• Aucun résultat trouvé

MODELLING STUDIES OF XUV LASERS

N/A
N/A
Protected

Academic year: 2021

Partager "MODELLING STUDIES OF XUV LASERS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00225868

https://hal.archives-ouvertes.fr/jpa-00225868

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODELLING STUDIES OF XUV LASERS

G. Pert

To cite this version:

G. Pert. MODELLING STUDIES OF XUV LASERS. Journal de Physique Colloques, 1986, 47 (C6),

pp.C6-177-C6-185. �10.1051/jphyscol:1986625�. �jpa-00225868�

(2)

JOURNAL DE PHYSIQUE,

Colloque C6, suppl6ment au n o 10, Tome 47, octobre 1986

MODELLING STUDIES OF XUV LASERS

G.J. PERT

Department of Applied Physics, university of Hull, GB-Hull HU6 7RX, Great-Britain

Abstract

-

A d i s c u s s i o n of t h e general requirements of c o n d i t i o n s necessary t o generate high g a i n i n expansion cooled recombination l a s e r s w i l l be given.

Numerical modelling allows s c a l i n g laws f o r t h e c o n d i t i o n s of optimum gain t o be derived, and hence matched t o plasma generated from l a s e r heated carbon f i b r e s . Comparison between experiment and theory i s good. These s c a l i n g r e l a - t i o n s may be used t o optimise g a i n . G e n e r a l i s a t i o n of t h i s approach using f o i l s and composite t a r g e t allows a range of wavelengths t o be generated.

I n t r o d u c t i o n

Recombination l a s e r s were f i r s t proposed by Gudzenko and s h e l e p i n l i n 1963, although t h e p h y s i c a l b a s i s f o r t h e i r a c t i o n can be c l e a r l y seen i n t h e work of Bates, Kingston and ~ c W h i r t e r ~ , and McWhirter and ~ e a r n 3 . The extension o f t h e scheme t o s h o r t e r wavelengths is a t t r a c t i v e a s a consequence of t h e g e n e r a l s c a l i n g of atomic parameters and r a t e s . The s i m p l e s t such scheme involves hydrogen-like i o n s f o r which a c c u r a t e t r a n s i t i o n r a t e s and energy l e v e l d a t a a r e a v a i l a b l e . I n g e n e r a l t h e h i g h e s t g a i n non-self-terminating t r a n s i t i o n is t h e n = 3 t o n = 2 t r a n s i t i o n (Ha) a t wavelength 6563/z2 1(. I n consequence t h e i s o e l e c t r o n i c t r a n s i t i o n s of t h i s sequence have been much s t u d i e d , with carbon p a r t i c u l a r l y popular.

The recombination l a s e r i n hydrogenic i o n s may be e a s i l y p i c t u r e d i n terms of t h e recombination of f u l l y s t r i p p e d i o n s i n t o high l y i n g ( l a r g e n) s t a t e s , which subsequently decay by cascade t o t h e ground s t a t e . The population i n v e r s i o n i s formed d u r i n g t h e cascade by t h e r a p i d d e p l e t i o n of t h e n = 2 l e v e l due t o t h e s t r o n g n = 2 t o n = 1 (La) r a d i a t i v e t r a n s i t i o n . The upper ( n = 3 ) l e v e l i s s t r o n g l y populated by c o l l i s i o n s from above. Clearly two c o n d i t i o n s must be s a t i s f i e d t o generate a l a r g e i n v e r s i o n d e n s i t y i n a given plasma: namely t h e La l i n e must be o p t i c a l l y t h i n , and t h e n = 3 l e v e l must be a t o r j u s t below t h e LTE l i m i t ( o r c o l l i s i o n l i m i t ) .

It has been f r e q u e n t l y a s s e r t e d t h a t due t o s e l f - a b s o r p t i o n of t h e resonance l i n e , recombination l a s e r s have i n h e r e n t l y low gain. I n f a c t t h i s l i m i t a t i o n may be avoided i n plasmas of small dimensions. This a r i s e s p r i n c i p a l l y due t o t h e motional Doppler s h i f t a c r o s s t h e expanding plasma whereby r a d i a t i o n emitted a t t h e c e n t r e of t h e plasma is not i n frequency resonance with t h a t a t t h e edge.

The e f f e c t i v e a b s o r p t i o n width o f t h e plasma i s t h e r e f o r e much l e s s than t h e p h y s i c a l width. On t h e o t h e r hand motion p a r a l l e l t o t h e a x i s of a c y l i n d r i c a l plasma is n e g l i g i b l e , s o t h a t motion induced changes of t h e gain l e n g t h a r e non-existent. With c a r e f u l design t a k i n g t h i s e f f e c t i n t o account g a i n s of about 10cm-l may be achieved.

To t a k e advantage of t h i s e f f e c t t h e t a r g e t must expand r a p i d l y from a n i n i t i a l l y small c r o s s s e c t i o n : a t y p i c a l t a r g e t being a t h i n c y l i n d r i c a l r o d ,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986625

(3)

JOURNAL DE PHYSIQUE

f o r example a c a r b o n f i b r e 4 . I n t h i s c a s e t h e c o o l i n g n e c e s s a r y t o i n d u c e p o p u l a t i o n i n v e r s i o n c a n be g e n e r a t e d a d i a b a t i c a l l y by t h e expansion w i t h o u t r e c o u r s e t o a d d i t i o n a l d i s s i p a t i o n such a s r a d i a t i v e h e a t l o s s . D e s p i t e t h e i n i t i a l s m a l l d i a m e t e r o f t h e f i b r e r e q u i r e d , t y p i c a l l y a b o u t lym, t h e a c t u a l width o f t h e a i n zone is r e l a t i v e l y l a r g e , 100vm. due t o t h e maximum e l e c t r o n d e n s i t y (2.1O1$ cm-3 f o r C VI) a t which i n v e r s i o n s c a n be formed. A s a r e s u l t t h e plasma d e n s i t y g r a d i e n t s a r e s m a l l . The r e f r a c t i o n l i m i t a t i o n o f g a i n l e n g t h is t h e r e f o r e r e l a t i v e l y unimportant. I n f a c t s i m p l e p r a c t i c a l c o n s t r a i n s on f i b r e s due t o s t i f f n e s s , alignment e t c . l i m i t t h e l e n g t h t o a few c e n t i m e t r e s . P r a c t i c a l s y s t e m s based o n t h i s approach t h e r e f o r e r e q u i r e g a i n o f a b o u t 10cm-I c o n s i s t e n t w i t h t h a t a c h i e v a b l e .

Carbon F i b r e Laser

These g e n e r a l r e q u i r e m e n t s have been i n v e s t i g a t e d f o r t h e CVI Ha l i n e a t 1 8 2 1 u s i n g s i m p l e c a r b o n f i b r e s i r r a d i a t e d by Nd g l a s s l a s e r p u l s e s . The pumping l a s e r p u l s e o f d u r a t i o n a b o u t l o o p s h e a t s and i o n i s e s t h e carbon atoms i n t h e f i b r e t o b a r e n u c l e i . During t h e s u b s e q u e n t expansion c o o l i n g and r e c o m b i n a t i o n i n t o hydrogen-like i o n s l e a d s t o p o p u l a t i o n i n v e r s i o n and gain5. Experiments have confirmed c o m p u t a t i o n a l modelling t h a t s i g n i f i c a n t g a i n can be g e n e r a t e d i n t h i s way provided t h e mass o f t h e expanding plasma is s u f f i c i e n t l y small6. I n p r a c t i c e , however, t h i s r e q u i r e s s i m p l e f i b r e s o f d i a m e t e r a b o u t 2pm which is t o o s m a l l t o b e u s a b l e due t o p r a c t i c a l l i m i t a t i o n s o f o b s e r v a b i l i t y , s t i f f n e s s e t c .

I n a l l t h e e x p e r i m e n t s performed t o d a t e t h e c a r b o n plasma h a s been formed by t h e incomplete burn o f a r e l a t i v e l y t h i c k f i b r e . A l a y e r o f t y p i c a l l y a b o u t lum t h i c k is a b l a t e d from t h e s u r f a c e o f a f i b r e 5ym d i a m e t e r . S i n c e t h e g a i n o c c u r s a t dimensions much l a r g e r t h a n t h e i n i t i a l f i b r e d i a m e t e r , t h e c o l d c o r e o f t h e f i b r e p l a y s l i t t l e r o l e i n l i m i t i n g g a i n e x c e p t w i t h i n a c i r c u l a r r e g i o n s u r r o u n d i n g t h e a x i s . Indeed t h e expansion o f t h e h o t plasma l e a d i n g t o g a i n t a k e s p l a c e n e a r l y i n d e p e n d e n t l y o f t h e c o r e , behaving s i m i l a r l y t o a s i m p l e f i b r e o f t h e same mass6. We may t h e r e f o r e c o n v e n i e n t l y a n a l y s e t h e behaviour o f t h e s e s y s t e m s by s e p a r a t i n g t h e t r a j e c t o r y i n t o two p a r - t s , namely a b l a t i o n and expansion. This approximation a l l o w s d e t a i l e d i n v e s t i g a t i o n o f a n a l y t i c s c a l i n g laws.

The Gain Adiabat

I n expansion c o o l e d recombination l a s e r s t h e o n s e t o f p o p u l a t i o n i n v e r s i o n is determined by two e f f e c t s , namely:

1. The La l i n e is o p t i c a l l y t h i n .

2. The c o l l i s i o n l i m i t l i e s a t a b o u t t h e s t a t e n = 3.

I n o r d e r t o maximise t h e i n v e r s i o n must o n s e t a t t h e h i g h e s t d e n s i t y , i e . a s e a r l y a s p o s s i b l e i n t h e expansion. C l e a r l y t h i s w i l l o c c u r when b o t h c o n d i t i o n s a r e s a t i s f i e d s i m u l t a n e o u s l y . I f t h e absorbed energy is t o o s m a l l , e x c e s s r e c o m b i n a t i o n g i v e s r i s e t o a h i g h ( n = 1 ) ground s t a t e p o p u l a t i o n and' s u b s t a n t i a l La s e l f - a b s o r p t i o n , l i m i t i n g g a i n o n s e t . On t h e o t h e r hand i f t h e energy is t o o l a r g e t h e p o p u l a t i o n s o f t h e upper s t a t e s a r e reduced, and g a i n o n s e t is a c c o r d i n g l y delayed. C l e a r l y t h e r e f o r e t h e r e e x i s t s a n optimum energy f o r t h e expansion o f g i v e n plasma body t o g e n e r a t e maximum g a i n . T h i s c o n d i t i o n may b e c o n s i d e r e d t o g e n e r a t e a n o p t i m i s e d g a i n a d i a b a t .

The c o n d i t i o n s f o r o p t i m i s e d g a i n a d i a b a t s were examined i n d e t a i l i n r e f . 5 by means o f a n e x t e n s i v e n u m e r i c a l s t u d y . It was found t h a t f o r a plasma c y l i n d e r o f mass M (gm/cm) p e r u n i t l e n g t h and r a d i u s A (cm) t h e r m a l energy E (J/cm) p e r u n i t l e n g t h was r e q u i r e d f o r optimum

t h e g a i n G (/cm) b e i n g

G = 3.9 x 1 0 - 6 M - 1 / 2 ~ - 1

(4)

A s a rough g u i d e l i n e i t was found t h a t a g a i n window of f 50% corresponded t o a thermal energy v a r i a t i o n o f

*

25%.

I n o r d e r t o r e l a t e t h e s e g a i n a d i a b a t s t o t h e p r a c t i c a l s i t u a t i o n i n v o l v i n g a plasma mass M h e a t e d by a l a s e r p u l s e of f i n i t e time d u r a t i o n , i t is necessary t o i d e n t i f y a n e q u i v a l e n t v a l u e of t h e r a d i u s A a t which t h e a d i a b a t i c expansion s t a r t s . From simple c o n s i d e r a t i o n s we may expect

t h a t

7 i is a time determined by t h e l a s e r p u l s e c h a r a c t e r ; f o r a s i n g l e p u l s e t h e time-to-peak. Making u s e o f t h i s r e s u l t we o b t a i n :

and

G = 1.6 10-12 M-17/22 q - 8 / 1 1

t h e numerical c o n s t a n t s b e i n g a d j u s t e d t o g i v e good agreement w i t h s i m i l a t i o n . I n t h i s form e q u a t i o n s ( 4 ) and ( 5 ) a c c u r a t e l y reproduce an e x t e n s i v e body o f numerical c a l c u l a t i o n f o r l a r g e masses. For s m a l l masses t h e g a i n f a l l s o f f as t h e c h a r a c t e r i s t i c expansion time becomes s m a l l e r t h a n t h e l a s e r h e a t i n g time, and t h e c o n d i t i o n s o f v a l i d i t y o f t h e model a r e n o t s a t i s f i e d , f i g . 1 . Remarkably, however, i n t h i s r e g i o n e q u a t i o n ( 4 ) remains reasonably a c c u r a t e .

The t o t a l absorbed energy per u n i t mass, E (J/cm) must i n c l u d e t h e i o n i s a t i o n energy E i (J/cm) of v a l u e

namely

A number of t h e experimental c o n f i g u r a t i o n s have used non-symmetric l a s e r i r r a d i a t i o n , e i t h e r s i n g l e beam one s i d e d o r two beam double s i d e d focussing. I n t h i s c a s e we may e x p e c t t h a t t h e r e s u l t a n t plasma may n o t b e p e r f e c b l y c i r c u l a r i n i t s g e n e r a t i o n . I n o r d e r t o examine t h e e f f e c t s of e l l i p t i c plasma g e n e r a t i o n w e have compared s i m u l a t i o n s of t h e g a i n from plasmas o f varying i n i t i a l e c c e n t r i c i t i e s , such a s might b e formed by t h e a b l a t i o n from t h e s u r f a c e of a f i b r e whose diameter is much l a r g e r t h a n t h e a b l a t i o n depth. Fig. 2 shows a t y p i c a l set o f r e s u l t s . I t can be s e e n t h a t t h e e n e r g y h a s s s c a l i n g f o r peak g a i n is independent o f t h e e c c e n t r i c i t y , a l t h o u g h t h e g a i n d e c r e a s e s a s t h e e c c e n t r i c i t y i n c r e a s e s ( f i g . 3 ) . T h i s r e s u l t is n o t e n t i r e l y unexpected f o r we r e q u i r e t h a t t h e l a s e r energy p e r i n p u t over times l a r g e compared t o t h e c h a r a c t e r i s t i c expansion time. Flows w i t h such slow h e a t i n g aresknown t o behave n e a r l y independently o f t h e i n i t i a l s t a t e 7 , i e . c i r c u l a r l y t h i s is due t o t h e f a c t t h a t t h e s m a l l dimension expands r a p i d l y t o approach t h e l a r g e r d u r i n g t h e i n i t i a l s t a g e s o f h e a t i n g , s o t h a t most of t h e h e a t is i n p u t t o a n e a r l y c i r c u l a r body.

Ablation o f C y l i n d r i c a l Systems

The d i f f e r e n t i r r a d i a t i o n geometries used i n t h e experiments performed t o d a t e have ranged from s i n g l e beam one s i d e d i l l u m i n a t i o n t o a quasitsymmetric f o u r beam arrangement. Despite t h i s v a r i a t i o n t h e concensus o f experimental and modelling d a t a i n d i c a t e s t h a t t h e o v e r a l l burn from s m a l l f i b r e s is approximately symmetric, and t h e r e s u l t a n t plasma n e a r l y i s o t h e r m a l . I n consequence we may i d e n t i f y a s p e c i f i c a b l a t e d mass f o r a given energy d e p o s i t i o n : t h e p r e c i s e dependence o f t h e s e q u a n t i t i e s v a r y i n g a c c o r d i n g t o t h e l a s e r and f i b r e

(5)

C6-180 JOURNAL DE PHYSIQUE

parameters. Dimensional a n a l y s i s a l l o w s t h e g e n e r a l f o r m u l a t i o n o f t h e problem i n terms o f simple r e l a t i o n s h i p i n v o l v i n g numerical c o n s t a n t s of o r d e r u n i t y , which may be expected t o vary o n l y s l i g h t l y i n d i f f e r e n t i r r a d i a t i o n geometries.

The burn r e l a t i o n s may t h e r e f o r e be d e r i v e d t o r e a s o n a b l e accuracy, f o r t h i s p a r t i c u l a r c a s e , by c o n s i d e r i n g c y l i n d r i c a l symmetric flows.

The a n a l y t i c theory o f c y l i n d r i c a l laser-plasma formation can be t r e a t e d i n two l i m i t s 8 :

i ) S e l f - r e g u l a t i n g flows I n t h i s l i m i t l a s e r r a d i a t i o n is absorbed by i n v e r s e bremsstrahlung w i t h i n a n extended plasma atmosphere. Due t o slow d e n s i t y f a l l - o f f i n c y l i n d r i c a l geometry i t is t h e dominant p r o c e s s f o r h i g h energy/long p u l s e i r r a d i a t i o n . S i g n i f i c a n t a b s o r p t i o n w i t h i n t h e atmosphere g i v e s r i s e t o a n e a r l y i s o t h e r m a l plasma. I n p r i n c i p a l we may c o n s i d e r two regimes. For s h o r t p u l s e s

and f o r long :

M

=

2.6 x 10-3 y Z-1 A719 A-419 ro2/9 I3519 t 4 / 9

where E is t h e absorbed energy (J/cm), t t h e l a s e r p u l s e width ( s e c ) , A t h e l a s e r wavelength (pm), ro f i b r e r a d i u s (cm), A atomic mass number and Z i o n i s a t i o n number: Y is a p u l s e shape f a c t o r o f v a l u e t y p i c a l l y 1.18.

The c h a r a c t e r i s t i c time f o r t h e change of regime is g i v e n by t h e e q u a l i t y of t h e two v a l u e s o f M. I n p r a c t i c e t h e s h o r t p u l s e f l o w is never observed i n t h e s e experiments: f l o w s s a t i s f y i n g t h i s c o n d i t i o n being dominated by thermal conduction.

i i ) Thermal conduction flows I n t h i s c a s e l a s e r r a d i a t i o n is absorbed a t o r c l o s e t o t h e c r i t i c a l d e n s i t y . Energy t r a n s f e r w i t h i n t h e plasma is dominated by thermal conduction. S i n c e t h e plasma atmosphere must be r e l a t i v e l y s m a l l , t h i s behaviour is c h a r a c t e r i s t i c o f low e n e r g y / s h o r t p u l s e i r r a d i a t i o n . I n t h i s l i m i t we must a l s o d i s t i n g u i s h two regimes. For s h o r t p u l s e s

and f o r l o n g

t h e p u l s e shape f a c t o r Y i n t h i s c a s e being approximately 1.43.

The domains o f t h e s e v a r i o u s s o l u t i o n s a r e r e a d i l y e s t a b l i s h e d on p h y s i c a l grounds. A t low absorbed energy a propagating thermal burn s o l u t i o n ( 1 0 ) is v a l i d , where t h e l a s e r energy is absorbed n e a r t h e t a i l of t h e expansion. A t h i g h e r e n e r g i e s , t h e plasma dimensions d u r i n g i r r a d i a t i o n i n c r e a s e and t h e energy is predominantly absorbed w i t h t h e plasma body a t t h e c r i t i c a l d e n s i t y , e q u a t i o n (11) being a p p r o p r i a t e . F u r t h e r energy i n c r e a s e c r e a t e s a plasma o f s u f f i c i e n t l y l a r g e dimensions t h a t i n v e r s e bremsstrahlung w i t h i n t h e plasma body is important, and t h e a b l a t i o n is d e s c r i b e d by ( 9 ) ( f i g . 4). Other h i g h energy regimes a r e n o t a p p l i c a b l e w i t h i n t h e range of experimental parameters evisaged i n c u r r e n t and f u t u r e experiments, and w i l l n o t t h e r e f o r e be d i s c u s s e d .

I n o r d e r t o check t h e s e numerical c a l c u l a t i o n s and t h e a n a l y t i c r e l a t i o n s two s e t s o f experimental measurements o f t h e a b l a t e d mass/energy s c a l i n g s have been c a r r i e d o u t . One s e t using s i n g l e s i d e d i r r a d i a t i o n under t h e c o n d i t i o n s a t which g a i n was observed, were performed a t low energy i n t h e regime of propagating burn [ e q u a t i o n ( l o ) ] . Fig. 5 shows a comparison of t h e experimental d a t a w i t h e q u a t i o n (10) and w i t h r e s u l t s from 2d computer s i m u l a t i o n . I n t h e

(6)

second s e t o f experiments f o u r beam i r r a d i a t i o n a t energy took p l a c e i n t h e s e l f - r e g u l a t i n g regime. Comparison of one- and two-dimensional simulations with t h e s c a l i n g law ( 9 ) shows good agreement f o r both Z = 5 and 6 ( f i g . 6 ) . One dimensional c a l c u l a t i o n s with a s e l f - c o n s i s t e n t s t e a d y s t a t e value of i o n i s a t i o n g i v e s values between t h e s e two l i m i t s c I n both c a s e s t h e experimental d a t a is c o n s i s t e n t w i t h i n experimental e r r o r with t h e c a l c u l a t e d values.

Matching Conditions

The incomplete burn mode removes one degree of freedom from t h e design o f a n experimental c o n f i g u r a t i o n . The f i b r e r a d i u s o r plasma l i n e d e n s i t y can no longer be chosen independently of t h e t o t a l plasma energy. The choice of parameters t o match t h e expansion t o an optimum a d i a b a t is t h e r e f o r e l i m i t e d t o l a s e r pulse energy and d u r a t i o n , l a s e r wavelength and t h e i n i t i a l f i b r e r a d i u s .

The c o n d i t i o n f o r optimum g a i n r e q u i r e s t h a t t h e absorbed energy E be a prescribed f u n c t i o n ( 7 ) of t h e plasma mass, namely EG(M). On t h e o t h e r hand t h a t mass is i t s e l f determined by t h e a p p r o p r i a t e a b l a t i o n r e l a t i o n ( 9 ) , (10) o r ( 1 1 )

,

from t h e absorbed energy MB(E). Thus f o r optimum o p e r a t i o n we must chose t h e a v a i l a b l e parameters s o t h a t

I n p r a c t i c e t h e s e o p e r a t i n g p o i n t s a r e most conveniently i d e n t i f i e d g r a p h i c a l l y by p l o t t i n g M = MB(E) and E = EG(M) on a "burn diagramw: t h e i n t e r a c t i o n of t h e s e two l i n e s being t h e optimum ( f i g . 1 ).

One of t h e a t t r a c t i v e f e a t u r e s of t h i s scheme can be deduced from t h e c l o s e p a r a l l e l i s m of t h e burn and g a i n l i n e s i n t h e neighbourhood of t h e optimum i n t h e dominant s h o r t p u l s e ( 9 ) and long p u l s e (11) regimes ( f i g . 1 ) . A s a r e s u l t t h e device is i n s e n s i t i v e t o v a r i a t i o n s i n absorbed l a s e r energy f o r o p e r a t i o n i n t h e neighbourhood of t h e optimum. Indeed a range of energy of n e a r l y an o r d e r of magnitude could be t o l e r a t e d without t o o severe a degradation i n gain.

Gain h a s been observed i n two s e t s of experiments under t h e c o n d i t i o n s of f i g s . 2-4 and 5. In g e n e r a l it i s found ( f i g s . 1 and 3) t h a t s u b s t a n t i a l gain is only developed i f t h e mass, and corresp0ndin.g absorbed energy is r e l a t i v e l y small, t y i c a l l y 2-3 J/cm. Reasonably l a r g e g a i n s a r e only observed under t h i s c o n d i t i o n

E

s8. I n c o n t r a s t i n experiments under c o n d i t i o n s s i m i l a r t o f i g * 5 where t h e absorbed energy was about 20J/cm showed only low gaing.

I t would appear from f i g s . 2-4 and 5 t h a t n e i t h e r experimental c o n f i g u r a t i o n is optimally matched. I n t h e most r e c e n t experiments f i g . 3 would i n d i c a t e t h a t some improvement i n t h e measured g a i n c o e f f i c i e n t of about 4/cm could be improved. I n t h e e a r l i e r ones, however, t h e measured value 15/cm is about twice t h e peak c a l c u l a t e d . Preliminary c a l c u l a t i o n s with a one dimensional time dependent i o n i s a t i o n code suggest t h a t both t h e s e d i s c r e p a n c i e s may be r e s o l v e d by a complete hydrodynamic d e s c r i p t i o n of both t h e burn and t h e gain.

Thin F o i l Targets

Thus f a r we have examined symmetric systems which g i v e a good approximation t o e x i s t i n g f i b r e experiments. However, a s we have seen, only r e l a t i v e l y small changes i n o p e r a t i n g behaviour occur i f t h e i n i t i a l plasma is e l l i p t i c r a t h e r than c i r c u l a r . This r e s u l t s u g g e s t s t h a t we may u s e plasma of l a r g e e c c e n t r i c i t y formed by i r r a d i a t i n g t h i n f o i l s r a t h e r than f i b r e s : t h e plasma mass per u n i t l e n g t h i n both c a s e s being t h e same. 'In t h i s c a s e t h e mass is determined by t h e t h i c k n e s s of t h e f o i l and width of t h e f o c a l l i n e modified by any l a t e r a l h e a t t r a n s p o r t . I n p r i n c i p l e such t a r g e t s r e t a i n t h e f l e x i b i l i t y of design of f u l l y burnt f i b r e s , b u t i n p r a c t i c e u n c e r t a i n t i e s about t h e l a t e r a l width considerably complicate c a l c u l a t i o n s .

(7)

JOURNAL

DE

PHYSIQUE

For a n e f f e c t i v e width of 40pm t h e f o i l s must only be a b o u t 10001( t h i c k . For simple carbon f o i l s t h e g a i n a d i a b a t f o l l o w s t h e same e n e r g y h a s s r e l a t i o n s h i p a s f o r c y l i n d e r s independently of t h e e c c e n t r i c i t y . The g a i n a l s o behaves i n a similar f a s h i o n showing t h e same s c a l i n g b u t with d e c r e a s i n g c o n s t a n t a s t h e e c c e n t r i c i t y is i n c r e a s e d ( f i g s . 2 and 3 ) .

Carbon f o i l s a r e r e l a t i v e l y d i f f i c u l t t o c o n s t r u c t , b u t polymers a r e simpler.

Examination of t h e behaviour o f Formvar f o i l s (C11 Hi8 05) shows t h a t t h e same s e a l i n g r e l a t i o n s a r e obeyed a s f o r pure carbon, b u t t h a t t h e numerical c o n s t a n t s d i f f e r , f i g . 2. I n p a r t i c u l a r c o n s i d e r a b l y more energy is r e q u i r e d t o d r i v e t h e Formvar f o i l , a l t h o u g h t h e a t t a i n a b l e g a i n is comparable w i t h carbon ( f i g . 3 ) . S c a l i n g t o S h o r t e r Wavelengths

The i s o e l e c t r o n i c s c a l i n g o f hydrogenic i o n s a s t h e i o n i s a t i o n , 2, i n c r e a s e s may b e used t o d e s i g n s h o r t e r wavelength l a s e r s based on t h e carbon f i b r e model.

The d e t a i l e d s c a l i n g of such expansion was developed i n r e f . 5. I t was found t h a t f o r Z

<

12 (magnesium/aluminium) some d e g r e e of pre-expans'ion t o match t h e a d i a b a t was necessary. I n p r a c t i c e t h i s a c c o u n t s f o r t h e a b l a t i o n / i o n i s a t i o n phase. Hence w e may a n t i c i p a t e t h a t r e l a t i v e l y simple e x t r a p o l a t i o n o f f i b r e desigfis t o t a r g e t s c o n t a i n i n g n i t r o g e n , oxygen, f l u o r i n e o r neon is p o s s i b l e . Numerical s i m u l a t i o n s confirm t h i s h y p o t h e s i s . Such t a r g e t s may b e formed i n two convenient ways by e i t h e r s e e d i n g o r c o a t i n g carbon f i b r e s . I n t h e former a r e l a t i v e l y low s e e d d e n s i t y o f t h e l a s a n t element ( - 10%) is i o n implanted w i t h i n t h e f i b r e . I n t h e l a t t e r a t h i n o v e r c o a t of polymer o r o t h e r s u i t a b l e m a t e r i a l is overcoated t o p r o v i d e a n a b l a t i o n medium.

For h e a v i e r i o n s s u c h . a s magnesium and aluminium t a r g e t d e s i g n r e q u i r e s d e p a r t u r e from t h e simple carbon a d i a b a t s l O . The d e s i g n of s u i t a b l e t a r g e r t s was d i s c u s s e d i n r e f . 10 where a g a i n i t was Suggested t h a t s u i t a b l e t a r g e t s could be e i t h e r c o a t e d f i b r e s o r r i b b o n coated t h i n f o i l s . A t t h e p r e s e n t time t h e r e l a t i v e m e r i t s o f each s u g g e s t i o n a r e unknown.

Conclusions

Q u a s i - a n a l y t i c modelling a i d e d by computer s i m u l a t i o n h a s allowed t h e development of s c a l i n g r e l a t i o n s f o r t h e carbon f i b r e l a s e r scheme. These simple formula have been shown t o be i n agreement w i t h experiment, and have allowed easy i d e n t i f i c a t i o n o f working parameters. More i m p o r t a n t l y t h e r a t h e r complicated p h y s i c a l r e l a t i o n s h i p s amongst experimental v a r i a b l e s can be understood. This u n d e r l y i n g t h e o r y p r o v i d e s t h e b a s i s f o r t h e development o f s h o r t e r wavelength l a s e r s , now p r o j e c t e d e x p e r i m e n t a l l y .

References

1. L.I. Gudzenko and L.A. S h e l e p i n , Sov. Phys. Doklady,

10,

147 (1965).

2. D.R. Bates, A.E. Kingston and R.W.P. McWhirter, Proc. Roy. Soc. A ,

267,

297, (1962)i A .

270,

155 (1962).

3. R.W.P. Mckmirter and A.G. Hearn, Proc. Phys. Soc.

82,

641 (1963).

4. R.J. Dewhurst, D. Jacoby, G.J. P e r t and S.A. Ramsden, Phys. Rev. L e t t . 37, 1265 (19761.

5.

G.X

P e r t , J. Phys. B,

9,

3301 ( 19761 :

11,

2067 (1979).

6. D. Jacoby, G.J. P e r t , L.D. Shorrock and G.J. T a l l e d t s , J. ~ h y s . B, 15. 3557 (1982).

7. G . x P e r t , J . F l u i d Mech.,

100,

257 (1980).

8. G.J. P e r t , J . Plasma PhyS: i n p r e s s .

9. E. Mahoney, C.L.S. Lewis, M.J. Lamb, L.D. Shorrock, G.J. P e r t , M.H. Key, C. Hooker and R.B. Eason, C e n t r a l Laser F a c i l i t y Annual Report, Rutherford

Appleton LaboPatory, RL-83-043, p7.2 (1983).

10. G.J. P e r t , Plasma Phys.,

3,

1427 (1985).

(8)

Fig. 1 Burn diagram f o r symmetric i r r a d i a t i o n of a 5um diameter carbon f i b r e by a 0.53pm l a s e r p u l s e of 200ps d u r a t i o n i n a f o c a l s p o t 40um wide. The l i n e s show t h e a n a l y t i c e q u a t i o n s (7) and ( 9 1 , and t h e p o i n t s computer s i m u l a t i o n g e n e r a t e d v a l u e s of burn mass ( x ) and g a i n energy ( 0 ) . The peak g a i n computed

( 0 ) is compared w i t h t h e a n a l y t i c e x p r e s s i o n (5).

Fig. 2 Mass energy r e l a t i o n c a l c u l a t i o n s f o r f i b r e s of v a r y i n g e l l i p t i c widths heated by a Tops, 0 . 5 3 ~ ~ 1 l a s e r p u l s e i n a s p o t 40um wide. C i r c u l a r f i b r e s a r e denoted ( o ) , e l l i p t i c of width a c r o s s t h e f o c a l s p o t , 10um ( 0 ) . 20pm

( 0 ) .

40um ( 0 ) and 60um ( x ) . Also shown a r e c a l c u l a t i o n s f o r Formvar s t r i p s of t h i c k n e s s 0.5pm

(El

and 1.0pm ((0. The f u l l l i n e is g i v e n by e q u a t i o n 17).

(9)

JOURNAL DE PHYSIQUE

Fig. 3 Calculations of gain for the configurations represented in fig. 2.

full line is given by equation (5).

The

Fig. 4 Calculations of the ablation mass for the configuration of fig. 2 using one.dimensiona1 ( V ) and two dimensional ( A ) codes, for Z = 5, and one dimensional (t) for Z = 6. The lines represent the analytic expression ( 1 0 ) and (11) and the dashed line (9) for Z = 6. The two dimensional calculations treat two sided illumination.

(10)

Fig.5 Burn diagram for the expe- riments of ref. 6, involving one sided heating of 4um fibres by 1..06um laser radiation of duration laOps with pre-pulse. Experimen- tally measured (e) and computer simulated mass points (x) are shown compared with analytic for- mulae (7) and (10).

Fig.6 Ablation mass calculations for the experiments of ref. 9 in- volving four beam symmetric hea- ting of 5pm fibres by 0.53vm ra- diation of duration 200ps with pre-pulse. Experimental measure- ments (.) are compared with one

(V) and two dimensional (A) simu- lations for Z = 5, one dimensional ( 0 ) for Z = 6 and self-consistent ionisation calculations (x), and with analytic prediction, equa- tion (9).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to