• Aucun résultat trouvé

A MODIFICATION OF DARKEN'S EQUATION FOR THE INTERDIFFUSION COEFFICIENT IN P-TYPE OXIDE SOLID SOLUTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "A MODIFICATION OF DARKEN'S EQUATION FOR THE INTERDIFFUSION COEFFICIENT IN P-TYPE OXIDE SOLID SOLUTIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225613

https://hal.archives-ouvertes.fr/jpa-00225613

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A MODIFICATION OF DARKEN’S EQUATION FOR THE INTERDIFFUSION COEFFICIENT IN P-TYPE

OXIDE SOLID SOLUTIONS

F. Gesmundo, F. Viani

To cite this version:

F. Gesmundo, F. Viani. A MODIFICATION OF DARKEN’S EQUATION FOR THE INTERDIF-

FUSION COEFFICIENT IN P-TYPE OXIDE SOLID SOLUTIONS. Journal de Physique Colloques,

1986, 47 (C1), pp.C1-543-C1-548. �10.1051/jphyscol:1986182�. �jpa-00225613�

(2)

A MODIFICATION OF DARKEN'S EQUATION FOR THE INTERDIFFUSION COEFFICIENT IN P-TYPE OXIDE SOLID SOLUTIONS

F. GESMUNDO and F . VIANI*

Istituto di Chimica Fisica Applicata dei Materiali, C.N.R., Lungobisagno Istria 34, I-16141 Genova, Italy

' ~ s t i t u t o di Chimica, Facoltd di Ingegneria, Universitd di Genova, Fiera del Mare, Pad. D , I-16129 Genova; Italy

Resum@

-

Une forme m o d i f i e e de 1 ' 6 q u a t i o n de Darken pour l e c o e f f i c i e n t d ' i n t e r d i f f u s i o n e s t obtenue pour l e c a s de s o l u t i o n s s o l i d e s d'oxydes de t y p e (A,B)O en considerant 1 ' e f f e t de 1 a d i f f e r e n c e e n t r e l e s c o e f f i c i e n t s de d i f f u s i o n des deux i o n s sur l a c o n c e n t r a t i o n des defauts r e t i c u l a i r e s pendant 1 'equi 1 i b r a t i on.

A b s t r a c t - A m o d i f i e d form o f Darken's equation f o r t h e i n t e r d i f f u s i o n c o e f f i c i e n t i s obtained f o r t h e case o f s o l i d s o l u t i o n oxides o f t h e

(A,B)O t y p e by considering t h e e f f e c t o f t h e d i f f e r e n c e between t h e d i f - f u s i o n c o e f f i c i e n t s o f t h e two i o n s on t h e c o n c e n t r a t i o n o f t h e l a t t i c e d e f e c t s d u r i n g e q u i l i b r a t i o n .

I

-

INTRODUCTION

I n t e r d i f f u s i o n experiments a t constant temperature and oxygen a c t i v i t y between two oxides which are completely s o l u b l e can be used t o o b t a i n t h e i n t e r d i f f u s i o n coef- f i c i e n t o f t h e system, which i s a parameter d e s c r i b i n g t h e r a t e o f mixing o f t h e two components. The i n t e r d i f f u s i o n c o e f f i c i e n t i n b i n a r y m e t a l l i c systems i s r e l a t e d t o o t h e r phenomenological parameters measured independently, i . e . t h e t r a c e r - d i f f u s i o n c o e f f i c i e n t s o f t h e two components, through an equation o r i g i n a l l y d e r i v e d by Darken /I/. A p p l i c a t i o n o f t h i s equation t o c a l c u l a t e t h e i n t e r d i f f u s i o n c o e f f i c i e n t f o r b i n a r y - o x i d e s o l i d s o l u t i o n s o f t h e (A,B)O t y p e has been shown t o present soae pro- blems /2-4/. I n f a c t d i f f u s i o n i n oxide systems i s d i f f e r e n t from d i f f u s i o n i n me- t a l s due t o requirement t h a t e l e c t r i c a l n e u t r a l i t y i s maintained and due t o t h e i n - f l u e n c e o f a f u r t h e r parameter, t h e value o f t h e oxygen a c t i v i t y . I n f a c t , unless t h e t r a c e r - d i f f u s i o n c o e f f i c i e n t s o f t h e two i o n s happen t o be t h e same f o r equal values o f t h e oxide composition and oxygen a c t i v i t y , t h e two i o n s w i l l d i f f u s e i n opposite d i r e c t i o n s a t d i f f e r e n t r a t e s , producing a d e v i a t i o n o f t h e c o n c e n t r a t i o n o f vacancies from t h e corresponding e q u i l i b r i u m values i n t h e two sides o f t h e d i f - f u s i o n couple. This i n t u r n produces l o c a l changes o f t h e oxygen a c t i v i t y which af- f e c t t h e f l u x e s o f t h e two ions, tending t o a v o i d t h e p r o d u c t i o n o f l a r g e d e v i a t i o n s frorn t h e e q u i l i b r i u m i n s i d e t h e sample. The f o r m a t i o n o f oxygen a c t i v i t y g r a d i e n t s connected w i t h t h e d i f f e r e n t d i f f u s i v i t i e s o f t h e c a t i o n s i n oxide s o l i d s o l u t i o n s has been b o t h proposed on t h e o r e t i c a l grounds and confirmed e x p e r i m e n t a l l y /2-4/.

The purpose o f t h e present work i s t o take i n t o account t h e development o f oxygen

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986182

(3)

c1-544 JOURNAL DE PHYSIQUE

a c t i v i t y g r a d i e n t s i n s i d e t h e d i f f u s i o n couple i n an i n t e r d i f f u s i o n experiment i n an (A,B)O s o l i d s o l u t i o n t o o b t a i n a m o d i f i e d form o f Darken's equation.

To r e s t r i c t t h e treatment, t h e oxides are assumed t o have t h e same k i n d o f e l e c t r i - c a l c o n d u c t i v i t y (p-type), t o c o n t a i n o n l y metal vacancies as l a t t i c e d e f e c t s and t o form a complete s e r i e s o f s o l i d s o l u t i o n s e x i b i t i n g i d e a l behavior: i n a d d i t i o n , i t i s assumed t h a t oxygen d i f f u s i v i t y i s n e q l i g i b l e w i t h respect t o t h a t o f t h e two me- t a l components.Al1 t h e previous c o n d i t i o n s apply t o t h e oxides considered here f o r

numerical a p p l i c a t i o n s . I 1

-

THEORY

The d i f f u s i o n f l u x o f t h e two types o f ions A and B i n an (A,B)O s o l i d s o l u t i o n un- der t h e most general case i n v o l v i n g t h e presence o f g r a d i e n t s o f oxygen a c t i v i t y and oxide composition has been given by C. Wagner /5/, i n connection w i t h t h e a n a l y s i s o f t h e p a r a b o l i c growth o f an (A,B)O oxide on a b i n a r y A-B a l l o y , i n t h e f o r m

and

.

a l n a

BO ) a

- -

aE

I

aE 0 ax ax

where C i s t h e mole f r a c t i o n o f SO i n t h e mixed oxide, D and D are t h e d i f f u s i o n c o e f f i c i e n t s o f t h e two i o n s i n t h e oxide s o l u t i o n , a Aa an8 a are t h e a c t i v i - t i e s o f AO, 80 and oxygen i n t h e oxide, respectively,li%d

F0 i j

t h e o v e r a l l metal 0 c o n c e n t r a t i o n i n (A,B)O expressed as moles per u n i t volume rcm

1.

The d i f f u s i o n c o e f f i c i e n t s appearing i n Eqs. ( 1 ) and ( 2 ) are considered t o be t h e t r a c e r - d i f f u s i o n c o e f f i c i e n t s of t h e two ions, i n agreement w i t h t h e general expression o f t h e i n t e r - d i f f u s i o n c o e f f i c i e n t /S/, w h i l e t h e fluxes are given w i t h r e s p e c t t o a l o c a l l a t t i c e plane. Assuming t h a t t h e oxide s o l u t i o n i s thermodynamically i d e a l ( i .e. aAO (1

-

E) and ago = E), Eqs. (1) and ( 2 ) reduce t o

I t should be r e c a l l e d t h a t D and D i n a mixed oxide w i l l depend b o t h on t h e oxygen

A B

a c t i v i t y and on t h e oxide composition / 7 / m a i n l y because they are p r o p o r t i o n a l t o t h e o v e r a l l c o n c e n t r a t i o n o f metal vacancies i n p-type oxides.

During an i n t e r d i f f u s i o n experiment, two samples o f s o l i d s o l u t i o n w i t h d i f f e r e n t composition ( b u t each homogeneous per se) and w i t h a constant common value o f t h e oxygen a c t i v i t y are brought together under a constant oxygen a c t i v i t y i n t h e gas phasein e q u i l i b r i u m w i t h t h e a i n t h e oxides. D i f f u s i o n between t h e two r e g i o n s takes p l a c e due t o t h e d i f f e r e n c e i n oxide composition. I n p r i n c i p l e , t h e two f l u x e s 3 are given by

and

so t h a t t h e two f l u x e s should d i f f e r i f D # DB. However t h i s c o n d i t i o n leads t o a s i t u a t i o n o f non equi 1 i b r i u m concerning t f i e c o n c e n t r a t i o n o f d e f e c t s i n t h e various regions o f t h e sample. The extreme case f o r t h i s i s when t h e f a s t e r d i f f u s i n g i o n

(4)

regions o f concentrations o f A higher than t h e average f i n a l value (

f

) more r a - p i d l y than t h e slower d i f f u s i n g species B w i l l d i f f u s e i n . As a r e s u l t t h e concen- t r a t i o n o f metal vacancies w i l l r i s e i n t h e A-rich regions, where i t should i n s t e a d decrease as a r e s u l t o f t h e increase o f t h e c o n c e n t r a t i o n o f 5. The opposite s i t u a - t i o n w i l l occur i n regions c o n t a i n i n g a c o n c e n t r a t i o n o f A lower than t h e average, where t h e c o n c e n t r a t i o n o f vacancies w i l l decrease as a r e s u l t o f t h e d i f f u s i o n p r o - cess. I n t h i s way a d e v i a t i o n from t h e c o n d i t i o n o f e q u i l i b r i u m f o r t h e concentra- t i o n o f vacancies w i l l be produced on b o t h sides o f t h e sample, I n p r i n c i p l e , vacan- c i e s c o u l d be destroyed

in

r e g i o n s where t h e y are supersatured, and c o u l d be created where t h e i r c o n c e n t r a t i o n i s below e q u i l i b r i u m , b u t these processes are n o t impor- t a n t i n oxides /3,4/. The l o c a l change i n t h e c o n c e n t r a t i o n o f vacancies can be i n - t e r p r e t e d as a corresponding change i n t h e oxygen a c t i v i t y . I n f a c t , an oxygen a c t i - v i t y g r a d i e n t has been shown t o be produced i n d i f f u s i o n couples i n systems o f t h i s k i n d /2-4/, and i t has been proposed t h a t t h i s i s such t o make 3 % -JB /2-4/. Use o f t h i s c o n d i t i o n i n c o n j u n c t i o n w i t h t h e general expression f o r t h e two f l u x e s g i - A ven above y i e l d s

from which, a f t e r rearrangement, t h e r a t i o between t h e g r a d i e n t s o f I n a. and E i s obtained i n t h e form

a l n ag a x

12

= D A ( l D - 0 B

-

E ) A

+

DBC = a Under t h i s c o n d i t i o n , t h e two f l u x e s then become

JA = cM DA

[I

+ ( 1

-

E l a ] (aE/ax) and

J B =

-

c M D B [ 1

-

a ~ ] ( a ~ 8 x ) ( 6 )

The i n t e r d i f f u s i o n c o e f f i c i e n t f o r t h e system i s d e f i n e d by t h e equation /8/

7 . JA E,

-

J B ( l - E l

D ( I ) =

-

. ( aE/ax)

which, upon i n t r o d u c t ~ o n o f Eqs. ( 5 ) and (6), becomes

D ( I ) = DA5

+

D B ( l - Z , ) + a E , ( l - 5 ) ( D A

-

DB) ( 7 The normal expression o f t h e i n t e r d i f f u s i o n c o e f f i c i e n t , n e g l e c t i n g t h e f a c t o r S a r i s i n g from t h e vacancy f l o w e f f e c t , which i s u s u a l l y considered very c l o s e t o one /2-4,6/, i s

a l n yi D(I) = [ D ~ c + ~ ~

-

(

E )

1

]

(1 +

a l n xi

1

where t h e f a c t o r

= 1

+

( a l n y . / a l n x . )

1 1

( w i t h yi= a c t i v i t y c o e f f i c i e n t o f t h e component i (A o r B) and x. i t s mole f r a c t i o n ) i s t h e s o - c a l l e d thermodynamic f a c t o r . I n t h e case o f an i d e a l s o l u t i o n t h i s f a c t o r 1 i s considered equal t o one n o t o n l y f o r a b i n a r y system A-B, b u t a l s o f o r a t e r n a r y system such as a s o l i d s o l u t i o n between A0 and BO /2-4/. The expression obtained above d i f f e r s from t h e usual form o f Darken's equation, i n which 6 i s considered e- qual t o one, by t h e presence o f t h e c o r r e c t i o n term

B = a E ( 1 - E ) ( D A - DB).

(5)

c1-546 JOURNAL DE PHYSIQUE

It i s seen immediately t h a t t h i s term i s equal t o zero when D = DB, b u t t h a t i t i s always negative when D # D thus making D(1) c a l c u l a t e d according t o Eq. A ( 7 ) a l -

A B Y .

ways smaller than t h e value given by Darken's equation.

It i s a l s o i n t e r e s t i n g t o p o i n t o u t t h a t , according t o t h e expression o f a r e p o r t e d above, t h e g r a d i e n t o f oxygen a c t i v i t y w i l l have t h e same s i g n as t h a t o f

c

i f DB>

D

,

b u t opposite t o i t i f DB<D For p-type oxides c o n t a i n i n g metal vacancies as t h e p r e v a i l i n g d e f e c t s t h i s imp'?;es t h a t i n t h e f i r s t i n s t a n c e t h e r e w i l l be a n e t f l u x o f vacancies from a r e g i o n o f h i g h a values ( h i g h concentrations o f

B)

t o t h a t o f low a0 values (small concentrations o f B), and a n e t metal f l u x i n t h e opposite 0 d i r e c t i o n . T h i s w i l l t h u s produce a decrease o f t h e f l u x o f

B

and an increase o f t h a t o f A u n t i l t h e y are almost equal. The opposite s i t u a t i o n occurs i f D < D since i n t h i s case t h e g r a d i e n t o f a w i l l increase t h e f l u x o f B and decrease !hat o f A. A It i s a l s o p o s s i b l e t o o b t a i n

eq.

( 7 ) for D(1) by s t a r t i n g from t h e d e f i n i t i o n o f t h e i n t e r d i f f u s i o n c o e f f i c i e n t b u t t a k i n g i n t o account t h e c o r r e c t values f o r t h e thermodynamic f a c t o r s f o r t h e two metal ions i n t h e s o l i d s o l u t i o n . I n f a c t , as shown elsewhere /9/, t h e thermodynamic f a c t o r s f o r t h e metal i o n s A and B i n an o x i - de s o l i d s o l u t i o n are n o t always equal t o one, and i n general they d i f f e r from each other, t h e actual values depending on t h e oxygen a c t i v i t y , on t h e oxide composition and a l s o on t h e r a t i o between t h e g r a d i e n t s o f t h e s e two v a r i a b l e s . This r e s u l t shows c l e a r l y t h a t t h e e r r o r connected-with t h e use o f Darken's equation f o r t h e estimate o f D ( 1 ) from t h e t r a c e r - d i f f u s i o n c o e f f i c i e n t s o f A and B depends on t h e approxima- t i o n o f c o n s i d e r i n g t h e thermodynamic f a c t o r s o f t h e two i o n s equal t o each other and equal t o one. I n f a c t , as shown elsewhere /9/, one obtains 4 = 19 =1 o n l y when d i f f u s i o n i n t h e mixed oxide occurs as a r e s u l t o f t h e presence 04 g r a d i e n t s o f

B

oxide composition under constant oxygen a c t i v i t y . I n t h e i n t e r d i f f u s i o n experiments however t h i s simp1 e c o n d i t i o n does n o t apply, as examined above, so t h a t t h e two thermodynamic f a c t o r s are no longer equal t o one.

I 1 1

-

NUMERICAL APPLICATIONS

The equations d e r i v e d i n t h e previous s e c t i o n are a p p l i e d here t o a s p e c i f i c system f o r which a l l t h e r e l e v a n t data have been measured, i . e . s o l i d s o l u t i o n s between N i O and COO. I n t h i s case t h e l i m i t i n g pure oxides are p-type semiconductors c o n t a i n i n g metal vacancies

/ l o / ,

w h i l e t h e behavior o f t h e two oxide components i n t h e s o l i d s o l u t i o n i s p r a c t i c a l l y i d e a l /11/.

The i n t e r d i f f u s i o n c o e f f i c i e n t i n NiO-COO s o l i d s o l u t i o n s has been measured a t d i f - f e r e n t temperatures /11/, b u t simultaneous d i r e c t measurements o f t h e t r a c e r - d i f f u - s i o n c o e f f i c i e n t of t h e two c a t i o n s Dvi and DCo have been c a r r i e d o u t o n l y a t 1300' and 1445°C /2/; t h e r e f o r e comparison between c a l c u l a t e d and experimental values can be c a r r i e d o u t o n l y a t these temperatures.

The t r a c e r - d i f f u s i o n c o e f f i c i e n t s b f Ni and Co a t 1300°C a t t h e o x y g e n a c t i v i t y o f a i r have been measured f o r s e l e c t e d values o f t h e mole f r a c t i o n o f Co i n t h e mixed oxide. I n t h e f o l l o w i n g , N i i s considered as A and Co as t h e

B

ion. The t r a c e r - d i f - f u s i o n c o e f f i c i e n t s can be expressed as f u n c t i o n s o f i n t h e form /2/

DNi =

Do.

exp(a c + blc 2 ) and 2

N 1 1 DCo = D t o exp(a2c + b 2 c

where D o and Do are t h e values o f D and D a t

c

= 0.

Values

1)

a

,

bCo a2 and b given by I d e n e t

g?.

/2/ do n o t represent t h e actual da- t a v e r y w e l l ; i t ' i s found ghat b e t t e r agreement w i t h t h e experimental d a t a i s o b t a i - ned by using i n s t e a d s l i g h t l y m o d i f i e d values, which are

a = 5.653; b, = -1.444; a = 5.9581; b = -1.6195

Use o f these expressions f o r D 1 and DCo as funcgions o f allows one t o evaluate a

N i

and then D ( I ) as f u n c t i o n s o f

E.

The r e s u l t s o f t h e c a l c u l a t i o n are r e p o r t e d i n F i g . 1 along w i t h t h e curve o f D(1) corresponding t o Darken's equation and w i t h t h e expe-

(6)

curve o f D(1) c a l c u l a t e d according t o Eq. (7) i s c l e a r l y lower than t h a t corresponding t o Darken's curve, t h e d i f f e r e n c e being l a r g e s t around = 0.5, because t h e c o r r e c - t i o n term o f Ea. ( 7 ) reduces t o zero a t

5

= 0 and

5

= 1. The experimental data of D ( I ) are t o o low f o r

5

= 0.51 and p a r t i c u l a r l y f o r

c

= 0.76 because i n t h e l a s t i n - stance t h e data f o r

5

= 0.76 f a l l below t h e smallest D

,

i . e . DNi. However, t h e a- greement w i t h t h e experimental value o f D(1) a t 1307°C i s r a t h e r good. Even i f t h e d i f f e r e n c e between t h e two curves f o r D(1) i s l i m i t e d , t h e change produced by t h e c o r r e c t i o n term i s i n t h e c o r r e c t d i r e c t i o n . I n a d d i t i o n , i t can be stressed t h a t t h e importance o f t h e c o r r e c t i o n i s r e l a t e d t o t h e d i f f e r e n c e between t h e two d i f f u - s i o n c o e f f i c i e n t s , being p r o p o r t i o n a l t o (DB

-

tlAl2. Thus t h e e f f e c t o f t h i s term i s r e l a t i v e l y low i n t h i s case where DB/DA i s r a t h e r small (from 2.1 t o 2.42), b u t i t should be more important when DB/DA i s very d i f f e r e n t from t h e u n i t y .

The expressions given f o r t h e two t r a c e r - d i f f u s i o n c o e f f i c i e n t s a t 1445°C are s u f - f i c i e n t l y c o r r e c t . F i g . 1 shows t h e curves f o r D(1) according t o Darken's equation and according t o Eq. ( 7 ) a l s o a t t h i s temperature. I n t h i s case t h e d i f f e r e n c e b e t - ween t h e two curves o f D(1) i s smaller than t h a t a t 1300°C because t h e DB/DA r a t i o i s a l s o smaller. A t t h i s temperature t h e agreement between t h e experimental and c a l - c u l a t e d d a t a f o r D ( I 1 i s b e t t e r than t h a t a t 1300°C.

F i g . 1

-

I n t e r d i f f u s i o n c o e f f i c i e n t s D ( I ) a t 1300 and 1445OC i n a i r versus

5.

Curves a: c a l c u l a t e d from Eq. ( 8 ) ; curves b: c a l c u l a t e d from Eq. (71; 0 , A and A : experimental data from S t i g l i c h e t a l . /11/ a t 1436, 1307 and 129g°C, r e s p e c t i v e l y . REFERENCES

/1/ Darken, L., Trans. AIME 175 (1948) 184.

/2/ Chen, W.K. and ~ e t e r s o n , X ~ . , J. Phys. Chem. S o l i d s

2

(1973) 1093.

/3/ Yurek,

G.J.

and Schmalzried, H., Ber. Bunsenges. Physik. Chem. 78 (1974) 1379.

/4/ Yurek, G.J. and Schmalzried, H., Ber. Bunsenges. Physik. Chem. (1975) 255.

/5/ Wagner, C., Corros. S c i . - 9 (1969) 91.

(7)

~ 1 - 5 4 8 JOURNAL DE PHYSIQUE

/6/ Manning, J.R., " D i f f u s i o n K i n e t i c s f o r Atoms i n C r y s t a l s " , D. Van Nostrand Co.

Inc., P r i n c e t o n (1968) 194.

/7/ Dieckmann, R. and Schmalzried, H., Ber. Bunsenges. Physik. Chem.

79

(1975) 1108 /8/ Wagner, C., Acta Met. 17 (1969) 99.

/9/ Gesmundo, F., J. phys.7hem. S o l i d s 44 (1983) 819.

/ l o /

Kofstad, P., "Nonstoichiometry, ~ i f f ' ; S i o n and E l e c t r i c a l C o n d u c t i v i t y i n B i n a r y Metal Oxides", Wiley Interscience, New York (1972).

/11/ S t i g l i c h , 3.5. Jr., Cohen, J.B. and Whi tmore, D.H., J. Am. Ceram. Society

56

(1973) 119.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to