• Aucun résultat trouvé

PROPERTIES OF THE NEUTRON

N/A
N/A
Protected

Academic year: 2021

Partager "PROPERTIES OF THE NEUTRON"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00224015

https://hal.archives-ouvertes.fr/jpa-00224015

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROPERTIES OF THE NEUTRON

J. Byrne

To cite this version:

J. Byrne. PROPERTIES OF THE NEUTRON. Journal de Physique Colloques, 1984, 45 (C3), pp.C3- 1-C3-10. �10.1051/jphyscol:1984301�. �jpa-00224015�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, supplément au n°3, Tome 45, mars 1984 page C3-1

PROPERTIES OF THE NEUTRON

J. Byrne

School of Physical and M athe m atical Sciences, University of Sussex, Brighton BN1 9QH, U.K.

Résumé - Nous passons en revue les données expérimentales récentes con- cernant les propriétés du neutron du point de vue des interactions forte, électromagnétique, faible et gravitationnelle.

A b s t r a c t - We review recent experimental data on the neutron and on i t s s t r o n g , e l e c t r o m a g n e t i c , weak and g r a v i t a t i o n a l i n t e r a c t i o n s .

1 . Mechanical P r o p e r t i e s

(1.1) Elementary nature of the neutron

An elementary quantum mechanical system i s one whose states transform according to a d e f i n i t e i r r e d u c i b l e r e p r e s e n t a t i o n of the inhomogeneous Lorentz group l a b e l l e d by the mass M and the spin J . Whether or not a p a r t i c l e i s regarded as elementary depends on the time scale over which i t e x i s t s as an i r r e d u c i b l e e n t i t y . The n a t u r a l u n i t f o r t h i s time scale i s i r / M c2 which f o r the neutron i s - l O "2" sec.

This compares w i t h it'sB-decay l i f e t i m e T - 103 sec. Thus f o r low energy phenomena a t l e a s t i t i s reasonable t o view the nefttron as an elementary p a r t i c l e .

( 1 . 2 ) Spin

That the spin o f the neutron i s J was demonstrated long ago by slow neutron s c a t t e r i n g i n o r t h o - and para-hydrogen( 1 ) . More r e c e n t l y t h i s has been confirmed d i r e c t l y from the s p a t i a l s p l i t t i n g o f unpolarized neutron beams i n a Stern-Gerlach apparatus(2)Because J = \ the neutron i s a f e r m i o n ; i f i t were not so we would not observe s h e l l s t r u c t u r e i n n u c l e i . For h a l f - i n t e g r a l spin the r e l e v a n t group r e p r e s e n t a t i o n i s diouble-valued and f o r the neutron t h i s too has been d i r e c t l y v e r i f i e d using i n t e r f e r o m e t r i c techniques ( 3 , 4 ) .

(1.3) Mass

In 1961 the I n t e r n a t i o n a l Union of Physics and Chemistry adopted as the u n i t (u) of nuclear mass one t w e l f t h p a r t of the mass of 1 2C . According to the 1973 adjustment of constants t h i s has the value i n MeV (5)

l u = 931 .5016 + 0.0026 MeV

The most accurate method f o r determining the mass of the neutron makes use of the exothermic r e a c t i o n n+p+ D+y the energy release Er. being c a r r i e d o f f by the y-ray and the r e c o i l i n g deuteron . C u r r e n t l y there are three values of En. of comparable accuracy a v a i l a b l e

En = 2.224564 + 0.000017 MeV (Greenwood and Chrien 1980) ( 6 ) E„ = 2.224568 + 0.000008 MeV (Vylov e t a l 1982) ( 7 )

E^ = 2.224575 + 0.000009 MeV (Van der Leun 1982) ( 8 )

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984301

(3)

C3-2 JOURNAL DE PHYSIQUE

These d a t a are then combined w i t h the mass d i f f e r e n c e s as determined from charged p a r t i c l e mass spectroscopy ( 9 )

'H2 - 2H = 1548.287 + 0.006 V U

'H - 1 = 7825.037 - 0.010 UU

t o y i e l d a value f o r the mass excess o f t h e neutron (n-1) = Eo - - 2 ~ + ) ( I H - 1 )

The weighted average f o r the t h r e e values o f ED gives the r e s u l t

This r e s u l t may be compared w i t h t h e r e s u l t (n-1 ) = 8665.012 + 0 . 0 3 7 ~ accepted by the 1982 P a r t i c l e Physics Data Group ( 10 ). To determine t h e p h a s e space f a c t o r f a p p r o p r i a t e t o neutron 8-decay we r e q u i r e a value f o r the neutron-proton mass d i f f e r e n c e which from t h e value o f (n-1) above i s given by

(M -M ) c2 = 1.293302 + 0.000015 MeV

n P -

2 . Strong I n t e r a c t i o n s

(2.1) Strong I n t e r a c t i o n Symmetry

A d e t a i l e d d i s c u s s i o n o f the s t r o n g i n t e r a c t i o n s o f the neutron i s n o t o f immediate i n t e r e s t i n a conference devoted t o low energy phenomena and we s h a l l t h e r e f o r e o n l y summarise what i s known, o r b e l i e v e d t o be known,about t h e symmetries o f these i n t e r a c t i o n s . The p a r i t y P r e l a t i v e t o the proton i s + and the charge Q=O and baryon number B=l are a b s o l u t e l y conserved so f a r as i s known. The b e s t approximate s y m e t r y i s t h a t described by t h e symmetry group SU(2) ( i s o s p i n ) which i s extended t o SU(3) ( f l a v o u r ) t o accanmodate t h e strange p a r t i c l e s . These symmetry groups m a n i f e s t themselves as approximately degenerate m u l t i p l e t s i n t h e mass spectrum o f

hadrons g i v i n g r i s e t o t h e fami 1 ia r o c t e t s o f J=$ baryons and J=O mesons.

Since baryons o f t h e SU(3) d e c u p l e t are observed t o have J=3/2one c o n s t r u c t s the product group SU(3) ( f l a v o u r ) X SU(2) (spin) and then enlarges i t t o SU(6) t o see i f the e m p i r i c a l f l a v o u r - s p i n a s s o c i a t i o n a r i s e s n a t u r a l l y from i r r e d u c i b l e representations of SU(6) as indeed i t does.

I n the quark model baryons c o n s i s t o f three J=$ valence quarks i n t h e i r l o w e s t s p a t i a l s t a t e described by symmetric s p i n - f l a v o u r wave-functions together w i t h a small a d n i x t u r e o f quark-anti-quark p a i r s . I n t h e theory o f strong i n t e r a c t i o n s c a l l e d quantum chromo-dynamics (QCD , a gauge theory based on SU(3) ( c o l o u r ) , the quarks a r e h e l d together by exchange o f an o c t e t o f v e c t o r mesons c a l l e d gluons whose sources are the ' c o l o u r ' charges on t h e quarks.

There i s another i m p o r t a n t approximate symmetry o f the s t r o n g i n t e r a c t i o n s which emerges from t h e observation t h a t the strangelness conserving weak v e c t o r c u r r e n t i s conserved (CVC) and the a x i a l c u r r e n t approximately conserved (PCAC). The l e f t and right-handed c u r r e n t s are associated w i t h transformations o f the c h i r a l symmetry group SU(2) x SU(2) , u l t i m a t e l y enlarged t o SU(3) x SU(3) t o encompass strange- ness changi hg c u r r e n h . The crrrucial d i f f e r e n c e betheen i s o s B i n ( o r f l a v o u r ) and c h i r a l symmetry i s t h a t t h e vacuum i s n o t c h i r a l l y i n v a r i a n t and t h e r e i s no m a n i f e s t a t i o n o f the c h i r a l symmetry i n the mass spectrum. Instead the spontaneous

breaking o f t h e c h i r a l symmetry g i v e s r i s e t o a massless Goldstone boson w i t h the quantum numbers o f t h e pion. The symnetry i s n o t exact however and the p i o n i s n o t massless; i f i t were the a x i a l c u r r e n t would be e x a c t l y conserved. Extending these

ideas t o SU(3) x SU(3) t h e pseudo-scalar meson o c t e t m e r g e s as an o c t e t o f (almost) mass 1 eks olds st he bosons.

(4)

3. Electromagnetic I n t e r a c t i o n s (3.1 ) E l e c t r i c Charge

That the neutron i s a n e u t r a l p a r t i c l e having zero e l e c t r i c charge has been checked i n a s e r i e s o f experiments going back t o the days o f i t s f i r s t discovery. The most r e c e n t measurement o f t h i s type i s t h a t o f Gahler e t a1 ( 11 ) who searched f o r the d e f l e c t i o n o f a focused beam o f slow e l e c t r o n s i n a s t r o n g e l e c t r i c f i e l d . T h e i r resu 1 t

where e i s the charge on t h e proton, showed an improvement on t h e previous L e s t determination ( 12 ) by two orders o f magnitude.

8 7 8 7

A f u r t h e r p o i n t o f i n t e r e s t i s t h a t a r e c e n t s t u d y (13) o f t h e d e c a y R b + S r has e s t a b l i s h e d t h a t the l i f e t i m e f o r the charge-non-conserving decay n+p+

n e u t r a l s s a t i s f i e s T > 1.8 x 1018 y r . (3.2) Magnetic Monopole Moment

There i s no magnetic monopole term i n Maxwell'sequations o f t h e c l a s s i c a l e l e c t r o - magnetic f i e l d and indeed the presence o f such a term would v i o l a t e p a r i t y i n v a r i -

ance. However i n D i r a c ' s theory, (14,15) magnetic monopoles, i f they e x i s t , would be i n t e g r a l m u l t i p l e s o f e/2a where a i s the f i n e s t r u c t u r e constant. The i n t e r e s t i n magnetic monopoles has grown r e c e n t l y because they a r i s e n a t u r a l l y i n spon- taneously broken gauge theories; they a r e an i n t r i n s i c p a r t o f grand u n i f i e d t h e o r i e s where they a r e expected t o have masses i n the r e g i o n o f 10'' GeV, i . e . about the mass o f a l e a d p e l l e t 5~ i n diameter. There has however been one r e p o r t (16) o f the observation o f a monopole crossing the 20cm2 area o f a superconducting loop. Since o n l y one-even_; was detected i n 151 days t h i s would i m p l y a f l u x

= 2 x TO-'' sec l s r 3 i.e. approximately l o 6 times g r e a t e r than t h e Parker Parker l i m i t s e t by t h e ' 3 ~ 6 g a l a c t i c magnetic f i e l d .

To date t h e o n l y l i m i t s e t on the magnetic monopole moment (MMM) o f the neutron derives from t h e work o f Cohen e t a1 ( 17 )

qmn(l .8 x 10-15 e/2a

a1 though Ramsey (16) has p o i n t e d o u t t h a t t h i s l i m i t could be improved by a f a c t o r of ID7 u s i n g the techniques employed by GLhler e t a1 t o measure the neutron charge.

3.3 E l e c t r i c Dipole Moment

Since the existence o f a f i n i t e e l e c t r i c d i p o l e moment(EDM) i n t h e neutron r e q u i r e s the simultaneous v i o l a t i o n of p a r i t y and time-reversal invariance, i t s observation wourld s i g n i f y t h e breakdown o f CP-symmetry o f which o n l y one example i s known t o date, namely the weak decay o f the KO meson (19). L e t edn be t h e neutron EDM where d i s a s u i t a b l e d i p o l e l e n g t h f o r which t h e n a t u r a l scale i s the Compton wave- lBngth A, o f the neutron. We can then express dn i n t h e form

dn = Clp (Jt X c

where 9 - 5 x represents the r e l a t i v e amplitude o f the i r r e g u l a r p a r i t y com- ponent Pn Ihe neutron wave f u n c t i o n and g i s the corresponding r e l a t i v e amplitude c h a r a c t e r i z i n g the breaking o f time r e v e k a l symmetry (20).

There are c u r r e n t l y two experiments i n progress t o look f o r a neutron ELM both o f which make use o f the Ramsey magnetic resonance technique w i t h b o t t l e d u l t r a c o l d neutrons and these have reached l i m i t s d ~ 4 ~ 7 0 - ' ~ a n ( 2 0 , 2 1 ) and d? i 4 . 8 ~ 1 0 - ~ ' ~ ~ .(?2) r e s p e c t i v e l y . There i s t h e r e f o r e no evi%ence t o d a t e f o r t h e existence o f a f i n i t e EDM although one can say t h a t the r e s u l t s r u l e o u t the e a r l y electromagnetic

(5)

C3-4 JOURNAL DE PHYSIQUE

(gt =.I) and m i l 1 iweak (gt=10-3) t h e o r i e s of CP-violation. They are however consis- t e n t w i t h superweak theory (gt=10 9 ) .

I n t h e SLi(2) x U ( 1 ) gauge theory o f weak i n t e r a c t i o n s t h e r e a r e two mechanisms f o r i n t r o d u c i n g CP-violation. I n t h e o r i e s o f the Kobayashi -Maskawa type (23) w i t h t h r e e doublets each o f the left-handed quarks and l e p t o n s the C P - v i o l a t i o n enters through the phase d i f f e r e n c e s between the v a r i o u s charged c u r r e n t s g i v i n g d i p o l e lengths dn =10-34cm o r d = 1 0 - ~ ~ c m i n the supersymmetric versions (24). I n t h e o r i e s o f the weinbergntYpe ( 2 5 ) w i t h a t l e a s t two doublets o f s c a l a r f i e l d s the C P - v i o l a t i o n i s due t o the exchange o f charged Higgs mesons r e s u l t i n g i n d i p o l e lengths o f order (2-7) x 10-25cm. Such p r e d i c t i a ~ s c o m e w e l l w i t h i n the p o t e n t i a l range o f t h e present generation o f experiments.

An i m p o r t a n t f e a t u r e o f a neutron EDM i s i t s r e l a t i o n t o the observed baryon-anti- baryon asymmetry i n the universe (26). According t o various grand u n i f i e d t h e o r i e s o f baryosynthesis the observed asymmetry sets a lower bound on the neutron EDM

where (N /N ) > 1.3 x lo-' i s the observed baryon/photon r a t i o . To disprove o r prove su!h claim would r e q u i r e an improvement i n the s e n s i t i v i t y o f the present experiments o f order l o 3 .

3.4 Magnetic D i p o l e Moment

The magnetic d i p o l e moment i s the o n l y mu1 t i p o l e moment o f t h e neutron which i s known t o be d e f i n i t e l y non-zero. The most r e c e n t measurement ( 27), c a r r i e d o u t u s i n g

the Ramsey technique o f separated magnetic resonance c o i l s , has given t h e r e s u l t

which places t h i s parameter among the most a c c u r a t e l y determined numbers i n nuclear physics. An e q u i v a l e n t r e s u l t i s the r a t i o o f neutron t o p r o t o n magnetic moments

An e a r l y success f o r t h e SU(6) model o f baryon symmetry was i t s p r e d i c t i o n p /IJ = -2/3. The MIT quark bag model n o t o n l y preserves t h i s r a t i o b u t c o r r e c t l y pPed?cts the magnetic moment f o r the A (28). The model does n o t do so w e l l f o r the o t h e r strange baryons and g r e a t e r stccess i s obtained w i t h the c h i r a l bag model o r

' l i t t l e bag' where pions p l a y the r o l e o f Goldstone bosons. I n t h i s model where the pions e x i s t o u t s i d e the bag r a t h e r as i n the e a r l y Yukawa model (29), the magnetic moment o f t h e neutron i s p r e d i c t e d t o have t h e value pn = -1 .8%N which i s good t o 1.6% ( 3 0 ) .

(3.5) Neutron E l e c t r o n S c a t t e r i n g

Although the neutron has no n e t charge i t may have a charge d i s t r r i b u t i o n charac- t e r i z e d by an e l e c t r i c f o r k f a c t o r G n ( q 2 ) where q 2 i s the square o f the momentum t r a n s f e r . I n the same Nay the d i s t r t b u t i o n o f magnetization i s described by a magnetic form f a c t o r GM ( q 2 ) . These form f a c t o r s are s u i t a b l e f o r t h e d e s c r i p t i o n o f electron-nucleon s c a t t e r i n g a t h i g h energy since the e l e c t r i c and magnetic c o n t r i b u t i o n s do n o t i n t e r f e r e . The nucleon form f a c t o r s excluding the neutron charge form f a c t o r s a t i s f y t h e s c a l i n g law (31)

~ ~ ~G~~ ((q2)/ ( P ~ / v ~ ) ~ q ~ ) G~ ~q2)/ (un/uN) ~ (

w i t h mean square r a d i i (rE2)~ =(G2)P = 6 M 2 > " 2 ~ . 7 f m 2 where

(6)

Information on t h e charge d i s t r i b u t i o n within the neutron i s determined mainly from q u a s i - e l a s t i c e l e c t r o n deuteron s c a t t e r i n g and i n p a r t i c u l a r from t h e s c a t t e r i n g of slow neutrons from electron; i n s p i n l e s s atoms. For low energy phenomena i t i s convenient t o s e p ~ r a t e GEn(q2) i n t o Dirac (charge) and Pauli (magnetic rn~ment)~form f a c t o r s F, and F2 r e s p e c t i v e l y ( t h e r e i s an equivalent s e p a r a t i o n f o r GM ( q 2 ) ) . Thus we have

F, (0) = o i s t h e neutron charge and Fpn ( 0 ) = p /p i s t h e neutron magnetic moment. The experiments determine t h e s l o p e 6 1 (,? f o r which we obtain t h e r e l a t i o n N

The term ~ 2 ~ ( 0 ) / 4 f f l ~ = -0.02115 fm2 i s t h e so-called "Foldy" term ( 3 2 ) . There i s an e q u i v a l e n t term i n proton s c a t t e r i n g which i s supplemented by an a d d i t i o n a l . c o n t r i b u t i o n from the ' Carwin' term.

Data from electron-deuteron s c a t t e r i n g giwe t h e value G~ n(o) = 0.0182 fm2(33);

however t h i s r e s u l t i s hardly r e l i a b l e because of uncer\ainties a s s o c i a t e d with the deuterium t a r g e t . A more r e l i a b l e r e s u l t i s t h a t ohtainedfrom t h e long s e r i e s of experimentson neutron-electron s c a t t e r i y ( 34) f o r which t h e most recent work by Koester e t a1 ( 3 5 ) g i v e s t h e r e s u l t G' (c)=0.01999+0.003fc2. We can see then t h a t t h e Foldy term deriving from t h e Pauli Form f a c t o r c o n t r i b u t e s almost t h e t o t a l e f f e c t . This i s i n accordance with the c a l c u l a t i o n s of C a r l i t z e t a1 (36) using the quark model w i t h allowance f o r the s p i n dependence o f t h e inter-quark f o r c e s . The Dirac form f a c t o r nevertheless makes a small c o n t r i T t i o n t o t h e t o t a l s c a t t e r i n g and from t h i s residue we can compute a 'Dirac charge r a d i u s (37).

I t is not c l e a r however t h a t any c o n s i s t e n t i n t e r p r e t a t i o n can be applied t o t h i s q u a n t i t y and the whole question has been subjected t o considerable discussion i n the t h e o r e t i c a l 1 i t e r a t u r e (38).

(3.6) E l e c t r i c and Magnetic P o l a r i z a b i l i t i e s

The s c a t t e r i n g of photons by a system of charged p a r t i c l e s i s c h a r a c t e r i z e d by a s c a t t e r i n g t e n s o r which i n t u r n i s r e l a t e d t o t h e p o l a r i z a b i l i t y t e n s o r of the charge system i n an electromagnetic f i e l d of t h e same frequency. In the case of protons t h e e l e c t r i c and magnetic s t a t i c p o l a r i z a b i l i t i e s % P and %P can be determined f ran measurements on t h e d i f f e r e n t i a l s c a t t e r i n g cross s e c t i o n s of low energy ptotons. The r e s u l t s ( 3 9 ) a E P = (1.07 t 1 . l ) x fm3, F = (-0.7 t 1.6) x 10 fm a r e i n reasonable accord with t h e o r z t i c a l p r e d i c t i o n s

3

auEP = 1 1 . 5 x lo-*

fm and %P = 3.2 x lo-' fm3 r e s p e c t i v e l y (46).

For t h e neutron t h e corresponding p r e d i c t i o n s a r e oEn = 8.5 x lo-' fm3 and = 7 . 8 x 10-*fm3 ( 2 ) . No m e a s u r e ~ e n t of onn has been reported t o d a t e and theye i s a s i n g l e r e c e n t measurement of oF 7 (13 + 8 ) x 1 0-3 fm3 (41). This r e s u l t was derived f r a n t h e t o t a l cross-s c t l o n f o r the s c a t t e r i n g of neutrons with energies up t o 40eV near t h e 16.83eV resonance i n l E 6 W . I t i s an o r d e r of magnitude l a r g e r than predicted.

(3.7) Neutron-Electron Bound S t a t e s

Some y e a r s ago i t was reported t h a t neutrons formed a weak bond with e l e c t r o n s trapped i n LiF a t 4°K (42) although t h e phenomenon was u l t i m a t e l y discounted(43,44) Recently t h e r e have been new r e p o r t s of n e u t r o n m a t t e r bound s t a t e s detected i~ the resonance s c a t t e r i n g of very slow neutrors i n A1 and Cu but no d e t a i l s a r e given (45).

(7)

JOURNAL DE PHYSIQUE

4. Weak I n t e r a c t i o n s

(4.1) Electro-weak U n i f i c a t i o n

The neutron p a r t i c i p a t e s in t h e weak i n s e r a s t i o n v i a t h e charged c u r r e n t s leading t o the semi -1eptonic neutron 6-decay n-t p+e + v , and v i a both charged and n e u t r a l c u r r e n t s giving r i s e t o p a r i t y admixtures inenuclear s t a t e s and p a r i t y v i o l a t i n g e f f e c t s i n neutron nucleus i n t e r a c t i o n s ( 4 6 ) . The discovery of t h e W- and Z0 (47,48) mesons i n t h e pj5 c o l l i d e r experiments a t CERN e a r l i e r this y e a r e s t a b l i s h e d beyond

doubt electro-weak u n i f i c a t i o n i n terms of a s i n g l e parameter sin2 o 2 0.21. In the corresponding SU(2) x U(1) gauge theory of Weinberg Salam and ~ l i s h o w t h e weak Fermi coupling constant G i s expressed i n terms of t h e e l e c t r i c charge by

The hadronic weak i n t e r a c t i o n s a r e renormalized by the s t r o n g i n t e r a c t i o n s a s described i n Cabibbo theory. In t h i s formulation the weak coupling constants f o r muon (purely l e p t o n i c ) , neutron and s t r a n g e p a r t i c l e decay a r e given by

where cos Oc = 0.9737 + 0.0025 (49). The vector and axial vector form f a c t o r s , g V ( o )

= gv; gA(o) = gA i n ngutron decay a r e given by

Taking t h e v$ilues (50, 51) Gy = (1.43577 + 0.00012) x lo-:' e r g an3 from muon decay and G = (1.41220 + 0.00043) x e r g cmJ from 0 4 m i r r o r nuclei B-decay we f i n d g @ 1.008 + 0.005. Thus g i s not renormalized by t h e s t r o n o i n t e r a c t i o n s which i s !he s t a r t i K g p o i n t of CVC !heory.

F i n a l l y we have s t r o n g CVC theory which i d e n t i f i e s the weak vector and e l e c t r o - magnetic c u r r e n t s a s components of t h e same i s o v e c t o r c u r r e n t . This implies the

presence of a 'weak magnetism' form factor(g -gv)for t h e neutron analogous to t h e electromagnetic Paul i form f a c t o r . The verymprecise p r e d i c t i o n i s then t h a t

This form f a c t o r has not y e t been measured experimentally.

(4.2) The Neutron Lifetime

The neutron l i f e t i m e T provides a measure of t h e q u a n t i t y G 2 ( $ 2 + 3gA2) and t h r e e di r e c t measurements ofnTn of comparable accuracy a r e c u r r e n t f y avaiTable . These a r e

T , 1 918 + 14 s . (Christensen e t a1 1972) (52) 877 T 8 s . (Bondarenko e t a1 1978) (53 )

:n n 937 T - 18 s . (Syrne e t a1 1980) (54 )

These r e s u l t s a r e c l e a r l y i n d i s a reement. T can a l s o be determined i n d i r e c t l y from values o f G (54.1 and h = 7gA/gv1 (54.37. The P a r t i c l e Data Group (1982) recommends t h e " f l u e ( 5 1 )

(4.3) The Axial Form Factor

The a x i a l c u r r e n t i s n o t conserved and the corresponding form-factor i s determined from t h e r a t i o A = g d g y f 7 he1$

.

This i s derived from t h e neutron s p i n - e l e c t r o n momentum c o r r e l a t i o n coe ~ c i e n t (56,57) and a l s o from t h e e l e c t r o n neutrino angular c o r r e l a t i o n c o e f f i c i e n t a s measured from t h e proton spectrum (58). The experimental r e s u l t s a r e

(8)

A = 1.253 + 0.021 Krohn and Ringo 1975) ( 56) X = 1.263 T 0.015 [ E r o z o l i m s k i i e t a1 1979) (57) X = 1.259 E 0 . 0 1 7 (Stratowa e t a1 1978) ( 58)

The weighted mean o f these r e s u l t s i s X = 1.259 + 0.010 which would imply a value f o r the l i f e t i m e -r = 902 + 11s. On t h e o t h e r hand a r e c e n t measurement (59) gives X = 1.275 (+ 0 . 0 0 6 ~ + 0.002T g i v i n g a v a l u e T = 883 s. v e r y close t o the measured value (53) which has Feen e x p l i c i t l y r e j e c t e d By the P a r t i c l e Data Group. The s i t u a t i o n i s indeed v e r y uncertain.

The a x i a l form f a c t o r g may be c a l c u l a t e d from PCAC theory using the Goldberger Treimanrelation g F,/M w i t h c o r r e c t i o n s expressed as a value f o r A = 1-MgA/

%NN~,- Quark bae=mo%!C( are n o t very successful i n c a l c u l a t i n g A b u t a good r e s u l t A = 0.06 + 0.02 i s obtained on a l l o w i n g f o r the breaking o f c h i r a l SU(2) x SU(2)E (60,61) . n i s may be compared w i t h the experimental value A(exp) = 0.072

1

0.004.

(4.4) Time Reversal I n v a r i a n c e

The weak c u r r e n t s are c l a s s i f i e d as f i r s t o r second c l a s s according as they a r e even o r odd under G - p a r i t y . If T-invariance i s v i o l a t e d we e i t h e r have ( i ) charge symmetry and second c l a s s currents (62) ( i i ) no charge symmetry and T - v i o l a t i o n i n f i r s t c l a s s c u r r e n t s . Neutron decay i s an analogue decay and o n l y the hypothesis

( i i ) can be r e a d i l y tested. This i s done by l o o k i n g f o r a non-vanishing neutron s p i n - e l e c t r o n mcmentum - n e u t r i n o tTIcXnentum c a r r e l a t i o n c o e f f i c i e n t D=2 sin4/(1+3X2).

There are two measurements a v a i l a b l e

D = - (1.1 + 1.7) x (Steinberg e t a1 1974) D = - (2.2 T - 3.0) x ( E r o z o l i m s k i i e t a1 1978)

D t h e r e f o r e vanishes w i t h i n experimental e r r o r corresponding t o a3phase angle 4 = (180.11 5 0.17)' and a r e l a t i v e T - v i o l a t i n g amplitude g t < 2 x 10- .

-

(4.5) The Decay n +'H + v C

This i s a r a r e decay mode f o r the neutron w i t h an estimated (65) branching r a t i o o f 4.2 x lo-'+%%. I t has never been observed. The i n t e r e s t i n i t stems from the f a c t t h a t the r e l a t i v e populations i n the s i n g l e t and t r i p l e t h y p e r f i n e l e v e l s o f the hydrogen atom a r e s e n s i t i v e b o t h t o departuresfrom (V-A) c o u p l i n g and l e p t o n number non-conservati on.

(4.6) The n-p Weak I n t e r a c t i o n

This i s a non-leptonic weak i n t e r a c t i o n and i s b e s t s t u d i e d i n t h e r e a c t i o n n + p -t D + y . T i s process i s governed by three weak mixing amplitudes ( 3 ~ ~ / V w l 'P~)

(A 1=0), t l S o ] V I 'PO) (AI.0.2) and < 3 ~ 1 / SP,) ( A I = ~ ) . Two types o f experiment have been p e r f o h e d ( i ) measurement o f t h e y - r a y asymmetry P;y using p o l a r i z e d neutrons and ( i i ) measurement o f t h e Y - r a y c i r c u l a r p o l a r i z a t i o n PC using u n p o l a r i - zed neutrons.

Ay i s s e n s i t i v e t o the presence o f AI=l amplitude w i t h s i g n i f i c a n t enhancement from n e u t r a l c u r r e n t s . The experimental r e s u l t i s (66)

which i s t o be compared w i t h t h e o r e t i c a l p r e d i c t i o n s Ay ,<lo-'

PC i s s e n s i t i v e t o the presence o f AI=O, 2 amplitudes and i s m a i n l y a charged c u r r e n t e f f e c t w i t h t h e o r e t i c a l e x p e c t a t i o n ~ ~ = 1 0 - ~ - 1 0 - ~ . The o r i g i n a l measurement gave the r e s u l t (67)

b u t has r e c e n t l y been c o r r e c t e d t o / ~ & 5 x (6Eg.

(9)

C3-8 JOURNAL DE PHYSIQUE

A1 though PNC e f f e c t s have been observed i n "ISn(n, y)ll"Sn, ( 6 9 ) i n neutron weak s p i n r o t a t i o n ( 79 and i n neutron induced f i s s i o n Q 1 ) , f i n i t e PNC e f f e c t s have y e t t o be observed i n t h e n-p system where they would be most s u s c e p t i b l e t o d i r e c t t h e o r e t i c a l i n t e r p r e t a t i o n .

(4.7) Grand U n i f i e d Theories and nii O s c i l l a t i o n s

The u n i f i c a t i o n o f s t r o n g weak and electromagnetic i n t e r a c t i o n s i s based on t h e gauge group SU(3) x SU(2) x U(1) w i t h t h r e e ipdependent gauce couplings and tweTve v e c t o r Resons i .e. 8 gluons, 3 heavy mesons W- Z and t h e photon y. I n grand u n i f i e d t h e o r i e s the group i s enlarged, e.g. t o h ( 5 ) w i t h an a d d i t i o n a l 12 heavy mesons and a s i n g l e gauge coupling. The s t r o n g c o u p l i n g i s supposed t o decrease

l o g a r i t h m i c a l l y w i t h energy according t o the n o t i o n o f asymptotic freedom and a l l couplinas become equal a t the grand u n i f i c a t i o n mass 2 1015 GeV.

I n these t h e o r i e s p r o t o n decay ( A B = l ) i s allowed b u t n i i o s c i l l a t i o n 5 (AB=2) are forbidden. However, i t may be t h a t there i s p a r t i a l u n i f i c a t i o n a t lower masses : l o 5 GeV w i t h nii o s c i l l a t i o n s p e r m i t t e d w i t h a p e r i o d -cn6

-

10-8sec. I t has been

observed t h a t nE o s c i l l a t i o n over t h i s time scale could account f o r the f l u x o f low energy ?j i n the cosmic r a d i a t i o n (72).

However a l l we know i s t h a t -> 1 .O x l o 6 sec; (73 ) an o s c i l l a t i o n p e r i o d - l o 8 sec would be extremely d i f f i c u l t observe u s i n g r e a c t o r neutrons s i n c e t h e number o f 5 would be extremely small w i t h E/n :10-l?

5. G r a v i t a t i o n a l I n t e r a c t i o n s (5.1 ) ' G r a v i t a t i o n a l Mass

The P r i n c i p l e o f Equivalence i n general r e l a t i v i t y a s s e r t s t h a t t h e g r a v i t a t i o n a l and i n e r t i a l masses o f any body are equal when measured i n some s u i t a b l e s e t o f u n i t s . The f i r s t t e s t o f the p r i n c i p l e f o r an elementary p a r t i c l e was c a r r i e d o u t by McReynolds (74) who observed the f r e e f a l l o f a neutron beam over a 12m. path and showed t h a t the p r i n c i p l e was v a l i d t o w i t h i n z 10%. I n the most r e c e n t s t u d i e s o f t h i s problem a neutron g r a v i t y r e f r a c t o m e t e r have been used t o t e s t the i n f l u e n c e o f g r a v i t y on s c a t t e r i n g l e n g t h measurements and t h e e q u a l i t y o f the g r a v i t a t i o n a l and i n e r t i a l masses has been v e r i f i e d t o a p r e c i s i o n o f 0.03% (75,76).

(5.2) G r a v i t y and Quantum Mechanics

The development o f t h e techniques o f neutron i n t e r f e r o m e t r y (77) has allowed a number o f many i n t e r e s t i n g s t u d i e s o f the behaviour of neutrons i n g r a v i t a t i o n a l f i e l d s t o be c a r r i e d out. For example Werner e t a1 (78) s t u d i e d the i n f l u e n c e o f the e a r t h ' s g r a v i t a t i o n a l f i e l d on the neutron phase thereby e x p l o i t i n g the i n t e r - f e r o m e t r i c technique t o t e s t the r u l e s f o r transforming a quantum mechanical Hamiltonian i n t o a n o n - i n e r t i a l reference frame. This represents the quantum mechanical analogue o f t h e o p t i c a l Sagnac e f f e c t (79). The Fizeau experiment f o r neutrons has a l s o been c a r r i e d o u t (80) w h i l e Greenberger e t a1 (81) have shown t h a t the Aharonov-Bohm e f f e c t f o r neutrons i s l e s s than t h a t f o r charged p a r t i c l e s by a f a c t o r o f 5 x 10-12. The general problem o f m a t t e r and l i g h t wave i n t e r f e r e n c e i n non-Newtonian g r a v i t a t i o n a l f i e l d s has been discussed by Stodolsky (77).

I n a d d i t i o n there have been a number o f i n t e r e s t i n g proposals. Berry (82) has p r e - d i c t e d f r e e - f a l l i n t e r f e r e n c e f r i r g e s f o r neutrons ' a f a l l i n g neutron rainbow' w i t h wavelength independent f r i n g e separation AR = 3.53897 x @2/~2g)'3 =0.026mm w h i l e Anandan (83) has proposed t o d e t e c t B and T - v i o l a t i o n (64) using neutron i n t e r - ferometry t o observe a neutron e l e c t r i c and/or g r a v i t a t i o n a l d i p o l e moment.

6. Sumary

The main neutron parameters on which experimental data i s a v a i l a b l e are sumnarized i n t h e Table below.

(10)

Mechanical J~ = $+; M = 1.008664995

+

0.000000015 u.

= 939.5730 - 0.0026 MeV Strong I = L 2 , I 3 =-$, B = 1, Y = 1 , c = 0

Electromagnetic qn = -(1.5+2.2) x 1 0 - 2 0 e , qmn<l - 8 x 10-15e/2u

dn =.< 4 x 10-25cm, u = (-1.913O4308~0.O00OOo58)~~

G ; ~ ( o ) (e-D) = 0.0182fmz G ; ~ ( o ) ( n - e ) = 0.01 99+0.003fm2 a E n = (13+S) - x 1 0 - ~ f r n ~

G r a v i t a t i o n a l M / M . = 1.00016 2 0.00025 9 '

Table 1 . Experimental Data on the Neutron

References

(1) J Schwinger Phys Rev 52 (1937) 1250.

(2) Barkan e t a l . Rev Sci Instrum 39 (1968) 101.

( 3 ) Rauch e t al. Phys L e t t A54 (1973j 425.

(4) herner e t a l . Phys Rev Lett 35 (1975) 1053.

( 5 ) E R Cohen and B N Taylor P h E Chem Ref Data 2 (1973) 663.

( 6 ) R C Greenwood and R E Chrien Phys Rev C21 (1WO) 498.

( 7 ) Vylov e t a l . Sov J Nucl Phys 36 (1982) 4 m . ( 8 ) C Van d e r Leun Nucl Phys A38U-(1982) 261.

( 9 ) A N Wapstra and K Bos N u c l . x t a Sheets 19 (1977) 177; 20 (1977) 1 . (10) P a r t i c l e Data Group Phys L e t t 811 1 ( 1 9 8 q 1.

(11) G'rihler e t a1 Phys Rev D25 (198252887.

(12) Shull e t al. Phys Rev 153-(1967) 1414.

( 1 3 ) Norman e t a1 Phys Rev-tt 43 (1979) 1226.

(14) P A M Dirac Proc. Roy Soc AT33 (1931 ) 6O;Phys Rev 74 (1948) 817.

(15) B Cabrera Phys Rev L e t t 47 -('I3821 1738.

(17) Cohen e t al. Phys Rev 1 0 4 7 1 9 5 6 ) 283.

(18) N'F Ramsey The NeutroKTnd its Applications IOP Conf S e r 64 (1982) 5.

(19) Christenson e t a1 Phys Rev L e t t 13 (1964) 138.

(20) F Boehm Comm Nucl P a r t Phys 11 ( T 8 3 ) 251.

(21) Altarev e t al. Phys Lett 117 8 ( 1 9 8 2 ) 45.

(22) Pendlebury e t a l . Phys L e K B ( t o be published).

(23) M Kobayashi and T Maskawa Prog Theor Phys 49 (1973) 652.

(24) S P Chia and S Nandi Phys L e t t B117 ( 1 9 6 2 ) 7 5 . (25) S Weinberg Phys Rev L e t t 37 (1976)-657.

(26) E l l i s e t a1 Phys L e t t 8 9 9 7 9 6 1 ) 101.

(27) Greene e t al. Phys Rev Dm (1979) 2139.

(28) De Rujula e t a l . Phys.Rei-312 (1975) 147.

(29) G E Brown and M Rho Phys Lxt 82B (1 979) 177.

(30) G E Brown and F Myrer Phys L e t t ' l 2 S B (1983) 229.

(31) Kirk e t a1 Phys Rev D8 (1973) 6 3 .

(32) L L Foldy Phys Rev 83 71951) 668; 87 (1952) 693.

(33) Trubnikov e t a l . JETP L e t t 34 (19815-134.

(34) V E Krohn and 6 R Ringo Pfis Rev. 148 (1960) 1303; Phys Rev D8 (1973) 1305.

(35) Koester e t al. Phys Rev L e t t 36 (1476) 1021.

(36) C a r l i t z e t a l . Phys L e t t B68 7J-977).

(37) T Ericson Fundamental Physics with Reactor Neutrons and Neutrinos IOP Conf S e r N042 (1978) 1,

(38) G Barton I n t r o d u c t i o n t o Dispersion Techniques i n Field Theory.

W A Benjamin (1965) 199, 218.

(39) Baranov e t a l a Phys L e t t 528 (1974) 122 (40) V E Schrijder Nucl Phys B E 6 (1980) 103.

(11)

C3-10 JOURNAL DE PHYSIQUE

(41) Yu A Alexandrov JINR P r e p r i n t E3-82-049 1982

I t

(42) T J Grant and J W Cobble Phys Rev L e t t 2 (19 4 ) 741.

(43) Krohn e t a1 Phys Rev L e t t 23 (1969) 1475;- (44) I s a a c e t a1 Phys L e t t B21 'i7970) 63.

(45) A A S e r e g r i n I N I S ATOMINDEX 13 (1982) A b s t r 643775.

(46) J Byrne Rep Prog Phys 45 (1982) 115.

(47) A r n i s o n e t a1 Phys L e t m 1 2 2 (1983) 103, 8126 (1983) 398.

(45) Banner e t a1 Phys L e t t B l r ( 1 9 8 3 ) 476. -

(49) R E Shrock and L L Mng F h y s Rev L e t t 41 (1978) 1692 (50) Duclos e t a1 Phys L e t t B47 (1973) 491. -

(51) Towner e t a1 Nucl Phys A234 (1977) 269.

(52) C h r i s t e n s e n e t a1 Phys E n 5 (1972) 1628 (53) Bondarenko e t a1 JETP L e t t (1978) 303.

(54) Byrne e t a1 Phys L e t t B92 (TV80) 274.

(55) O H W i l k i n s o n P r o g ~ a r ~ u c l Phys 6 (1981) 325; Nucl Phys A377 (1982) 474.

(56) V E Krohn and G K Ringo Phys L e t t 855 (1975) 175.

(57) E r o z o l i m s k i i e t a1 Sov J Kucl P h y s 3 0 (1979) 356.

(58) Stratowa e t a1 Phys Rev D l 8 (1978) 3-9-70.

(59) D Dubbers P r i v a t e CommuniEtion (1983).

(60) Tegen e t a1 Phys L e t t B125 (1983) 9.

(61) C A Dominquez Phys Rev ITZ5 (1982) 1937.

(62) C A Dominguez Phys Rev D20 ( 1 979) 802.

(63) S t e i n b e r g e t a1 Phys R e v T e t t 33 (1974) 41.

(64) E r o z o l i m s k i i e t a1 Sov J Nucl m y s 28 (1978) 48.

(65) L L Nemenov Sov J Nucl Phys 31 (198UJ- 115.

(66) Cavaignac e t a1 Phys L e t t B6T-(1977) 146.

(67) Lobashov e t a1 Nucl Phys A 1 T (1972) 241.

(68) E Adelberger Comm Nucl ~ a r m y s 11 (1983) 189.

(69) Benkoula e t a1 Phys L e t t B71 ( 1 9 7 n 287.

(70) Heckel e t a1 Phys L e t t B l F ( 1 9 8 2 ) 298.

(71) Petrukhov e t a1 JETP L e m 2 (1980) 300.

(72) V Krishnan and C Sivaram E t r o p h y s Space S c i 87 (1982) 205.

(73) K Green XVTT Rencontre de M o r i o n d Vol 1 Quarks, Leptons and Supersymmetry Ed Tran T h a i X T a n (1982) 397 (and P r i v a t e Communication).

(74) A W McReynolds Phys Rev 83 (1951) 172.

(75) L Koester Phys Rev 014 ( W 7 ) 907.

(76) V F Sears Phys Rev D r ( 1 9 8 2 ) 2023.

(77) U Bonse and H Rauch T e u t r o n I n t e r f e r o m e t r y Clarendon Press O x f o r d (1979).

(78) Werner e t a1 Phys Rev L e t t 42 (1979) 1103.

(79) G Sagnac C R Acad S c i P a r i s 7 5 7 (1913) 1410.

(80) K l e i n e t a1 Phys Rev L e t t 4 6 7 9 8 1 ) 1551.

(81) Greenberger e t a1 Phys R e v T e t t 47 (1981) 751.

(82) M V B e r r y J Phys A15 (1982) L385.- (83) J Anandan Phys Rev L e t t 48 (1982) 1660.

(84) P K K a b i r Phys Rev D25 - (T982) 2013.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to