRASHORT HEAT TRANSIENTS IN METALS UNDER LASER IRRADIATION. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-469-C5-479.

�10.1051/jphyscol:1983569�. �jpa-00223154�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplement au nO1O, Tome 44, octobre 1983

ULTRASHORT HEAT TRANSIENTS I N METALS UNDER LASER IRRADIATION

L . F . Don2 d a l l e Rose

Unitd GNSM-CUR, Dipartirnento d i F i s i c a d e Z Z r U n i v e r s i t c i d e g Z i S t u d i d i Padova, i t a Z y

Resume - Entre l e s d i f f e r e n t s types de t r a n s i e n t de f l u x de chaleur, comportant l a fusion e t l l P b u l l i t i o n des e c h a n t i l l o n s m @ t a l l i q u e s , seuls ceux q u i

n ' o n t pas de termes c o n v e c t i f s peuvent @ t r e analyses quantitativemen?. La s t r u c t u r e de ces t r a n s i e n t s e s t d e c r i t e e t analysee 2 l ' a i d e de nombreux r e s u l t a t s experimentaux.

A b s t r a c t - Among the d i f f e r e n t types o f u l t r a s h o r t heat f l o w t r a n s i e n t s which i n v o l v e m e l t i n g and b o i l i n g o f metal samples, o n l y those n o t showing convective- t y p e e f f e c t s are amenable t o q u a n t i t a t i v e discussion. The s t r u c t u r e o f these t r a n s i e n t s i s described and discussed i n terms o f several experimental r e s u l t s .

1. I n t r o d u c t i o n

The u l t r a s h o r t h e a t t r a n s i e n t s i n metals ' I , as induced by d i r e c t e d and pulsed ener- gy beams, ranging between 5 4 100 ns i n d u r a t i o n (sometimes up t o 300 ns) and w h i t h i n 1 + 15 J/cm2 i n energy d e n s i t y , show considerable d i f f e r e n c e s i n t h e i r c h a r a c t e r i - zation. B a s i c a l l y , w i t h i n c r e a s i n g energy d e n s i t y , f o u r d i f f e r e n t regimes may be defined and e x p e r i m e n t a l l y studied: t r a n s i e n t s i n s o l i d phase, t r a n s i e n t s i n s o l i d and l i q u i d phase, t r a n s i e n t s i n v o l v i n g q u i e t v a p o r i z a t i o n and/or b o i l i n g from t h e l i q u i d phase, t r a n s i e n t s which i n v o l v e convective motion and v i o l e n t b o i l i n g o f the molten phase.

The heat f l o w t r a n s i e n t s a r e accompanied and r e l a t e d t o t r a n s i e n t s i n o t h e r r e l e - vant p h y s i c a l q u a n t i t i e s l i k e surface s t a t e , r e f l e c t i v i t y , s u r f a c e and b u l k tempe- r a t u r e , t r a n s p o r t p r o p e r t i e s o f embedded i m p u r i t i e s , o r m i x i n g a t t h e boundary of a l a y e r deposited over b u l k substrate. The r e f l e c t i v i t y t r a n s i e n t has a s p e c i a l importance, since i t determines t h e a c t u a l amount o f observed energy under pulsed l a s e r i r r a d i a t i n g (PLI) and t h e r e f o r e t h e main f e a t u r e s o f t h e associated heat f l o w t r a n s i e n t ( l i k e molten phase d u r a t i o n and maximum molten depth). U n f o r t u n a t e l y very few measurements a r e a v a i l a b l e about such a t r a n s i e n t . There i s a l s o an i n i - t i a l r e f l e c t i v i t y problem which depends on t h e surface p r e p a r a t i o n technique. For example, r o l l i n g o f the sample surface may cause scratches which under l a s e r i r r a d i a t i n g a c t as p r e f e r e n t i a l centres f o r l i g h t a b s o r p t i o n (see F i g . 1 ) . S i m i l a r events may occur on chemically ( p o l i s h e d and) p i t t e d surfaces, sometimes provoking even e a r l y h e a t i n g and l o c a l i z e d evaporation from t h e surface. I n o t h e r cases i m - p l a n t a t i o n o f species t o be s t u d i e d under m a t r i x heat t r a n s i e n t s may q u i t e a l t e r the i n i t i a l r e f l e c t i v i t y , as c l e a r l y shown by Fig. 2, where regions a,b,c a r e r e - s p e c t i v e l y v i r g i n surface, C r ( 7 a t % ) implanted region, C r implanted p l u s pulsed l a s e r t r e a t e d r e g i o n (ruby l a s e r , a t 3. J/cm2, 25 ns); r e g i o n d which was l a s e r t r e a t e d b u t n o t implanted does n o t show any p a r t i c u l a r f e a t u r e . Region c shows a w r i n k l e p a t t e r n , w i t h a c h a r a c t e r i s t i c wavelength ~ 4 0 pm, which i s probably due t o

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983569

(3)

C5-470 JOURNAL DE PHYSIQUE

LASER BEAM

I

I

mechanism

Fig. 1 - Evidence f o r p r e f e r e n t i a l l i g h t absorption along r o l l i n g s c r a t c h e s i d vergin AR under PLI a t 3.5 J/cmZ, 15 ns (ruby l a s e r ) .Courtesy of Padua CNR-GNSI4 group on energy beam treatment o f m a t e r i a l s .

Fig. : 2 T r a n s i t i o n region of an AR sample from v i r g i n ( l e f t ) t o Cr implanted ( r i g h t ) a f t e r PLI with ruby l a s e r ; s e e main t e x t f o r d e t a i l s about region a , b , c , d . Ccurtesyof Padua CNR-GNSM group.

a l a s e r d i f f r a c t i o n p a t t e r n inducing melting only a t t h e l i g h t maxima; t h e absence of such a p a t t e r n i n region d c l e a r l y c a l l s f o r a g r e a t e r absorbed energy, i . e . a reduced r e f l e c t i v i t y , i n t h e implanted region. These and s i m i l a r observations demand a t t e n t i o n when adopting l i t e r a t u r e data about r e f l e c t i v i t y . Apart from d i r e c t (during t r a n s i e n t ) measurements, some i n d i r e c t methods have been discussed

(4)

t o assess t h e surface r e f l e c t i v i t y i n a given experiment, e i t h e r by l o o k i n g *) a t t h e c h a r a c t e r i s t i c f r i n g e s which s i g n t h e m e l t threshold, t h i s l a t t e r being then compared w i t h heat f l o w c a l c u l a t i o n s , o r by using a c a l o r i m e t r i c method 4, t o measure t h e t o t a l absorbed energy. This very method a l l o w s d e t e c t i o n o f r e f l e c t i - v i t y changes when passing from a s o l i d t o a l i q u i d sample s u r f a c e (e.g. a s l i g h t decrease, i n t h e case o f AR). An a d d i t i o n a l m e l t t h r e s h o l d i n d i c a t o r i s given by t h e damage ( i . e . xMIN) behaviour w i t h i n c r e a s i n g absorbed energy 5 y 6 ) , which shows a peak (due t o increased s l i p deformation a t m e l t t h r e s h o l d ) . F i n a l l y a consistency check about an e f f e c t i v e ( i .e. a l l o v e r t h e p u l s e d u r a t i o n ) r e f l e c t i v i t y assignment may be c a r r i e d o u t whenever a s e t o f i m p u r i t y p r o f i l e s (as implanted as w e l l as a f t e r t r a n s i e n t p r o f i l e s , a t several energy d e n s i t i e s ) a r e a v a i l a b l e . I t i s then g e n e r a l l y p o s s i b l e t o l o c a t e t h e m e l t t h r e s h o l d and, by means o f a combined s o l u - t i o n o f t h e heat and i m p u r i t y d i f f u s i o n equations, t o assign d e f i n i t e values t o t h e i m p u r i t y normal d i f f u s i o n c o e f f i c i e n t D. By now several d i f f u s i o n c o e f f i c i e n t s have been determined i n t h i s way 5 y 8 7 9 y 1 0 ) , th e i r value being %lo-' cmz/sec, which i s w i d e l y recognized s t h e t y p i c a l l i q u i d phase value, mainly on t h e basis o f o t h e r measurements 111, c a r r i e d o u t under conditons much nearer t o thermal e q u i l i - brium. An i n t e r e s t i n g p o i n t here concerns t h e d i f f u s i o n c o e f f i c i e n t dependence on t h e t r a n s i e n t absorbed energy, which i n t u r n may be r e l a t e d t o t h e temperature dependence o f t h e d i f f u s i o n process and t o t h e as y e t u n d e c i d e d question whether the c o e f f i c i e n t D increases l i n e a r l y o r e x p o n e n t i a l l y "I. For instance, Sb d i f - f u s i o n i n AR y e l d s ") a value D = 5 ~ 1 0 - ~ cm2/sec under a s i t u a t i o n where a h i g h average temperature i s achieved d u r i n g t h e t r a n s i e n t ( a c o n c e n t r a t i o n g r a d i e n t h i g h e r than usual might a l s o i n t r o d u c e c o r r e c t i o n s t o t h e l i n e a r t h e o r y ) . Some e a r l i e r determinations 1 2 5 1 3 ) p r o v i d e d values f o r D up t o 10-I cm2/sec. Such r a t h e r extreme r e s u l t s a r e now i n t e r p r e t e d as a piece o f evidence f o r convective type motions under P L I . This i s f u r t h e r supported (see Fig. 3 ) : i ) by t h e a f t e r t r a n s i e n t metal surface which shows q u i t e a rough aspect as compared t o t h e surface smooth- ness found a f t e r lower energy d e n s i t y t r a n s i e n t s (and which i n t u r n c o r r e l a t e w i t h D values f o r implanted i m p u r i t i e s equal t o QJIO-' cm2/sec) and i i ) by t h e deep i m p u r i t y p r o f i l e t a i l s which o f t e n extend we1 1 beyond t h e d e t e c t a b l e 1 im i t s , thus p r e v e n t i n g any check based on t h e conservation o f the t o t a l i m p u r i t y amount and a t t h e same time c o n f i r m i n g t h e general idea according t o which convective motions may q u i t e increase the depth over which a molten phase appears. The t r u e n a t u r e o f t h i s v i o l e n t , convective t y p e motion has n o t y e t been understood comple- t e l y , the main d i f f i u l t y being t h e q u i t e l o n g e r time scale needed i n conventional convective motion

'".

A n i c e evidence f o r the existence o f these two q u i t e d i f f e - r e n t d i f f u s i o n regimes i s found i n r e f . 12, where both a simple l i q u i d phase d i f - fusion p r o f i l e and a convective-type f l a t p r o f i l e are shown, as measured by means of a RBS microbeam, w i t h i n t h e same l a s e r spot, which has a gaussian i n t e n - s i t y d i s t r i b u t i o n . For some reasons (perhaps r a d i a l thermal g r a d i e n t ) t h e p e r i - pheral c i r c u l a r region, which achieves lower average temperatures, shows e v i - dence f o r convective-type motion both because o f t h e rough surface and o f t h e Sb f l a t p r o f i l e shape; on t h e o t h e r hand t h e c e n t r a l region, which achieves h i g h e s t absorbed energy, i s smooth and t h e corresponding Sb p r o f i l e i s simply d i f f u s i o n l i k e .

I n t h e f o l l o w i n g we s h a l l r e s t r i c t our discussion o n l y t o t r a n s i e n t s which e i t h e r r e l a t e t o simple h e a t i n g and me1 t i n g o f t h e i r r a d i a t e d metal (lower absorbed energy t r a n s i e n t s ) o r i n v o l v e q u i e t evaporation and/or b o i l i n g from the l i q u i d phase ( h i g h e r absorbed energy t r a n s i e n t s ) .

(5)

JOURNAL DE PHYSIQUE

-

DfFFUSlON PROFILE

CONVECTIVE TYPE PROFILE

Fig. 3 - Lower (aboveland h i g h e r (below) absorbed energy t r a n s i e n t e f f e c t s on t h e s t a t e o f a La implanted N i surface and on t h e La p r o f i l e (courtesy o f Padua CNR- GNSM group; see a l s o r e f . 10). Both t r a n s i e n t s were induced by a ruby l a s e r pulse, 16 ns Fwhm.

2. S t r u c t u r e o f t h e heat t r a n s i e n t 2.1. Lower absorbed energy t r a n s i e n t s

As i t i s w e l l known 1 5 ) , i n metals i t i s p o s s i b l e t o assume an istantaneous con- v e r s i o n i n t o heat o f t h e energy absorbed from t h e primary beam, a t l e a s t f o r t h e times under c o n s i d e r a t i o n here. Then the heat f l o w i s governed by t h e (unidimen- s i o n a l ) conduction equation

where C, p, K are t h e sample s p e c i f i c heat, d e n s i t y and thermal c o n d u c t i v i t y (depending on t h e temperature T, on t h e s t a t e , whether s o l i d o r molten, and pos s i b l y on t h e amount o f embedded i m p u r i t i e s and damage). Q ( x , t ) represents t h e source term. Equation (1) must be solved t o g e t h e r w i t h t h e boundary c o n d i t i o n s :

(6)

aT

p H f u / = K s o l

IX+

- K l i q

i

ax

c

x-

plus, d u r i n g r e s o l i d i f i c a t i o n ,

x = - 1 ( T . - T )

B l M

Conditions (2a,b) takes i n t o account the e x t e r n a l bath a t T = T, ( o f t e n , b u t n o t always, room temperature), w h i l e c o n d i t i o n s (3a) and (3b) r e f e r t o t h e m e l t f r o n t (whenever i t shows up), more p r e c i s e l y t o i t s v e l o c i t y X, which v a r i e s i n such a way as t o conserve the balance o f i n g o i n g and outgoing heat f l u x (eq. 3a, where Hfus i s t h e l a t e n t heat o f fusion/resolidification) and which has t o s a t i s f y the undercool i n g c o n s t r a i n t as r e q u i r e d by c r y s t a l regrowth thermodynamics (eq. 3b, where Ti i s t h e l i q u i d - s o l i d i n t e r f a c e temperature and TM the m e l t i n g temperature;

6 i s a p r o p o r t i o n a l i t y constant). The constant B i s v e r y small i n e t a l s as com- pared t o t h e semiconductor case. According t o a simple argument 16T, t h e i n t e r - face undercooling obeys

Stefan (T M - T. )/Ti 1 * vres l v s

Stefan .

where vs i s t h e metal sound v e l o c i t y and vres i s t h e r e s o l i d i f i c a t i o n v e l o c i t y as determined by t h e pure heat f l u x conservation ( i .e. eq. 3a which

a Stefan boundary problem i f a c t i n g alone). As a consequence since v

i n most c a l c u l a t e d t r a n s i e n t s i n metals, and vs 2.5000 m/sec, ATi ?. 0.5 2 e o f TM, i,e. n e g l i g i b l e . The r e s o l i d i f i c a t i o n v e l o c i t y i n metals i s then c o n t r o l l e d o n l y by heat f l u x .

As a m a t t e r o f f a c t , heat t r a n s i e n t s i n metals may be c a l c u l a t e d by using appro- p r i a t e average values f o r C, p , K, which a r e s l o w l y v a r y i n g f u n c t i o n s o f T i n a given s t a t e ( s o l i d o r molten). Keeping i n t o account t h e i r a c t u a l v a r i a t i o n would o n l y change t h e r e s u l t s by some percents, w h i l e i n c r e a s i n g much t h e computer time.

Recent papers I 5 7 l 7 ) have described t h e d e t a i l e d n a t u r e o f t h e heat t r a n s i e n t a t lower absorbed energy. The source term may q u i t e i n f l u e n c e i t s s t r u c t u r e . Roughly speaking t h e molten phase d u r a t i o n may be d i v i d e d i n t o two subsequent stages, an e a r l i e r one which i s q u i t e warmer ( i t s average temperature being a t an i n t e r - mediate value between TM and t h e normal b o i l i n g temperature Teb) and a second one c h a r a c t e r i z e d by an almost constant temperature ( a c t u a l l y TM) a l l over t h e molten l a y e r . Depending on t h e used source ( i .e. w i t h l a s e r b u t n o t w i t h e-beam) t h e former stage i s a l s o c h a r a c t e r i z e d by very h i g h thermal g r a d i e n t s i n l i q u i d phase (up t o l o 7 "Kjcm). These two stages may be e x p e r i m e n t a l l y observed by l o o k i n g a t several p r o p e r t i e s o f i m p u r i t i e s embedded i n t h e h o s t metal sample through e i t h e r i m p l a n t a t i o n o r sandwiching o f a t h i n i m p u r i t y l a y e r . While normal d i f f u s i o n may occur d u r i n g both stages, t h e r e a r e o t h e r phenomena which are c h a r a c t e r i s t i c o f one stage o r t h e other. The f i r s t stage o f f e r s t h e unique combination o f h i g h c o n c e n t r a t i o n g r a d i e n t s (as due t o i o n i m p l a n t a t i o n o r m i x i n g o f a l a y e r e d s t r u c t u r e ) and extreme l i q u i d phase gradients: t h e i r product c o n t r o l s 18) a term i n t h e i m p u r i t y d i f f u s i o n equation which i s u s u a l l y n e g l i - g i b l e , b u t which may p l a y an observable r o l e i n some cases (Soret d i f f u s i o n ) . Appreciable e f f e c t s have been observed f o r Cu and Zn i n A t and Au i n N i . The second stage, on the o t h e r hand, ma be q u i t e a p t f o r i m p u r i t y p r e c i p i t a t i o n occurence; t h i s may be understood 15) by looking, f o r example, a t t h e A t - r i c h p o r t i o n o f the e q u i l i b r i u m phase diagram f o r t h e AR-Sb b i n a r y and by n o t i c i n g

(7)

JOURNAL DE PHYSIQUE

t h a t , f o r Sb c o n c e n t r a t i o n o f a few atomic p e r c e n t s , t h e t i m e spent by t h e c o o l i n g AR m o l t e n phase w i t h i n t h e temperature i n t e r v a l a s s o c i a t e d w i t h a two phase s t a t e ( i . e . l i q u i d p l u s AX-Sb p r e c i p i t a t e ) may be ong enough t o cause p r e c i p i t a t i o n i n c e r t a i n t r a n s i e n t s . A b e a u t i f u l experiment 4j which c o n t r o l l e d t h e second stage d u r a t i o n under P L I by a c t i n g on t h e ambient temperature To was a b l e t o show i n t h e v e r y case o f t h e AR(Sb) system, w i t h i n i t i a l Sb c o n c e n t r a t i o n equal t o 2. a t %, t h a t p r e c i p i t a t e n u c l e a t i o n and growth o c c u r r e d w i t h i n 15 ( + l o ) ns.

Another phenomenon which may t a k e p l a c e a l o n g b o t h stages, a t l o w e r absorbed ener- gies, i s i m p u r i t y s u r f a c e o x i d a t i o n . The c o r r e s p o n d i n g s u r f a c e peak has been de- t e c t e d i n t h a f t e r t r a n s i e n t p r o f i l e o f some i m p u r i t i e s i m p l a n t e d i n N i ; H f 20), La and Eu lo' a r e good examples i n t h i s r e s p e c t . F o r H f and La, l a s e r i r r a d i a t i n g i n Helium atmosphere o r under l o - ' t o r r vacuum,yields q u i t e a r e d u c t i o n i n t h e peak h e i g h t . I n a d d i t i o n t h e h e a t o f f o r m a t i o n o f La,O, and Hf,O, i s n e g a t i v e and much l a r g e r , i n a b s o l u t e value, t h a n NiO. T h i s means t h a t i n these cases s u r f a c e impu- r i t y o x i d a t i o n i s an e n e r g e t i c a l l y h i g h l y f a v o u r e d process, even though t h e e x a c t way, i n which i t a c t u a l l y develops a t h i g h temperatures, i s s u b j e c t t o a d e l i c a t e and as y e t n o t e x p l o r e d balance between t h e r e a c t i o n r a t e and t h e Le C h a t e l i e r p r i n c i p l e ( a b o u t exothermic r e a c t i o n s ) . Eu seems n o t t o be an a l t o g e t h e r d i f f e r e n t case, even though no check was performed on i t b y v a r y i n g t h e oxygen atmosphere l o ) . An i m p u r i t y s u r f a c e peak may be o r i g i n a t e d by s e v e r a l mech nisms: b e s i d e s u r f a c e o x i d a t i o n , i m p u r i t y s e g r e g a t i o n d u r i n g r e s o l i d i f i c a t i o n 13?, changes i n t h e reso- 1 i d i f i c a t i o n v e l o c i t y when t h e i m p u r i t y d i s t r i b u t i o n i s f l a t ''1, p r e f e r e n t i a l e v a p o r a t i o n o f t h e h o s t metal which causes i m p u r i t y enrichment o f t h e s u r f a c e l a y e r l o ) , and f i n a l l y d i f f e r e n t combination o f t h e t r a n s p o r t c o e f f i c i e n t s (normal and S o r e t d i f f u s i o n , segregation, s u r f a c e c a p t u r e r a t e , .. .) which may be used i n t h e e x p e r i m e n t a l p r o f i l e f i t t i n g procedure. Here we o n l y remind t h e reason why s e g r e g a t i o n e f f e c t s , which a r e so abundant i n p u l s e induced t r a n s i e n t s i n s i l i c o n , a r e n o t observed i n m e t a l s under s i m i l a r c o n d i t i o n s . T h i s i s due t o t h e f a c t t h a t t h e i m p u r i t y r e s i d e n c e t i m e f r e s a t t h e r e g r o w i n g i n t e r f a c e i s much t o o long, as compared t o t h e r e g r o w t h t i m e rreg, i n o r d e r t o a v o i d t r a p p i n g . As a consequence, i f D i i s t h e i m p u r i t y d i f f u s i o n c o e f f i c i e n t j u s t a t t h e regrowing i n t e r f a c e , t h e c o n d i t i o n f o r s e g r e g a t i o n t o occur:

(A b e i n g t h e monolayer c h a r a c t e r i s t i c l e n g h t ) , i s n o t s a t i s f i e d under P L I , s i n c e vres i s q u i t e h i g h as compared t o s i l i c o n ( t h i s b e i n g due t o t h e f a c t t h a t m e t a l s have h i g h e r thermal c o n d u c t i v i t y and l o w e r l a t e n t h e a t o f r e c r y s t a l l i z a t i o n ) . Estimates o f t h e r a t i o f r e s / f r e g g i v e 8 f o r Sn i n AR e f . 22) o r 62 f o r Eu i n N i ( r e f . 10). We may f i n a l l y q u o t e t h e f a c t 19y5y18*21y t h a t Sb,Cr,Cu,Sn, (and perhaps Pb) a l l show an e f f e c t i v e s e g r e g a t i o n c o e f f i c i e n t i n AR equal t o 1, even though t h e e q u i l i b r i u m s e g r e g a t i o n c o e f f i c i e n t i s e i t h e r v e r y l a r e (Sb,Cr)

1 8 ) o r v e r y small (Cu,Sn). A s i m i l a r statement h o l d s f o r Eu and La i n N i .

A f u r t h e r s u p p o r t t o t h e absence o f s e g r e g a t i o n i n m e t a l s under t h e p r e s e n t con- d i e i o n s i s t h e f a c t t h a t no c e l l s t r u c t u r e has y e t been observed, t h i s f a c t a g a i n b e i n g r e l a t e d t o t h e h i g h v v a l u e (see M u l l ins-Sekerka c r i t e r i o n 2 3 ) ) .

r e s

Other t o p i c s which m i g h t be discussed i n t h e p r e s e n t c o n t e x t o f t r a n s i e n t s t r u c t u r e a r e d e f e c t f o r m a t i o n i n s i n g l e c r y s t a l l i q u i d phase e p i t a x y and i m p u r i t y d e f e c t i n t e r a c t i o n . As t o them and t o t h e r e l a t e d q u e s t i o n o f m e t a s t a b l e s o l i d s o l u t i o n s see r e f . 10 and r e f e r e n c e s t h e r e i n .

(8)

2.2. Higher absorbed energy t r a n s i e n t s

I n these cases, t h e heat f l o w equation must s a t i s f y some a d d i t i o n a l boundary con- d i t i o n s . Denoting by S t h e instantaneous evaporating f r o n t p o s i t i o n w i t h respect t o a reference frame f i x e d i n t h e bulk o f t h e sample, then i t i s

H being t h e ( c o n s t a n t ) heat o f v a p o r i z a t i o n ; equation (4) s t a t e s by i t s e l f aX8Fher Stefan boundary problem. The thermodynamical c o n d i t i o n on t h e surface f r o n t v a l o c i t y S i s given by one o f t h e f o l l o w i n g two r e l a t i o n s h i p s , s t a t e d i n terms o f t h e surface temperature Ts:

U exp ( - M H / k Ts),

i = U exp(-MH /k TS), VaP T~ < Teb

vap ( 5a ,b)

as given by eq. (41, T = T

p l u s eq. ( 1 ) d i s c r e t i z e d S eb Here M i s t h e mass o f t h e metal atoms, k t h e Bo tzmann constant and

3

U a v e l o c i t y o f t h e same order as sound v e l o c i t y i n metalsz4 . We s h a l l r e f e r t o (5a) and t o

(5b) as t o surface and b u l k evaporation r e s p e c t i v e l y . Case (5b) corresponds t o o r d i n a r y b o i l i n g . U l t r a s h o r t l a s e r induced evaporative t r a n s i e n t s may be discussed from t h e p o i n t o f view o f t h e so c a l l e d developed o r i n t e n s e evaporation regime.

Such a regime, when heat d i f f u s i o n may be assumed as unidimensional, corresponds t o a conversion of the absorbed energy i n t o heat o f v a p o r i z a t i o n o n l y and i s cha- r a c t e r i z e d by an evaporated thickness Sev >> J2Krp/pc ( r p i s t h e p u l s e d u r a t i o n ) . I n terms o f l a s e r pulse i n t e n s i t y t h e r e i s a t h r e s h o l d i n t e n s i t y value 25) f o r achieving t h e i n t e n s e evaporation regime, given by Ithr = (PH,,~/(I - R ) ) . J K / ~ C T ~ , ( R i s the r e f l e c t i v i t y ) . I n Fig. 4 (r.h.s.) we p l o t such a t h r e s h o l d i n t e n s i t y as a f u n c t i o n o f T f o r some metals (At,Ni and Sb): as i t may be seen the

P

Fig. 4 - (r.h.s.) Developed evaporation regime t h r e s h o l d as a f u n c t i o n od p u l s e d u r a t i o n f o r At, Ni, Sb t o g e t h e r w i t h t h e P L I region, ( 1 .h.s.)T@mperature o f t h e s t a t i o n a r y f r o n t (abscissa) as a f u n c t i o n o f i n c i d e n t l a s e r energy ( o r d i n a t e ) ; arrows r e f e r t o c r i t i c a l temperatures (see side t a b l e ) .

(9)

JOURNAL DE PHYSIQUE

PLI r e g i o n i s below t h r e s h o l d f o r AR and N i , b u t f o r Sb i t i s j u s t on t o p o f t h e t r a n s i t i o n r e g i o n f r o m a weak t o an i n t e n s e e v a p o r a t i v e regime. N o t i c e t h a t f o r a g i v e n T,, and f o r an i n t e n s i t y I above Ithr(rp), a s t a t l o n a r y regime i s reached w i t h c o n s t a n t v a p o r i z a t i o n f r o n t temperature To and f r o n t v e l o c i t y 5 ,

I n t h e 1.h.s. o f F i g . 4,T, i s p l o t t e d as a f u n c t i o n o f I , f o r t e same m e t a l s as a t r.h.s., up t o t h e i r c r i t i c a l temperature (%8600 O K f o r AR 26p and e s t i m a t e d t o be about 4 s 7 t i m e s Teb i n t h e o t h e r cases). Q u a l i t a t i v e l y i t i s t h e n p l a u s i b l e t h a t P L I may l e a d t o a h i g h s u r f a c e superheating, p r o v i d e d an adequate p r e s s u r e p r e v e n t s u r f a c e b o i l i n g : w h i l e i n t h i s r e s p e c t ambient p r e s s u r e seems n e g l i g i b l e , r a d i a t i o n and r e c o i l p r e s s u r e m i g h t p l a y a r o l e . Plasma f o r m a t i o n may a l s o be i m p o r t a n t . The s i t u a t i o n seems q u i t e open t o i n v e s t i g a t i o n . From t h e general s t r u g t u r e o f t h e h e a t f l o w e q u a t i o n s o l u t i o n , i t i s found t h a t t h e e v a p o r a t i v e / b o i l i n g t r a n s i e n t i s always n e s t e d i n t h e warmer s t a g e o f t h e h e a t t r a n s i e n t i t s e l f . A

parameter which assesses i t s importance i s t h e r a t i o between t h e energy used f o r i t and t h e t o t a l absorbed energy. As an example, i n t h e case o f s u r f a c e e v a p o r a t i o n ( 5 a ) , such a r a t i o i s 2% and 81% f o r Sb under P L I a t 0.41 and 2.1 ~ / c m ' r e s p e c t i - v e l y ( 7 ns Fwhm, R = 0.63). F o r AR under PLL a t 5 ~ / c m ' (15 ns Fwhm, R = 0.79) t h e same r a t i o i s 6%, c o r r e s p o n d i n g t o 100 A evaporated t h i c k n e s s . I f t h e surface temperature i s clamped a t Teb = 2740 :K ( b u l k e v a p o r a t i o n , see ( 5 b ) ) , t h e n t h e r a t i o r i s e s up t o 51%, and about 900 A b o i l o f f .

Experimental s t u d y of t h e s e t r a n s i e n t s may be c a r r i e d o u t by means o f a l a y e r e d s t r u c t u r e , e.g. Pb o v e r l a y e r s d e p o s i t e d on b u l k AR. The s t r u c t u r e o f t h e t r a n s i e n t , w i t h e v a p o r a t i o n / b o i l i n g l o c a t e d i n t h e e a r l y p a r t o f t h e g l o b a l t r a n s i e n t , i s w e l l i l l u s t r a t e d by experiments u s i n g two d i f f e r e n t energy sources, r u b y l a s e r which causes h e a t i n g up j u s t a t t h e ( e x t e r n a 1 ) s u r f a c e o f t h e Pb l a y e r , c h a r a c t e - r i z e d by a d e f i n i t e l y p o o r e r thermal c o n d u c t i v i t y w i t h r e s p e c t t o t h e AR s u b s t r a t e , and e-beam which on t h e c o n t r a r y may d e p o s i t energy o v e r s e v e r a l d i f f e r e n t ranges w e l l i n s i d e t h e A!?, substrate,thus o f f e r i n g d i f f e r e n t i a t e 2 h e a t i n g up o p p o r t u n i t i e s . I n F i g . 5, RBS s p e c t r a a r e shown as o b t a i n e d from a 500 A t h i c k Pb l a y e r vacuum evaporated over a p u r e AR m a t r i x , a f t e r t r e a t i n g by means o f a monochromatic (15 keV) e-beam pulse, 50 ns Fwhm, and a t energy d e n s i t i e s equal t o 0.11, 0.16, 0.43 J/cm2. I t i s seen t h a t a t t h e l o w e s t energy d e n s i t y AR and Pb mix t o g e t h e r and no Pb l o s s i s d e t e c t a b l e , a t 0.16 J/cm2 b o t h m i x i n g and Pb l o s s occur, w h i l e a t 0.43 J/cm2 o n l y Pb l o s s ( i .e. e v a p o r a t i o n o r b q i l i n g ) occurs. We suggest t h e f o l l o w i n g mechanism f o r a c o m p e t i t i o n between m i x i n g and e v a p o r a t i o n , on t h e b a s i s o f t h e general s t r u c t u r e o f t h e u l t r a s h o r t h e a t f l o w t r a n s i e n t . The h e a t o f s o l u - t i o n o f a Pb gram i n t o A!?, i s ( p o s i t i v e , i.e. absorbed and) equal t o 236 J / g r and has t o be compared w i t h 24 J / g r f o r t h e h e a t o f f u s i o n and 863 J / g r f o r t h e h e a t of evaporation. I n t h e a c t u a l t r a n s i e n t , e v a p o r a t i o n o r b o i l i n g , i f any, occurs e a r l y and once s t a r t e d consumes mudh o f t h e d e p o s i t e d energy which t h e n cannot be used f o r m i x i n g processes.

T h i s i s j u s t t h e case i n t h e h o t t e s t t r a n s i e n t . On t h e o t h e r hand " c o l d e r " t r a n - s i e n t s a l l o w m i x i n g t o o c c u r as soon as b o t h Pb and AX a r e molten. A c o r r e l a t e d mechanism may a l s o o f f e r a key t o t h e b e h a v i o u r o f t h e Pb l o s s e s under P L I vs.

Pb l a y e r t h i c k n e s s , a t a c o n s t a n t energy d e n s i t y ( F i g . 6). From t h e RBS Spectra ( n o t shown), i t nay be segn t h a t a t l o w e r t h i c k n e s s a l m o s t n o m i x i n g occurs, w h i l e a t t h i c k n e s s 2 750 A b o t h l o s s and m i x i n g occur: i n t h i s case t h e AR

m a t r i x , because o f i t s h i g h e r thermal c o n d u c t i v i t y , a c t s as a h e a t pump, which i s

(10)

C H A N N E L S

Fig. 5 - RBS s p e c t r a (1.8 MeV ~ e ' ) of Pb (500 ~ ) / A R system a s evaporated and a f t e r d i f f e r e n t e-beam induced t r a n s i e n t s (cooperation Padua-Lecce)

I " " " " ' " I

2 600 RUBY LASER

:O 1.5 ~/crn'

F

m P--- -0

0

Fig. 6 - Pb l o s s under PLI of a 500 A t h i c k Pb l a y e r over pure AR ( r e s u l t s from Padua GNSM-CNR group)

more e f f e c t i v e a t lower Pb t h i c k n e s s , t h u s preventing mixicg. In Fig. 6 we c l e a r l y see a s a t u r a t i o n of t h e l o s s mechanism, roughly above 500 A l a y e r thickness. A p o s s i b l e explanation i s t h a t , when mixing has occurred up t o t h e sample s u r f a c e , Pb evaporation becomes more d i f f i c u l t . Me a r e then faced with t h e problemof evaporation of a s i n g l e atom, which has neighbours d i f f e r e n t from i t s e l f . In t h e

(11)

JOURNAL DE PHYSIQUE

l i m i t o f a v e r y d i l u e a l l o y t h i s problem may be t a c k l e d by means o f t h e macro- s c o p i c atom model 27f. P r e l i m i n a r y r e s u l t s , t o be p r e s e n t e d i n a l a t e r paper, show t h a t t h e r a t i o o f t h e i m p u r i t y ( A ) . t o m a t r i x (B) e v a p o r a t i n g f l u x i s

@A/@B = cA %/a; exp

[

- ( H ~ in - H~ ) / R T ~

- vap vap -

where CA i s t h e i m p u r i t y c o n c e n t r a t i o n , t h e d o t t e d f l u x e s r e f e r t o p u r e m e t a l s A and B, w h i l e

~ l ~ ; ~

i s a r a t h e r s i m p l e f u n c t i o n o f t h e s u r f a c e t e n s i o n s o f A and B and of t h e h e a t o f s o l u t i o n o f A i n B. Here R i s t h e gas c o n s t a n t . A c t u a l c a l c u l a t i o n s show t h a t H!?,:~ f o r Pb i n AR o r AR i n Pb a r e v e r v s i m i l a r : t h u s i t seems t h a t b o t h s p e c i e s m a y v ~ b a p o r a t e once t h e y have mixed up t o t h e s u r f a c e .

3. Conclusions

As a c o n c l u s i o n , i n t h e p r e s e n t work we have d i s c u s s e d t h e p y h y s i c a l processes which a l l o w d e t e c t i n g o f a s t r u c t u r e i n t h e h e a t f l o w t r a n s i e n t induced i n metal samples by u l t r a r a p i d p u l s e d energy beams. Many o f t h e s e processes a r e c l e a r l y r e l a t e d t o t h e temporal e v o l u t i o n o f t h e h e a t f l o w t r a n s i e n t ; t h e s i t u a t i o n i s q u i t e complex o f f e r i n g i n t e r p l a y o f d i f f e r e n t mechanisms i n t h e two e x p e r i m e n t a l regimes which may be r e f e r r e d t o as l o w e r and h i g h e r absorbed e n e r g i e s . I n t h e former, t r a s p o r t p r o p e r t i e s o f i m p l a n t e d i m p u r i t i e s have by now been s t u d i e d i n many cases: perhaps what i s c a l l e d f o r now i s an a t t e m p t t o s y s t e m a t i z e and g i v e a macroscopic f o u n d a t i o n t o many d i f f e r e n t f a c t s . The l a t t e r regime, b ~ h i c h seems more d i f f i c u l t t o d e s c r i b e i n a d e t a i l e d q u a n t i t a t i v e manner, n a t u r a l l y o f f e r s t h e o p p o r t u n i t y f o r a d i r e c t comparison between d i f f e r e n t d i r e c t e d energy sources: t h i s v e r y f a c t may be o f g r e a t value,mainly f o r s t u d y i n g t h e r e f l e c t i v i t y problem under P L I a t h i g h energy d e n s i t i e s .

Acknowledgements

I would l i k e t o thank a l l t h e s t a f f o f GNSM-CNR groups i n Padua and Lecce U n i - v e r s i t i e s f o r t h e i r a s s i s t a n c e w h i l e w r i t i n g t h i s paper up and f o r p r o v i d i n g u s e f u l e x p e r i m e n t a l m a t e r i a l , t o be p u b l i s h e d i n coming works. A p a r t i c u l a r t h a n k t o V.N. K u l k a r n i , A. M i o t e l l o and D. G u i d o l i n f o r u s e f u l d i s c u s s i o n s , t o P. Meneghello f o r c o o p e r a t i o n i n e v a p o r a t i v e t r a n s i e n t c a l c u l a t i o n s and t o P. Troncon f o r a i d i n t h e problem o f p r e f e r e n t i a l e v a p o r a t i o n . A warm thank t o A. Rampazzo f o r h i s drawings .

References

1) See MRS Boston M e e t i n g Proceedings o v e r l a s t f i v e y e a r s .

2) JAIN A.K., KULKARNI V.N., SOOD D.K. and UPPAL J.S., 3. Appl . Phys. 52 (1981)4882.

3 ) L a s e r and Electron-Beam I n t e r a c t i o n s w i t h S o l i d s , 1981, ed. B.R. ~ ~ F e t o n , G.K.

Cel l e r , ( N o r t h - H o l l and, New York, 1982).

4 ) PEERCY P.S., FOLLSTAEDT O.M., PICRAUX S.T. and WAMPLER W.R., i n r e f . 31, pag.401.

5 ) BATTAGLIN G., CARNERA A., DELLA MEA G., MAZZOLDI P., JANNITTI E., JAIN A.K.

and SOOD D.K., J. Appl. Phys. 3 (1982) 3224.

6 ) FOLLSTAEDT D.M., PICRAUX S.T., PEERCY P.S. and WAMPLER W.R., Appl . Phys. L e t t . 39 (1981) 327.

7) E s e r and E l e c t r o n Beam S o l i d i n t e r a c t i o n and ) ( l a t e r i a l s Processing, 1980, eds.

J.F. Gibbson, L.D. Hess, T.W. Sigmon (North-Hol l a n d , New York, Oxford, 198 1 ) .

(12)

8 ) WAMPLER W.R., FOLLSTAEDT D.M. and PEERCY P.S., i n r e f . 7 , page 567.

9 ) JAIN A. K., KULKARNI V .N. , NAMBIAR K. B. , SOOD D. K. , SHARMA S.C.L. and MAZZOLDI P., Rad. E f f . 63 (1982) 175.

1 0 ) BATTAGLIN

c,

CARNERA A. , CHAUMONT J., DELLA MEA G., DONA' DALLE ROSE L.F., ZAIN A.K., KULKARNI V.N., i6AZZOLDI P., MIOTELLO A., SOOD D.K., t h i s conference.

1 1 ) EDWARDS J.B., HUCKE E.E. and MARTIN J.J., M e t a l l u r g i c a l Rev. 13 (1968) 1 . 1 2 ) JAIN A.K., KULKARNI V.N. and SOOD D.K., N.I.M. 191 (1981) 151.

1 3 ) MIOTELLO A., DONA' DALLE ROSE L.F., Rad. E f f . 5-1981) 235.

1 4 ) POSSIN G.E., PARKS H.G. and CHIANG S.W., i n r e f - 7 , page 73.

1 5 ) DONA' DALLE ROSE L. F. , MIOTELLO A., Rad. E f f . - 53 (1980) 7 and r e f e r e n c e s t h e r e i n .

1 6 ) TURNBULL D., p r i v a t e communication.

1 7 ) DONA' DALLE ROSE L.F., MIOTELLO A,, BROTTO R., Rad. E f f . 69 (1983) 1.

1 8 ) MIOTELLO A., DONA' DALLE ROSE L.F., DESALVO A., Appl

.

Phys. L e t t . 40 (1982) 135, see a l s o DONA' DALLE ROSE, MIOTELLO A., i n r e f . 3 , page 425.

19) WAMPLER W.R., FOLLSTAEDT D.M. and PICRAUX S.T., Appl. Phys. L e t t . 36 (1980) 366.

2 0 ) DRAPER C.W., KAUFMANN E.N. and BUENE L., S u r f a c e and I n t e r f a c e A n a l y s i s 4

(1982) 8 .

21) TILLER W.A., JACKSON K.A., RUTTER J.W. and CHALMERS B., A c t a M e t a l l u r g i c a 1 (1953) 428.

2 2 ) PICRAUX S.T., FOLLSTAEDT D.M., KNAPP J.A., WAMPLER W.R. and RIMINI E., i n r e f . 7, page 575.

23) MULLINS W.W., SEKERKA R.F., J. Appl. Phys. 35 (1964) 444.

2 4 ) BUNKIN F.V., TRIBEL'SKII M.J., Sov. Phys. Uspekhi 23 (1980) 105.

2 5 ) BATANOV V.A., BUNKIN F.V., PROKHOROV A.M. and FEDOE V.B., Sov. Phys. JETP, 3 6 (1973) 311.

26) Thermophysical P r o p e r t i e s o f M a t t e r , Vol . 10, Thermal D i f f u s i v i t y , Y .S.

Touloukian, R.W. Powell, C.Y. Ho and M.C. N i c o l a o v eds. IFI-Plenum, New York, 1973.

2 7 ) MIEDEMA A.R., DE CHATEL P.F., de BOER F.R., Physica 1008 (1980) 1.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to