• Aucun résultat trouvé

LIQUID PHASE EPITAXIAL GROWTH OF InxGa1-xAs/ InP NEAR SOLID INSTABILITY

N/A
N/A
Protected

Academic year: 2021

Partager "LIQUID PHASE EPITAXIAL GROWTH OF InxGa1-xAs/ InP NEAR SOLID INSTABILITY"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00222220

https://hal.archives-ouvertes.fr/jpa-00222220

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LIQUID PHASE EPITAXIAL GROWTH OF InxGa1-xAs/ InP NEAR SOLID INSTABILITY

M. Joncour, J. Benchimol, J. Burgeat, M. Quillec

To cite this version:

M. Joncour, J. Benchimol, J. Burgeat, M. Quillec. LIQUID PHASE EPITAXIAL GROWTH OF

InxGa1-xAs/ InP NEAR SOLID INSTABILITY. Journal de Physique Colloques, 1982, 43 (C5), pp.C5-

3-C5-10. �10.1051/jphyscol:1982501�. �jpa-00222220�

(2)

CoZZoque C5, supplirnent au n012, Tome 43, de'cernbre 1982 page C5-3

L I Q U I D

PHASE EPITAXIAL GROWTH OF 1n,~a, -,AS/I~P NEAR SOLID INSTABILITY

M.C. Joncour, J.L. Benchimol, J. Burgeat and M. Q u i l l e c

Centre NationaZ dlEtudes des Te'Ze'comunications, PAB/PMS/SPD, 196 m e de Paris, 92220 Bagneux, France

.Resume.

-

On e t u d i e l ' i n f l u e n c e du s u b s t r a t InP s u r l a croissance

a

p a r t i r de l a p h a s e l i q u i d e de couches de t e r n a i r e InxGal-xAs. Les r e s u l t a t s experimentaux m e t t e n t en evidence c e t t e i n f l u e n c e t a n t pour l a croissance s u r des s u b s t r a t s d ' o r i e n t a t i o n

(001) que (111)B. L 1 i n t e r p r @ t a t i o n e s t f a i t e ii l ' a i d e du modele des s o l u t i o n s simples en prenant en compte l ' e n e r g i e e l a s t i q u e due ii l a presence du s u b s t r a t . Cependant, s i ce modele assure une bonne d e s c r i p t i o n de l a croissance epi t a x i a l e s u r un s u b s t r a t (OOl), une p r i s e en compte de l a c i n e t i q u e semble necessaire pour d e c r i r e l a c r o i s - sance sur un s u b s t r a t (111).

Abstract.

-

The i n f l u e n c e o f the InP s u b s t r a t on InxGal-XAs l i q u i d phase e p i t a x i a l l a y e r s i n t h e v i c i n i t y o f t h e c r i t i c a l temperature i s analysed. T h i s i n f l u e n c e i s c l e a r l y proved f o r b o t h (001) and (111)B growth o r i e n t a t i o n , and i n t e r p r e t e d by means o f the simple s o l u t i o n model, t a k i n g i n t o account t h e s t r a i n energy induced by the substrate. A1 though t h i s model g i v e s a good d e s c r i p t i o n o f e p i t a x i a l growth on (001) substrates, i t seems necessary t o i n c l u d e growth dynamics i n (111) growth d e s c r i p t i o n .

1. I n t r o d u c t i o n . - S o l i d s o l u t i o n s InxGal-xAsl- Py have become o f considerable i n t e r e s t f o r f a b r i c a t i n g 1.R l a s e r diodes f o r o p t i c a l tglecommunications. Most o f t e n , these devices are prepared v i a 1 iq u i d phase e p i taxy (LPE), s e l e c t i n g compositions

r ,

y t h a t r e s u l t i n InP l a t t i c e matched e p i l a y e r s . The InxGal-xAs a l l o y can be grown l a t t i c e matched t o InP s u b s t r a t e f o r x = 0.53. R e f e r i n g t o B u b l i k and L e i k i n c a l c u l a - t i o n s C

17,

the c r i t i c a l temperature o f I n 0 50Gao 5oAs a l l o y i s 600°C.

This i s q u i t e c o n s i s t e n t w i t h the value taken fr6m r e f .2 i n which de Cremoux e t a l C 4 c a l c u l a t e d the spinodal isotherms f o r t h e InxGal-xAsl- Py a l l o y . The commonly used LPE growth temperature range (600

-

650°C) i s thus q u i f e c l o s e t o the c r i t i c a l value.

We b e l i e v e t h a t the v i c i n i t y o f i n s t a b i l i t y leads t o s t r o n g " l a t c h i n g - e f f e c t " . Such an e f f e c t has been observed by S t r i n g f e l l o w r 3 J on GaxInl_,P l a y e r s . He found t h a t v a r i a t i o n s i n t h e l i q u i d s o l u t i o n composition induces much l e s s v a r i a t i o n i n the s o l i d than p r e d i c t e d by a r e g u l a r s o l u t i o n model

.

He a t t r i b u t e d t h i s discrepancy t o the e l a s t i c s t r a i n induced by the s u b s t r a t e . To i n c l u d e q u a n t i t a t i v e l y t h e l a t t i c e mismatch s t r a i n energy i n the phase diagram c a l c u l a t i o n , Nahory and a1 C4J, using Jesser and Kuhlmann-Wi l s d o r f [5] c a l c u l a t i o n s , proposed the f o l l o w i n g expression :

b G ~ t r a i n = a-a

0 2 (-B-

1 +v 0

w i t h o = 2 c G VM

where C ( = 1/2 c 4) i s the i n t e r f a c i a l shear modulus o f the l a y e r , v i s t h e Poisson r a t i o and V i t 2 molar volume.

This term w h c h vanishes f o r a = a0 ( l a t t i c e matched growth) i s the main f a c t o r con- t r o l 1 i ng the composition nearby t h e c r i t i c a l temperature (Tc)

.

Indeed, near Tc the m i x i n g energy v a r i e s s l o w l y w i t h composition, so t h a t e q u i l i b r i u m can be s t r o n g l y influenced by t h e above energy term. Even a t temperatures lower than Tc can the s o l i d s o l u t i o n be s t a b l e thanks t o t h i s s t r a i n energy term as was shown i n t h e InxGal-8Asl-yPy system [6J. A sharp minimum i n the AG versus composition curve i s then b u i l t around l a t t i c e matching, l e a d i n g t o ltpul l i 3 - e f f e c t " The purpose o f t h i s paper i s t o study p o s s i b l e " p u l l i n g - e f f e c t " i n InxGal-xAs a l l o y t 71. S l i g h t l y mis-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982501

(3)

C5-4 JOURNAL DE PHYSIQUE

matched layers were grown a t various temperatures on InP (001) and (111)B. We present experimental liquidus and solidus data and compare these r e s u l t s with the simple solution model calculation.

2.Experimental procedure.- The InxGal-xAs c r y s t a l s studied i n t h i s work were grown by conventionnal LPE, using a semi-transparent furnace. Three s e r i e s of approximati -

vely 10 layers each were perfomed

;

the gallium concentration i n the liquid was kept constant i n each s e r i e s

:

- Growth on InP(001) substrajie

1) Around 650°C x Ga

=

0.025

x a ~ ~

=

0.057 t o 0.065.

2) Around 550°C x'~a

=

0.015

x ' ~ ~

=

0.015 t o 0.024 3 ) Growth on InP (111)B substrate

Around 650°C

X ' G ~ =

0.0282

X'AS =

0.054 t o 0.065

After a d i r e c t measurement of the liquidus temperatures (within

?

1°C), the growths were carried by super-cool ing technique. The supersaturation step was 2.3OC and the films were grown to a thickness of 3 t o

5

um. The samples were then characterized both by X-ray d i f f r a c t i o n and electron microprobe analysis.

On the other hand, some non-epitaxial p l a t e l e t s were grown f a r from lattice-matching.

Their composition were measured by m i croprobe analysis on1 y a f t e r removing t h e InP substrate w i t h HC1 a s a s e l e c t i v e etchant.

The X-Ray rocking curves were used both t o determine the perpendicular and parallel l a t t i c e parameters (and therefore the layers composition) and t o check the c r y s t a l - 1 ine q u a l i t y of the samples. The rocking curves were measured by means of (n,-n) parallel s e t t i n g of the X-Ray double crystal arrangement, using CuKu radiation.

Before epitaxy, the q u a l i t y of the InP substrates was checked using the double d i f f r a c t i o n p r o f i l e s . The rocking curve parameters a r e

:

the f u l l width a t half maximum (FWHM) 12.5 sec of arc, and the maximum double r e f l e c t i o n c o e f f i c i e n t ( r e f l e c t i v i t y ) 0.38. Thoses values a r e i n good agreement w i t h the predictions of the dynamical d i f f r a c t i o n theory [8], which gives, f o r an InP perfect c r y s t a l , respecti- vely 9.09 sec of a r c and 0.46 f o r FWHM and r e f l e c t i v i t y . This s l i g h t discrepancy between theory and experiment can be a t t r i b u t e d t o defects present i n InP bulk c r y s t a l s 19J.

The perpendicular r e l a t i v e mismatch ( ~ a / a ) & w a s measured using the InP 004 CuKa symmetric Bragg r e f l e c t i o n f o r InP(001) oriented substrates, and InP 333 CuKu r e f l e c t i o n f o r InP ( I 1 l ) B substrates .The parallel r e l a t i v e mismatch (Aa/a)" was deduced from InP (115) CuKa asymnetrical reflections using

:

and

L a L - g M )

A a =

~i naCOSa

(-

a a

where a i s the angle between hkl plane and the surface of the layer.

3.Experimental r e s u l t s and discussion - Results of X-Ray measurements on InP(001)

substrates a r e shown i n figure I. Tetragonal d i s t o r t i o n c l e a r l y occurs, ( ~ a / a ) " i s

nearly nu1 1 f o r the e p i t a x i a l samples. The approximation of e n t i r e l y e l a s t i c a l l y

s t r a i n e d layers i s thus j u s t i f i e d .

(4)

i . 1 : ( n a l a ) (3) and (aa/a)

'' (3)

va ues f o r growth on InP (001) around 550°C.

InP (100)

~k.10~ at-'

The l a y e r s composition i s then deduced, using t h e Hornstra c o r r e c t i o n c o e f f i c i e n t [ l d t h a t i s :

Aa s t r a i n f r e e Aa A

= K

(,I

The values o f l a t t i c e parameters and e l a s t i c s constants used r e s p e c t i v e l y i n Vegard's lawC131 and Hornstra c o e f f i c i e n t a r e g i v e n i n Table I:

Table I : Parameters used i n flnAs calculation C14J

t

C

L a t t i c e constants InP = 5.8687 GaAs = 5.6532 InAs = 6.0584

A

Hornstra c o e f f i c i e n t

C1l C11+2/3C

(100) K = (111) K =

c.

C1 1+2C12

ii+2C12

= 0.47 = 0.65

w i t h C = 2C44

-

Cll

+

C12

E l a s t i c constants ( L i n e a r combination o f InAs and GaAs data).

2 12

1.016 1012 dyneslcm C12 = 0.509 10 dyneslcm 2 C1l =

C44 = 0.482 10 12 dynes/cm 2

On the b a s i s of our l i q u i d u s and s o l i d u s data near t h e In-Rich corner phase diagram, we have c a r r i e d o u t a semi-empirical c a l c u l a t i o n based on the simple s o l u t i o n model developed b y Panish and I 1 legems L15J. I n t h i s c a l c u l a t i o n , i n t e r a c t i o n parameters

s L

~ I ~ A S - G ~ A S i n t h e s o l i d and aIn-Ga i n t h e l i q u i d are considered as f i t t i n g parameters The f i t haS t o be o b t a i n e d f o r l a y e r s l a t t i c e matched a t growth temperature: So?

t a k i n g i n t o account t h e d i l a t a t i o n c o e f f i c i e n t s aInP and aInGaAs, l a t t i c e matching a t growth temperature leads t o t h e f o l l o w i n g mismatch a t room temperature:

(5)

C5-6 JOURNAL DE PHYSIQUE

na s t r a i n free

AT [aInP

-

aInGaAs]

- -

a room temp. 1

-

aInp AT

where AT i s t h e d i f f e r e n c e between growth temperature and room temperature.

s t r a i n f r e e

That i s ($-) =

-

6 . 1 0 - ~ f o r growth a t 650°C room temp

=

-

4.5

l o m 4

f o r growth a t 550°C

Hence, assuming a p u r e l y e l a s t i c a l l y s t r a i n e d l a y e r , and then a p p l y i n g Hornstra's c o r r e c t i o n c o e f f i c i e n t , the perpendicular l a t t i c e mismatch a t room temperature would be =-

-

1,2 and

-

9,5 f o r growth on (001j substrate, and 9,3 f o r growth on (111)B s u b s t r a t e . The values o f t h e parameters used i n the c a l c u l a t i o n a r e l i s t e d

i n t a b l e I 1

Table I 1 : Parameters f o r the l i q u i d - p h a s e diagram calculation,

-

5.7 i 10 K - l c1$

= 4.75 1 0 K 1 alnGaAs

-

GaAs = 1 5 1 1 K f u s i o n

InAs = 1215 K

GaAs = 16.64 c a l mole-' K-' AS f u s i o n

InAs = 14.52 c a l mole-' K-' I n t e r a c t i o n parameters

a G s = 9.16 T

+

5160 c a l mole-'

la&-

.I =

-

10

.T +

3860 c a l mole-'

c a l mole-'

' '

(111)B 2000 i 100

The c o e f f i c i e n t u i n v o l v e d i n t h e s t r a i n energy term i s c a l c u l a t e d w i t h InP e l a s t i c constants from r e f . 13 f o r (001) growth o r i e n t a t i o n , and a f t e r performing tensor t r a n s f o r m a t i o n [18J f o r (111)B growth o r i e n t a t i o n , t h a t i s :

u(OOl) = 6.9 10 c a l mole" 5 u(lll) = 1.1 10 c a l mole 6

-

1

The values o f xInAs 5 f o r the t h r e e s e r i e s o f growth are p i o t t e d a g a i n s t t h e l i q u i d composition xAS i n f i g u r e s 11-a,b, L and c. The comparison between experimental and c a l c u l a t e d l i q u i d u s temperatures are given i n t a b l e 111.

(6)

perimental and calculated soli'dus data.

- simple solution model

- - - Takina e l a s t i c strain enew gy into account

X

:

from XRay measurement

? I-

Microprobe analysis -a- growth on I n P (001) T

=

550°C

InP (100)

a1

o aa

a02 003

acu

0.05

am

0.68 r

0.64 -

-b-

growth on InP (001) T

=

650°C

0.60 -

-c- growth on InP (111)B

T =

650°C

(7)

C5-8 JOURNAL DE PHYSIQUE

Table

I 1 1 :

Comparison between experimental and calculated liquidus

temperatures.

(8)

p l e s o l u t i o n model. I n s i d e t h i s zone, the f i t i s good, p r o v i d i n g the s t r a i n energy induced by the s u b s t r a t e i s taken i n t o account.

I n s p i t e of t h i s good agreement between theory and experiment, o e can n o t e from Table 11, the d i f f e r e n c e s between t h e values o f t3inAs-GaAs used i n t h e

and a ~ n - ~ a

c a l c u l a t i o n from growth on (001) and (111)B substrates. This d i f f e r e n c e , p o i n t e d o u t by various authors 1 1 9 3

,

may l e a d t o t h e f o l l o w i n g comments :

i- t h e simple s o l u t i o n model, which i s an e q u i l i b r i u m model, i s n o t a b l e t o describe e n t i re1 y e p i t a x i a1 growth.

ii- t h e model may g i v e a good i n t e r p r e t a t i o n o n l y f o r one o f t h e two growth o r i e n t a t i o n s .

Actual ly, we b e l i e v e t h a t growth on InP(001) i s w e l l described by t h i s model. As a m a t t e r of fact, comparison between phase diagram data from 1 i t e r a t u r e ( f i g u r e 111).

shows t h a t , whereas s i m i l a r r e s u l t s are obtained by t h e d i f f e r e n t authors on (001) o r i e n t a t i o n , the (111)8 o r i e n t a t i o n leads t o v e r y d i s s i m i l a r ones.

Fig.3

: Comparison o f various experimental data. Ref. 21 : Present work and M. Q u i l l e c and J.L.,Benchimol ( p r i v a t e communica- t i o n ) .

Note from r e f 20 and 21 t h a t (001) and (111) o r i e n t a t i o n s a r e d i F f e r e n t o n l y below 100°C.

Moreover, (001) o r i e n t a t i o n growth was proved t o be l i m i t e d by d i f f u s i o n i n t h e l i q u i d phase, which i s n o t t h e case on (111)B o r i e n t a t i o n . This i s c o n s i s t e n t w i t h t h e assumption o f e q u i l i b r i um a t the i n t e r f a c e i n t h e case o f growth on (001) o r i e n t a t i o n .

4- Concl usion- We have shown t h a t " p u l l i n g - e f f e c t " occurs i n LPE InxGal-xAs 1 ayers

.

This e f f e c t i s l i k e l y t o be r e l a t e d t o t h e v i c i n i t y o f the c r i t i c a l temperature. I n t h a t low s t a b i l i t y region, t h e substrate e f f e c t i s indeed the main f a c t o r c o n t r o l l i n g s o l i d composition.

The simple s o l u t i o n model, i n c l u d i n g t h e s t r a i n energy induced by the s u b s t r a t e gives a good i n t e r p r e t a t i o n o f t h i s phenomenon f o r (001) growth o r i e n t a t i o n . Nevertheless, i t seems necessary t o take growth k i n e t i c s i n t o account t o describe (111)B

e p i t a x i a1 growth.

Acknowled ment

-

The authors would l i k e t o thank C. DAGUET f o r e l e c t r o n microprobe

d.

LAIJNOlS f o r h e l p f u l discussions throughout t h i s wort.

(9)

JOURNAL DE PHYSIQUE

References

1 B u b l i k V.A., and L e i k i n V.N., Phys. S t a t . Sol. (a)

3

(1978) 365 2 de Cremoux B., H i r t z P. and R i c c i a r d i J.

GaAs and r e l a t e d compounds (Vienna) 1980) e d i t e d by H.k. Thim ( I n s t i t u t e o f Physics, London (1981) p. 115

3 S t r i n g f e l l o w G.B., J. Appl. Phys.

-

43, (1972) 3455

4 Nahory R.E., P o l l a c k M.A., Beebe F.D., Dewinter J.C., and Ilegems M., J. Electrochem. Soc.

125

61978) 1053

5 Jesser W.A., and Kuhlmann - W i l s d o r f D., Phys. Stat. Sol. - 19 (1967) 95 6 Q u i l l e c M., Daguet C., Benchimol J.L., and Launois H., Appl

.

Phys. L e t t . 40

(1982) 325

-

7 Benchimol J.L., Q u i l le c M., and Le Roux G., I n t e r . Conf. C r y s t . Growth Moscow 3, (1980) 364.

-

Takeda Y., and Sasaki A., J. Cryst. Growth

45,

(1980) 257

8 Zachariasen W.H., Theory o f X-ray D i f f r a c t i o n i n C r y s t a l s (Dover, New York, 1967) 9 Matsui J., Onabe K., Kamejimo T., and Hayashi I., J. Electrochem. Soc.

126, (1979) 664

-

10 I s h i d a K., Matsui J., Kamejima T., and Sakuma I., Phys. S t a t . Sol. ( a ) 3 1 (1975) 255

-

Makino H., H i b i y a T., and Matsumi K., AIP Conf. Proc. Vol. X V I I (1974) 80 Hornstra J., and B a r t e i s W.J., J. Cryst. Growth - 44, 513

Woolley J.C. and Smith B.A., Proc. Phys. Soc.

72,

(1958) 214

Neuberger M., Hand Book o f E l e c t r o n i c M a t e r i a l s ,

2,

111-V Semiconducting compounds Plenum Press (1971)

Panish M.B., and Ilegems M., Progress i n S o l i d s t a t e Chem., E d i t e d by H. Reiss and Me Caldwin (Pergamon Press) New York - 7, (1972) 39.

Kudman I., and P a f f R.J., J. Appl. Phys.,

-

43, (1972) 3760

Bisaro R., Meranda P., Pearsall T.P., Appl. Phys. L e t t .

34,

(1979) 100.

B r a n t l e y W.A., J. Appl

.

Phys.

44,

(1973) 534.

See f o r example

P e a r s a l l T.P., Q u i l le c M., and P o l l a c k M.A., Appl

.

Phys. L e t t .

35,

(1979) 342.

20 H. Shieh J.J., IEEE J. Quant. E i e c t r .

-

QE-17 (1981) 119

22 Clawson A.R., Elder D.I. and M u l l i n D.P., Proc. Nato Sponsored InP workshop (1-980) 161

23 Antypas G.A., Houng Y.M., Hyder S.B., Esher J.S. and Gregory P.E., Appl. Phys. L e t t .

2

(1978) 463

24 Bachmann K.J., and Shay J.L. Appl. Phys. L e t t . - 32 (1978) 446

25 Takeda Y., Sasaki A., Imamura Y., and Takaji T., J. Electrochem. Soc.

125, (1978) 130.

-

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to