• Aucun résultat trouvé

MODELS FOR RISING CROSS-SECTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "MODELS FOR RISING CROSS-SECTIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00215211

https://hal.archives-ouvertes.fr/jpa-00215211

Submitted on 1 Jan 1973

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODELS FOR RISING CROSS-SECTIONS

L. Caneschi, M. Ciafaloni

To cite this version:

L. Caneschi, M. Ciafaloni. MODELS FOR RISING CROSS-SECTIONS. Journal de Physique Collo- ques, 1973, 34 (C1), pp.C1-268-C1-273. �10.1051/jphyscol:1973131�. �jpa-00215211�

(2)

L. CANESCHI and M. CIAFALONI

MODELS FOR RISING CROSS-SECTIONS

L . CANESCHI and M. CIAFALONI CERN-GENEVA

1.- INTRODUCTION.- A number of i n t e r p r e t a t i o n s of t h e observed r i s e o f CT i n t h e ISR energy range have been proposed. We w i l l b r i e f l y review t h e gene- r a l l i n e s of some of them h e r e , i n d i c a t i n g which f e a - t u r e s of t h e d a t a f i t n a t u r a l l y i n each scheme and which do n o t . I t i s convenient t o c l a s s i f y t h e propo-

sed models i n t h r e e c l a s s e s :

a ) Models t h a t emphasize t h e r o l e o f t-channel an7 g u l a r momentum and u n i t a r i t y .

b) Models t h a t emphasize t h e s-channel a n g u l a r mo- mentum (impact parameter) and u n i t a r i t y .

C ) Models t h a t connect t h e r i s e of a t o t h e v a s t i n c r e a s e observed a t ISR of t h e r a t e of r a r e proces- s e s , l i k e l a r g e p T [ l ] and p production [ 2 1.

The m e r i t s of t h i s t h i r d group a r e e s s e n t i a l l y phe- nomenological, i n t h a t they simply r e l a t e o b s e r v a b l e q u a n t i t i e s and g i v e a j u s t i f i c a t i o n , even i f a poste- r i o r i , of t h e l a r g e energy s c a l e f o r t h e r i s e . I n t h i s t a l k , however, we s h a l l c o n c e n t r a t e on t h e f i r s t two c l a s s e s .

I t i s u s e f u l t o c o n s i d e r , t o g e t h e r w i t h uT , a number of o t h e r q u a n t i t i e s t h a t g i v e a more d e t a i l e d information.

1 ) ar 2 ; 1 I m Aep ( S ,0)

.

Hence we c o n s i d e r ImAep(fi,t) , h o p e f u l l y p r o p o r t i o n a l t o

2) From baryon number c o n s e r v a t i o n ,

c o n s i d e r t h e b a r y o n i n c l u s i v e s p e c t r a . I n p a r t i c u l a r d o (B)

t h e l i m -7 , connected w i t h t h e p r o p e r t i e s o f x-11 dxdp*

t h e t r i p l e - R e g g e c o u p l i n g s , h a s important b e a r i n g on t h e behaviour of uT . E s p e c i a l l y c r i t i c a l i s t h e i s s u e of whether t h e triple-Pomeron v e r t e x v a n i s h e s a t t=O

.

3) From d i s p e r s i o n r e l a t i o n s t h e v a l u e of Re A e p ( s , t ) a t a given s i s s e n s i t i v e t o 0 7 ( s ) a l s o f o r s > s

.

Hence t h e o r i e s t h a t f i t u up t o ISR e n e r g i e s , b u t d i f f e r a t h i g h e r e n e r g i e s , a r e p o s s i b l y d i f f e r e n c i a t e d i n t h e i r p r e d i c t i o n f o r ReA a t ISR.

4) Since u T ( s ) =

1

o n ( s ) , a knowledge of o and of t h e r e l a t e d i k l u s i v e c o r r e l a t i o n s g i v e s a rnore complete information.

The p r e d i c t i o n s of t h e v a r i o u s models f o r t h e s e q u a n t i t i e s a r e summarized i n t h e Table I and i l l u s - t r a t e d i n t h e following.

2.- t-CHANNEL ORIENTED MODELS.- The s c a t t e r i n g am- p l i t u d e A ( s , t ) h a s t o s a t i s f y b o t h s a n d t - c h a n n e l u n i t a r i t y i n t h e r e l e v a n t p h y s i c a l r e g i o n s . I n t h e l a c k of a r e a l i s t i c model t h a t e x p l i c i t l y s a t i s f i e s b o t h , what i s u s u a l l y done i s t o t a k e one of t h e two requirements a s t h e s t a r t i n g p o i n t , and make s u r e a p o s t e r i o r i t h a t t h e o t h e r i s n o t obviously v i o l a t e d . I f one s t a r t s from t - c h a n n e l u n i t a r i t y , t h e n a t u r a l v a r i a b l e i s t h e t-channel a n g u l a r momentum J

.

The

allowed J - p l a n e s i n g u l a r i t i e s a r e known t o be moving p o l e s and " s o f t " c u t s . Adding t h e F r o i s s a r t bound a s a n e x t e r n a l c o n s t r a i n t , and t h e n o t i o n t h a t i f u r i s e s i t i s probably d i f f e r e n t from z e r o asymptoti- c a l l y , t h e l e a d i n g s i n g u l a r i t i e s a t t = O a r e a moving p o l e P a t J = 1 and a s o f t c u t , r e l a t e d t o P i n a n i t e r a t i v e way and t h e r e f o r e a l s o a t J = 1

( i n t h i s s i t u a t i o n " s o f t " means w i t h f i n i t e , n o t ne- c e s s a r i l y v a n i s h i n g d i s c o n t i n u i t y a t t h e t i p ) . Hence t h e asymptotic behavior of o i s g i v e n by

While t h e s i g n of t h e c u t d i s c o n t i n u i t y v a r i e s w i t h t h e model, i t seems agreed t h a t ~ ~ ( 0 ) i s t h e squared r e s i d u e of t h e f i x e d p o l e i n t h e P-p am- p l i t u d e [3 ] [4 ], i .e . t h e p r o p e r a n a l y t i c c o n t i n u a -

t i o n of t h e e x ~ r e s s i o n

S t a r t i n g from t h i s formula one can d i s t i n g u i s h a low- energy c o n t r i b u t i o n y,(o) , and a triple-Pomeron c o n t r i b u t i o n (-gb(o)=

:

l i m g ( t , t , o ) / / t which i s

t-0

(%) The n e g a t i v e s i g n comes from e v a l u a t i n g t h e d i - v e r g e n t i n t e g r a l (2) u s i n g superconvergence f o r t h e Regge-pole p a r t . T h i s formula, l i k e athers i n . t h e f o l l o w i n g a r e symbolic remainders of more complica- t e d e x p r e s s i o n s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1973131

(3)

MODELS FOR RISING CROSS-SECTIONS

TABLE I

COMPARATIVE SUMARY OF THE MODELS CONSIDERED

-

(X= AWKWARD)

finite only if the triple-Pomeron coupling gp(o,O,O) = 0

.

Model

Physics

Asymptotic a

Rise of u at ISR

% A/Im A

E

L "e e A

S Shall T T

I Large T C

Triple Pomeron Coup 1 ing

do B

- dx

cr

Inclusive

problemsm

2.1.- POSITIVE CUT.- This sign occurs in the lad- complex (non leading) poles in J [ 5 ] . The threshold der multiperipheral model (AFS cut), and generates idea can be applied to the large rapidity gap con- a total cross-section that decreases to a constant text [6] or to other channels, e.g.

;

production.

asymptotically. A temporary rise of aT can be ob- Phenomenologically this scheme faces difficulties tained by the introduction of a high threshold in to cope with the size of kT , and theoretically a the kernel of the integral equation that produces positive cut is definitely unappealing.

P Ladder Multiperipheral

Optical theorem t-Channel iteration

N2 *

CP +Bo

Threshold Effect

(?) rn

-

2

-

en (s)

No or two zeros Decreasing

*

up break No dip

zero a D - C - - d

B(s) 1

A

"f 3. . ;

X

Two component Scaling Long range corr.

Absorbed Multiperipheral Gribov

Calculus

a = l a' critical Not self Complete flip

Cheng s Wu Eikonal

Sign of cut Interpretation of Im A consistent Model for amplitude

t-Channel unitarity N2 Cp - Bo

Disappearing cut rn

2 9 2

-9- Y B(s) B(s)

+ en-2(s)

One zero

~ecreasing* Parameter Down breakm Dependent

m

Upward B(s) Features

Dip Dip

zero

*

uD a (1-2) (C

-

-) d B(s)

- 1 1- s

A J ~ + A . , X

Three component Non scaling

- 2

n x f n s

- Non

-

Leading Terms

-

of sign Energy dependent potential Generated by J=l Ladder Eikonal absorption 'lane

2 2 % Ro en s

Waves- t limitation 2 % a'g en s Increasing potential (2 MB)

+

Disappearing cut (1 ME)

-

f(t)-l a(0) > I

-

1

+ en (s) One zero

Increasing Up break

Dip Not zero

o -, s- N

Non scaling

'

;;

=

sP

- 3 fn (1-x)

- 1

A I - 1

g

a A aT

X

-

Two component aN

-

const

Scaling Long rang corr.

Hard cuts

(4)

C1-270 L. CANESCHI and M. CIAFALONI

2.2

.-

NEGATIVE CUT .- A form of t h e type (1) w i t h t h e minus s i g n i s obtained i n models t h a t s t a r t impo- s i n g two-Pomeron t-channel u n i t a r i t y [ 7 ] ( e . g . , t h e Gribov c a l c u l u s [ 8 ] ) . T h i s form h a s i n t e r e s t i n g fea- t u r e s , i n t h a t i t p r e d i c t s " d i f f r a c t i v e " z e r o s o f A ( s , t ) ( a s t h e d i p a t 1 . 4 can be c o n s i d e r e d ) , and a t o t a l c r o s s - s e c t i o n r i s i n g monotonically t o a cons- t a n t .

The a p p a r e n t paradox of t h e n e g a t i v e c o n t r i b u t i o n (-ypl/ns) t o 2 I m A , of t h e same magnitude a s t h e p o s i t i v e e l a s t i c c r o s s - s e c t i o n , h a s been s o l v e d I 9 1 w i t h t h e remark t h a t a b s o r p t i v e c o r r e c t i o n s t o t h e m u l t i p a r t i c l e p r o d u c t i o n a m p l i t u d e s can s u b t r a c t from

t h e p o l e a c u t t w i c e a s b i g a s t h e AFS c u t . I f t h e e x t e n s i o n of t h i s r e a s o n i n g t o a l l d i f f r a c t i v e chan- n e l s i s allowed, one o b t a i n s t h e complete change of s i g n of t h e N term, and t h u s (1) w i t h n e g a t i v e s i g n 2

[ l o I .

The observed r i s e of u i s i n t e r p r e t e d a s t h e d i - sappearance of t h e n e g a t i v e c u t , which changes w i t h s a s l / B ( s ) (B(s) = d Pn A ( s , t ) ) . Since i n t h e ISR range t h e s h r i n k a g e i s r a t h e r s m a l l , t h e c o e f f i c i e n t o f l / B ( s ) must be q u i t e l a r g e t o g i v e a 10 % e f f e c t .

[ ~ f taken s e r o u s l y , t h i s produces ow 80 mb and t h e u n p l e a s a n t need of v e r y l a r g e non-leading terms t o f i l l up t h e low-energy r e g i o n (s<lOO G ~ V - ~ ) w i t h t h e consequent breakdown of d u a l i t y , exchange degene- r a c y , e t c . ] . T h i s l a r g e c o e f f i c i e n t

2

N (0) = ( y (0)-g1(o)? can be obtained by means of a P P

l a r g e yP and s m a l l g' o r v i c e v e r s a . P

The f i r s t a l t e r n a t i v e [11 ]

-

t h a t one h a s t o t a k e i f one wants t o r e l a t e yp and gb t o t h e observed r i s e of e l a s t i c (and q u a s i - e l a s t i c ) and t r i p l e - Pomeron c o n t r i b u t i o n s

-

l e a d s t o same impleasant f e a - t u r e s :

a ) o e p ( s ) t u r n s o u t t o be d e c r e a s i n g i n t h e ISR r m g e

.

b) B(s) has p o s i t i v e 2 nd d e r i v a t i v e . T h i s i s r e l a - t e d t o t h e p r e v i o u s p o i n t , because t h i s behaviour of B(s) i s needed i f set h a s t o d e c r e a s e i n s p i t e of t h e i n c r e a s e of t h e o p t i c a l p o i n t .

nd d o

c ) The 2 d e r i v a t i c w i t h r e s p e c t t o t of en i s n e g a t i v e from t=O a l l t h e way up t o t h e d i p . These embarassing f e a t u r e s can be somehow circum- vented i f t h e f u n c t i o n N ( t ) h a s a n important 2 t-dependence f o r s m a l l t ( e . g . , a z e r o ) a s i t hap- pens i n t h e f i t of P a j a r e s and S h i f f [12], i n which g;(o) >> y ( 0 ) , but g' ( t ) h a s a s t e e p e r t-depen-

P P

dence than y p ( t )

.

They o b t a i n a c c e p t a b l e f i t s , b u t d e s t r o y t h e phenomenological i n t e r p r e t a t i o n of t h e

parameters i n t h e theory i n terms of a c t u a l f i n a l s t a t e s i n p-p c o l l i s i o n .

I n a n a l t e r n a t i v e approach t o t h e Gribov c a l c u l u s one could t r y t o s e p a r a t e n o n - d i f f r a c t i v e and d i f - f r a c t i v e c o n t r i b u t i o n s t o t h e p o l e a s w e l l a s t h e c u t . I n such a c a s e one h a s , t o o r d e r gp 2 , a nega-

t i v e r e n o r m a l i z a t i o n term o f t h e form (-g 2 ens) a s

2 P

w e l l a s t h e c u t c o n t r i b u t i o n (-g l e n s ) both a s s o c i a - P

t e d t o h i g h t k e s h o l d s and n e g l e c t e d a t ISR. I f t h e f i n a l s o l u t i o n i s t o be of t h e p o l e and c u t t y p e a t J=l , one has t o i n t r o d u c e a t ISR e n e r g i e s a "bare"

Pomeron p o l e above 1 ( a s s o c i a t e d w i t h n o - l a r g e gap e v e n t s i n t h e u n i t a r i t y sum) and t r y a parameteriza- t i o n of t h e form

No phenomenology along t h e s e l i n e s h a s been attemp- t e d s o f a r .

3.- S-CHANNEL ORIENTED MODELS.- A l t e r n a t i v e l y i t i s p o s s i b l e t o e x p l i c i t e l y e n f o r c e t h e s-channel uni- t a r i t y bound, and t h e most convenient language f o r t h i s i s t h e impact paramefzer b .

For a p u r e l y a b s o r p t i v e amplitude t h e bound needs

Furthermore t h e F r o i s s a r t bound l i m i t s t h e growth of t h e number of p a r t i a l waves t h a t can c o n t r i b u t e t o A ( s , t ) : bmax < Ro Pns

.

Hence s-channel u n i t a - r i t y a l l o w s i n f i n i t e l y r i s i n g c r o s s - s e c t i o n s , w i t h

The t - c h a n n e l J s i n g u l a r i t y corresponding t o t h e s a t u r a t i o n of t h e F r o i s s a r t bound i s a t r i p l e p o l e a t t=O 1131, a s i n g u l a r c u t a t t h o

2 2

( - 1 ) - ~ ~ t ] - ~ ' ~ )

.

Even i f it i s n o t known a t p r e s e n t how such a s i n g u l a r i t y can be made e x p l i c i - t e l y compatible w i t h t-channel u n i t a r i t y , t h e s i t u a - t i o n i s n o t h o p e l e s s [141.

An e i k o n a l i z a t i o n procedure can be performed a l s o on a Regge Pole p o t e n t i a l w i t h a ( o ) = 1 [15]. I n t h i s c a s e one r e c o v e r s t h e p o l e minus s o f t c u t s t r u c - t u r e of t h e Gribov approach, b u t t h e r e s i d u e of t h e c u t , determined now by ueP/uT , i s i n s u f f i c i e n t t o g i v e t h e desired r i s e of cr

.

We w i l l c o n c e n t r a t e i n t h e f o l l o w i n g on models t h a t s a t u r a t e t h e F r o i s s a r t bound. The t r a d i t i o n a l way t o do s o i s t o g e n e r a t e a n e f f e c t i v e p o t e n t i a l V t h a t grows l i k e a power of s and i n s e r t i t i n t o a n e l a s t i c

(5)

MODELS FOR RISING CROSS-SECTIONS C1-271

s-channel u n i t a r i z a t i o n scheme, l i k e t h e e i k o n a l [16]

o r t h e d i s t o r t e d p l a n e wave approach [17].

A convenient dynamical mechanism t o produce a n energy i n c r e a s i n g p o t e n t i a l i s t h e m u l t i p e r i p h e r a l l a d d e r i t e r a t i o r o f a s i n g u l a r i t y a t J=l , y i e l d i n g a Regge P o l e a t some 1+6 , t h e b r e p r e s e n t a t i o n o f which i s given by

The amplitude i s t h e n g i v e n by

1 J2

A(b,s) = 7 + V(b,s)-

+

V ( b , s ) ( s o l u t i o n of

9 4 ,,

A=A& + (1-2A)V) and y i e l d s G = 2ue Z= a ' 6 f n L s

a s y m p t o t i c a l l y .

T h i s asymptotic regime i s however approached very slowly, and h a s n o t h i n g t o do w i t h t h e ISR phenome- nology, f o r which we r a t h e r propose a p e r t u r b a t i v e approach [ 1 8 ] [ 1 9 ] , t h e s m a l l parameters being given by t h e p r e s e n t v a l u e s of uee/u and a D i f f / a 7

.

The

former measures t h e a v e r a g e importance o f t h e

s-channel i t e r a t i o n of t h e Pomeron, and i t s s m a l l n e s s shows t h a t a b s o r p t i o n i s n o t t o o i m p r r t a n t a t t

=

0

( t h i s i s n o t t h e c a s e f o r b

--

0 , i . e . a t l a r g e t ,

where d i f f r a c t i v e e f f e c t s l i k e t h e d i p a t t

=

1.4

a c t u a l l y show up)

.

For t h e o p t i c a l p o i n t t h e r e f o r e A

--

V , and t h e d o

energy behavior of UT (and of f o r s m a l l t ) i s w e l l reproduced i n t h i s approach by a Regge P o l e w i t h

a zz 1.1 (better 1.082925) [ZO]. The s m a l l v a l u e of a - 1 can be r e l a t e d i n o u r approach t o t h e o t h e r s m a l l parameter uD/ uT , i f one assumes t h a t " p u r e l y i n e l a s t i c " e v e n t s ( i . e . e v e n t s n o t showing l a r g e r a - p i d i t y gaps) sum up t o g i v e a c o n s t a n t c o n t r i b u t i o n t o uT

.

We t h e n proceed t o a p e r t u r b a t i v e t r e a t - ment i n t h e number of l a r g e gaps completely analogous t o t h e one of Ref. 3, 5 and 6 , t h e only d i f f e r e n c e b e i n g t h a t h e r e t h e o u t p u t Regge t r a j e c t o r y overcomes 1 , and t h e s i g n of t h e e l a s t i c c u t i s r e v e r s e d by a b s o r p t i o n .

The f i r s t p e r t u r b a t i v e c o n t r i b u t i o n , t h e t r i p l e Pomeron one, i s only s l i g h t l y reduced i n magnitude by t h e e l a s t i c a b s o r p t i o n , and remains p o s i t i v e . Hence one e x p e c t s t o be a b l e t o g i v e a n e s t i m a t e of t h e i n c r e a s e of u by i n t e r p r e t i n g t h e l a r g e x peak of t h e p i n c l u s i v e spectrum, which indeed seems t o y i e l d a c o n t r i b u t i o n t o AS o f about 2 mb i n t h e ISR

range ( t h e r e s t (- 1 mb) comes i n on model by a d i - s a p p e a r i n g c u t e f f e c t r e l a t e d t o s h r i n k a g e , even i f u i n c r e a s e s i t s e l f by i n 1 mb).

e l

Obviously i n t h i s scheme t h e r e i s no need t o have a v a n i s h i n g t r i p l e Pomeron c o u p l i n g a t t=O , on

t h e c o n t r a r y t h i s i s a s u f f i c i e n t d e v i c e t o t r i g g e r t h e s a t u r a t i o n mechanism. I n t h e asymptotic s o l u t i o n t h e a b s o r p t i v e c o r r e c t i o n s and t h e consequent non f a c t o r i z a b l e n a t u r e of t h e P s i n g u l a r i t y reduce a

n e a r x=l l i t t l e t h e s i n g u l a r i t y o f - u dx

-

( ( l - x ) l n 3 ( - ) i n s t e a d 'of (1-x)-I en-'(1-x)

1

making i t compatible w i t h t h e c o n s e r v a t i o n sum r u l e s l7-1 I.

The asymptotic scheme i n which t h e F r o i s s a r t bound i s s a t u r a t e d i s indeed only a convenient de- v i c e t h a t a l l o w s t o perform dangerous e x e r c i s e s

( l i k e h a v i n g a > 1 and a non-vanishing t r i p l e Pomeron c o u p l i n g ) s e c u r e i n t h e knowledge t h a t asymp- t o t i c a l l y t h i n g s w i l l work o u t w e l l .

4

.-

FURTHER PHENOMENOLOGY.

-

I n t h e MPM one e x p e c t s a peak a t x 1 o f d d x d t , v a n i s h i n g a t t=O

.

The

i n t e g r a l over t h e peak i n c r e a s e s t o a c o n s t a n t w i t h s and i n t h e l a r g e gap p e r t u r b a t i o n approach I223 should g i v e an o v e r e s t i m a t e of Au7 , s i n c e t h e b a r e Pomeron i s a t 1-E

.

P e r t u r b a t i v e l y m e o b t a i n s a two component model f o r u , and s c a l i n g i n c l u - s i v e d i s t r i b u t i o n s w i t h long r a n g e c o r r e l a t i o n s a s s o - c i a t e d w i t h t h e e x i s t e n c e o f t h e d i f f r a c t i v e compo- n e n t .

Also i n t h e Gribov scheme one e x p e c t s a peak a t x = l , b u t i t s s i z e i s n o t r e l a t e d t o t h e i n c r e a s e of u

.

A c t u a l l y i f one could i n c r e a s e t h e s i z e of t h e p e a k t h e t o t a l c r o s s - s e c t i o n would d e c r e a s e by t h e same amount. The s t r u c t u r e of u and t h e i n c l u s i v e s p e c t r a have been s t u d i e d i n r e f . [23]. T h i s model r a t h e r s u g g e s t s a t h r e e component (low m u l t i p l i c i t y ,

n =

g e n s and n 2 2g e n s o b t a i n e d c u t t i n g b o t h Pomerons i n t h e c u t diagram). Let u s s t r e s s t h a t t h e component w i t h normal m u l t i p l i c i t y n - = g e n s con- t a i n s n o t only t h e s h o r t range p r o d u c t i o n a s s o c i a t e d w i t h t h e p o l e , b u t a l s o t h e Qong range) a b s o r p t i v e c o r r e c t i o n s t o t h e same, n e c e s s a r y t o overcome t h e t h e p o s i t i v e c u t c o n t r i b u t i o n of t h e o t h e r two com- ponents and t o g i v e t h e o v e r a l l n e g a t i v e c u t (1-&2= -1)

.

I n t h e absorbed m u l t i p e r i p h e r a l i s m t h e peak a t x = l , n o t v a n i s h i n g a t t=O , i s expected t o g i v e t h e main c o n t r i b u t i o n t o AuT

.

P e r t u r b a t i v e l y one h a s a two component-like model 1241, a s y m p t o t i c a l l y

(6)

C1-272 L. CANESCHI and M. CIAFALONI

bounded s c a l i n g an6 long range c o r r e l a t i o n s ( w i t h o -r c o n s t ) . I n t h e e i k o n a l p i c t u r e [25] t h e momentum t r a n s f e r l i m i t a t i o n c h a r a c t e r i s t i c o f m u l t i p h e r i p h e - r a l i s m does n o t h o l d , and one o b t a i n s ii 2 S P ,

hence b r e a k i n g of s c a l i n g .

5.- FINAL THEORETICAL REMARKS.- The schemes d i s c u s - s e d h e r e p r e s e n t t h e common problem of e x p l a i n i n g t h e l a r g e energy s c a l e ( E 2 100 GeV 2 ) on which t h e r i s e o f a T o c c u r s , o r a l t e r n a t i v e l y t o produce s u i t a b l e non-leading terms t o f i l l up t h e low energy r e g i o n .

kn e x t r a p o l a t i o n t o low energy of t h e term g i v i n g t h e rise o f a a t ISR i s l i k e l y t o g i v e less t h a n 30 mb a t s

--

20 GeV 2 1.

The t - c h a n n e l o r i e n t e d schemes depend h e a v i l y on gp (0) =O , t h e s-channel ones do n o t : t h i s might p r o v i d e a d e c i s i v e t e s t . The orthodox MPM g i v e s by wide agreement t h e wrong s i g n f o r t h e c u t , and i s

unable t o e x p l a i n n a t u r a l l y t h e d i p a t It 1 = 1 . 4 ,

which i n s t e a d f i t s w e l l i n t h e o t h e r schemes. Fur- thermore, t h e q u e s t i o n of why cf = 1 i s d i f f i c u l t

P t o answer i n t h e MPM.

The Gribov scheme i s a model f o r t h e a m p l i t u d e , and i t i s n o t s t r a i g h t f o w a r d t o l i n k Im A t o a sum over f i n a l s t a t e s , a s i t would be v e r y d e s i r a b l e f o r phenomenology. Also u n p l e a s a n t i s t h e need of r e l y i n g on t h e ( s m a l l ) v a l u e of a' i n o r d e r t o e x p l a i n t h e

[ I ] CASHER (A.), NUSSINOV (S.) and SUSSKIND ( L . ) , phys. L e t t . 44B (1973) 171.

12 ] SIVERS (D.) and VON HIPPEL (F .) , ANL P r e p r i n t HEP 7323.

[ 3 ] ABARBANEL (H.D.I.), Phys. Rev. (1972) 2788.

[4 ] MUZINICH ( I . J .) , PAIGE (F .) , TRUEMAN (T .L .) and WANG (L.L.), Phys. Rev. (1972) 1048.

[ 5 ] CHEW (G.F.) and SNIDER (D.R.), Phys. L e t t . (1970) 75 ;

CHEW (G.F.), Phys. L e t t . 44B (1973) 169.

[6 1 BISHARI (M.) and KOPLIK ( J . ) , Phys. L e t t . (1973) 175.

[7 1 WHITE (A.R.) , Nuclear P h y s i c s B50 (1912) 130.

181 GRIBOV (V.N.), JETP 6 (1968) 414 ; GRIBOV (V .N

.

) , POMERANCHUK ( I . Y a . ) and TER MARTIROSYAN (K.A.) , Phys. Rev.

(1965) 184.

[ 9 ] CANESCHI ( L . ) , Phys. Rev. L e t t . 2 (1969) 254.

110 1 VENBZIANO (G.) , CERN p r e p r i n t TH (1973) 1708.

111 ] CRAIGIE (N.S .) and PREPARATA (G.), Phys. L e t t . 45B (1973) 487.

[12] PAJES (C.) and SCHIFF (D.), Orsay p r e p r i n t LPTHE 12 (1973) 13 ;

NG (J.N.) and SUKHATME (U.P.), S e a t t l e pre- p r i n t RLO 1388-645.

[13]Weaker s i n g u l a r i t i e s , l i k e a double p o l e ( a

--

Pns) have a l s o been c o n s i d e r e d :

BAIL (J

.

S .) and ZACHARIASEN (F

.

) , CALTECH

p r e p r i n t 68 (1972) 360.

r i s e of a . Very a t t r a c t i v e i s on t h e c o n t r a r y t h e a l t e r n a t i n g s i g n p a t t e r n o f t h e many Pomeron c u t c o n t r i b u t i o n s , which s u g g e s t s a l i n k a g e w i t h a n s-channel e i k o n a l i z a t i o n , and a way of e n f o r c i n g t h e s-channel u n i t a r i t y bound and perhaps u n d e r s t a n d i n g

cf = 1

.

P

The s-channel a b s o r p t i v e models l a c k t - c h a n n e l u n i t a r i t y , y i e l d i n g h a r d c u t s . Whether t h i s i s a s i - g n i f i c a n t drawback i s s t i l l t o be e s t a b l i s h e d 1131.

An a d d i t i o n a l problem i s t h e c h o i c e of t h e n a t u r e o f a b s o r p t i o n . We have l i m i t e d o u r s e l v e s t o e l a s t i c ab- s o r p t i o n , b u t i f one i n c l u d e s low-mass d i f f r a c t i v e s t a t e s a s w e l l , t h e i r c o n t r i b u t i o n t o G f l i p s

7

s i g n a s aeP i s known t o do. I f one goes a l l t h e way i n c l u d i n g a l s o a b s o r p t i o n through d i f f r a c t i v e s t a t e s of l a r g e mass ( a s i f they were quasi-two body s t a t e s ) , t h e t r i p l e Pomeron c o n t r i b u t i o n a l s o changes s i g n , and c a n n o t be used t o e x p l a i n t h e rise of a [26].

I n t h i s c a s e a v a n i s h e s a s y m p t o t i c a l l y i f gp(o)PO [27 1.

I n c o n c l u s i o n , i f e x p e r i m e n t a l l y g ( 0 ) w i l l t u r n P

o u t t o be nonvanishing, a n s-channel a b s o r p t i v e approach w i l l be t h e most a t t r a c t i v e p o s s i b i l i t y . I f g (o)=O on t h e c o n t r a r y , G r i b o v ' s s o l u t i o n i s p r e -

P

f e r a b l e , and i t should be g r e a t f u n t o r e d e r i v e i t i s s-channel terms u s i n g y e t unknown c a n c e l l a t i o n s and changes o f s i g n which a r e n o t i n c l u d e d i n t h e e l a s t i c a b s o r p t i o n approximation.

[ I 4 1 CREUTZ (M.), PAIGE (F.) and WANG (L.L.), Phys.

Rev. L e t t . 2 (1973) 343 have g i v e n a n exam- p l e

05

a h a r d c u t a t t = o t h a t s o f t e n s a t t = 4 m

.

Thesame t h i n g happens i n t h e CHENG and WU model ( r e f . 16) and i n t h e a b s o r p t i v e m u l t i p e r i p h e r a l i s m ( r e f . 1 7 ) , b u t o n l y f o r t h e r i g h t hand d i p o f t h e c u t ( p r i v a t e commu- n i c a t i o n from F. HEKYEY

.

115 1 FRAUTSCHI (S .) and MARGOLIS (B.) , Nuovo Cimento

. . . .

56 (1968) 1155.

[16 ] cHEE(H.) and WU (T.T.) , Phys. Rev. L e t t . 24

(1970) 1456.

[17 1 FINKELSTEIN ( J . ) and ZACHARIASEN (F .), Phys.

L e t t . 34B (1971) 631 ;

CANESCHI (L.) and SCHWIMMER (A.), N a c l e a r P h y s i c s B44 (1972) 31.

[18 ] AMATI (D

.

) , CANE SCHI (L

.

) and CIAFALONI (M. ) ,

CERN p r e p r i n t TH 1676.

[19] FINKELSTEIN ( J . ) , Columbia U n i v e r s i t y p r e p r i n t (1973).

[20] CHENG (H.), WU (T.T.) and WALKER (J.K.), Phys.

L e t t . & (1973) 97.

[21] CANESCHI (L.) and SCHWIMMER (A.) , Nuclear Phy- s i c s (1972) 519.

[22] FRAZER (W.R.), SNIDER (D.R.) and TAN (C.I.), UCSD p r e p r i n t 10P (1973) 10127.

[23 ] ABRAMOVSKI J (V . A . ) , GRIBOV (V .N .) and KANCHELI (O.V.), Proceedings of t h e XVI I n t e r n a t i o n a l Conference on High Energy P h y s i c s ( B a t a v i a , 1972) .,P. 389

TER MARTIROSYAN (IGA.), Phys . L e t t . 44B (1973) 377.

(7)

MODELS FOR RISING CROSS-SECTIONS C1-273

[24] Normal two component models ( a s h o r t r a n g e c o r r e - [25] CHENG (H.) and WU ( T . T . ) , Phys. L e t t . 45B (1973) l a t i o n component p r o d u c i n g a Regge P o l e i n 367.

Im A p l u s a d i f f r a c t i v e c o n t r i b u t i o n ) ob- [26] T h i s p o i n t , a l r e a d y remarked i n § 6 of r e f . 18 v i o u s l y commit t h e m s e l v e s t o a n AFS t y p e h a s been s u b s e q u e n t l y s t r e s s e d by

c u t . To o b t a i n a n e g a t i v e c u t , i t i s n e c e s - BLANKENBECLER (R.), P r e p r i n t SLAC-PUB 1282, s a r y t o keep i n t o a c c o u n t c o r r e c t i o n s t o t h e and i n r e f . 26.

s h o r t r a n g e h y p o t h e s i s on t h e c o n t r i b u t i o n o f [27] BLANKENBECLER ( R . ) , FULL0 ( J . ) and SUGAR (R.), t h e n o - l a r g e r a p i d i t y gap e v e n t s ( l i k e l o n g P r e p r i n t SLAC-PUB 1281 ( 1 9 7 3 ) .

r a n g e a b s o r p t i v e e f f e c t s )

.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to