• Aucun résultat trouvé

CONNECTION BETWEEN THE LOW TEMPERATURE THERMAL PROPERTIES OF GLASSES AND THEIR GLASS TRANSITION TEMPERATURE

N/A
N/A
Protected

Academic year: 2021

Partager "CONNECTION BETWEEN THE LOW TEMPERATURE THERMAL PROPERTIES OF GLASSES AND THEIR GLASS TRANSITION TEMPERATURE"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221286

https://hal.archives-ouvertes.fr/jpa-00221286

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONNECTION BETWEEN THE LOW

TEMPERATURE THERMAL PROPERTIES OF GLASSES AND THEIR GLASS TRANSITION

TEMPERATURE

T. Klitsner, A. Raychaudhuri, R. Pohl

To cite this version:

T. Klitsner, A. Raychaudhuri, R. Pohl. CONNECTION BETWEEN THE LOW TEMPERATURE THERMAL PROPERTIES OF GLASSES AND THEIR GLASS TRANSITION TEMPERATURE.

Journal de Physique Colloques, 1981, 42 (C6), pp.C6-66-C6-68. �10.1051/jphyscol:1981620�. �jpa- 00221286�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, suppZ6ment a u nO1 2, T m e 42, de'cembre 1981 page C6-66

CONNECTION BETWEEN THE LOW TEMPERATURE THERMAL PROPERTIES OF GLASSES AND T H E I R GLASS T R A N S I T I O N TEMPERATURE

T. K l i t s n e r , A.K. ~ a ~ c h a u d h u r i * a n d R.O. P o h l

Laboratory of Atomic and S o l i d S t a t e P h y s i c s , Come22 U n i v e r s i t y , Ithaca, NY 14853, U.S.A.

Abstract. Water doping of n i t r a t e glasses lowers t h e i r thermal conductivity.

The e f f e c t , however, i s smaller than expected on the basis of the increased density of s t a t e s of anomalous s t a t e s observed in specific heat measurements.

Addition of foreign atoms or molecules t o c r y s t a l l i n e s o l i d s changes t h e i r l a t t i c e vibrational spectrum, resulting in localized modes, resonances, and t u n - neling s t a t e s . We a r e exploring whether similar e f f e c t s can a l s o be caused in amorphous solids. As host g l a s s , we have chosen n i t r a t e glasses of the composition 40 mole % Ca(NO3l2 and 60 mole % KN03. Doping with LiN03 and KN02 up t o t h e i r s o l u b i l i t y l i m i t s , 6 x lo2' and 4.4 x lo2' respectively, caused no discernible e f f e c t on the low temperature s p e c i f i c heat of the glass ( < 2% change),' in c o n t r a s t t o t h e doping of a l k a l i halide c r y s t a l s with ~ i + or NO; ions, which r e s u l t s in low energy tunneling s t a t e s in many hosts.2 Doping the glass with water, however, a t concentrations between 1 and 3 x loz1 increased the low temperature s p e c i f i c heat anomaly known to be c h a r a c t e r i s t i c f o r the amorphous s t a t e . ' The increase in entropy was found t o scal e with the water concentrations', but was approximately four orders of magnitude small e r than i t would be i f every water molecule would con- t r i b u t e one tunnel ing s t a t e . Thus, tunnel ing ( o r some other kind of low energy vibration) of t h e water a l s o appears t o be very unlikely in t h i s case.

We did observe, however, t h a t the s p e c i f i c heat anomaly of t h e water-doped glass scales with the reciprocal glass t r a n s i t i o n temperature TG, i . e . ,

a

-

T ~ - ' , with

exc ( 1 )

,.I. 16

'exc = 'v - ' ~ e b ~ e = aexc , ( 2 ) see Fig. 1. Eq. (1) suggests t h a t the low temperature anomalous s t a t e s a r e a measure of the disorder frozen-into the glass a s i t s o l i d i f i e d , a s has a l s o been proposed independently by Cohen and rest,^ based on t h e free-volume theory of glasses.

In the present study, we have searched f o r a change in the low temperature thermal conductivity in water-doped n i t r a t e glass. Sample preparation, determina- tion of Tjiatid of the thermal conductivity have been described previously. 1,294

"present address : Max-Planck-Institut f u r Festk6rperforschung, Heisenbergstr. 1, D-7000 S t u t t g a r t 80, F.R.G.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981620

(3)

F i g . 1. The anomalous s p e c i f i c heat o f 40/60 Ca(N03)2KN03 g l a s s increases w i t h decreasing TG r e s u l t i n g from doping w i t h wate a f t r Ref. 1. Water concentrations:

# I , 1.1; #2, 2.4; #3, 3.8; #4, 3.3, a l l i n loh cmqQ. A l s o shown i s t h e thermal r e s i s t i v i t y A-1 a t 0.1 K, see r i g h t hand ordinate. The dashed l i n e connecting t h e two data p o i n t s , obviously, i s o n l y an a i d f o r t h e reader. F o r equal changes i n TG, aexc increases approximately f o u r times more than A-1. TG f o r t h e c o n d u c t i v i t y samples i s 339 K (undoped), 292 K (doped).

To (K) 400

-

80

s 'i'

* & 70

e, a

-

P

60

50

F i g . 2. Percent r e l a t i v e d e v i a t i o n , d e f i n e d as (Aexp - A f i t , u n ~ o p e ~ ) / ~ f i t , u n d o p e d o f t h e measured c o n d u c t i v i t y of t h e undoped ( " d r y " ) and t h e doped ("wet") samples.

The b e s t f i t t o t h e d r y sample, kit, undoped = 1.82 x T ~ (W cm-I ' ~K-I, ~ w i t h T measured i n K).

375 350 325 300 275

1 I I

A SAMPLE # 3 0 SAMPLE I 2

- SAMPLE # I Y

A 40/60 CO(NO,)~-KNO, 0 %/SO CO(NO,)~-KNO, V SAMPLE 6 4

-

- a" U)

- 5

1 I I I I

+8

+ 4

s

g

.-

.-

'f - 4 t -8

.;o -

Q)

a-12

2.5 -L 3.0 3.5

x IO'(K-\

TQ

, I I I I I I 1 I

-0 -

- 0 -

- O O O o o O o O o O -

o 0 O r ,

yDry ( O '

0

O O

0 -

0 0 "

- 0 0 00 0 0

- 0 O

..*. ...

-

n O O

. . . .

- -

Wet ( 0 )

> * . .

:i .*

. . . .

-

- -

- 8 .

4 0 / 6 0 Ca (NO,) K N 4 -

-

1 I I I 1 I I 1 1 *

100 2 0 0 300 400 500

Temperature, m K

(4)

C6-68 JOURNAL DE PHYSIQUE

The conductivity A , measured between 0.1 and 0.5 K, followed a power law f o r both the doped and the undoped sample. For t h e undoped sample, A = 1.82 x 10- 4 T1.96 ( i n W cm-' K - ~ ) , while f o r the undoped sample, A = 1.69 x 10- i . e . , 7%

smaller. The qua1 i t y of the power law f i t t o the conductivity of the undoped sample i s shown in Fig. 2, which a l s o shows the r e l a t i v e deviation of t h e data obtained on the doped ("wet") sample r e l a t i v e t o the power law f i t f o r the undoped ("dry") sample. The data f o r the doped sample a r e lower, on average, by 7% than the data f o r the undoped sample. Both s e t s of data show a peak near 0.25 K, which we believe t o r e s u l t from an e r r o r in c a l i b r a t i o n of our thermometer.

In Fig. 1, we have plotted the thermal r e s i s t i v i t y A-l, a t 0.1 K , f o r the two samples. The e r r o r bars a r e those of the accuracy with which the sample geometry was measured ( * 5%). I t i s seen t h a t the increase of aexc, i . e . , of the density of s t a t e s in the water-doped sample, i s l a r g e r than the increase in thermal resistance, the l a t t e r being j u s t barely outside the experimental e r r o r . Conceivably, the in- creased density of s t a t e s of the s c a t t e r i n g centers i s partly o f f s e t by an increase of t h e speed of sound (which would increase the low temperature thermal conductiv- i t y ) , and/or by a decrease of the coupling constant in the doped sample. Measure- ments of the speed of sound in these glasses, in progress i n our laboratory, will shed some 1 ight on these questions.

This research was supported in part by the National Science Foundation under Grant #DMR-78-01560 and through the Cornell Materials Science Center.

References

1. A . K. Raychaudhuri and R. 0. Pohl, Solid S t a t e Comm. 37, 105 (1980), and sub- mitted t o Phys. Rev.

2. V . Narayanamurti and R. 0. Pohl, Rev. Mod. Phys. 42, 201 (1970).

3 . M . H. Cohen and G. S. Grest, Phys. Rev. Lett. 45, 1271 (1980), and Solid S t a t e

Corn., in p r i n t .

4. A . K. Raychaudhuri, Ph.D. Thesis, Cornell University, August 1980, unpublished.

Cornel 1 Materials Science Center Report #4284, 1980.

Références

Documents relatifs

Abbreviations used: DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GFP, green fluorescent protein; GST, glutathione S-transferase;

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide