• Aucun résultat trouvé

TREATMENT OF REFRACTORY OXIDES IN HF-PLASMA REACTORS

N/A
N/A
Protected

Academic year: 2021

Partager "TREATMENT OF REFRACTORY OXIDES IN HF-PLASMA REACTORS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00230800

https://hal.archives-ouvertes.fr/jpa-00230800

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TREATMENT OF REFRACTORY OXIDES IN HF-PLASMA REACTORS

A. Bakhvalov, S. Dresvin, T. Levitskaya, G. Paskalov, A. Philippov

To cite this version:

A. Bakhvalov, S. Dresvin, T. Levitskaya, G. Paskalov, A. Philippov. TREATMENT OF REFRAC-

TORY OXIDES IN HF-PLASMA REACTORS. Journal de Physique Colloques, 1990, 51 (C5), pp.C5-

19-C5-25. �10.1051/jphyscol:1990503�. �jpa-00230800�

(2)

TREATMENT OF REFRACTORY OXIDES IN HF-PLASMA REACTORS

A.O. BAKHVALOV, S.V. DRESVIN, T.N. LEVITSKAYA*, G.Z. PASKALOV and A.K.

PHILIPPOV*

Laboratory of E1ectrotechnological and Plasma Installations. Leningrad Polytechnical Institute, ulitsa Polytechnicheskaya 29, Leningrad :95251, U.S.S.R.

Special Design Office of Analytical Instrument Engineering of USSR Academy of Sciences. Prospect Ogorodnikova 26, Leningrad 198103, U.S.S.R.

Rbsumb : Des rbsultats thboriques et expbrimentaux relatifs au traitement de Si02,Mg0, W... dans un plasma inductif pression atmosphbrique sont prbsentCs. L'optimisation des paramhtres permet d'obtenir une efficacitb maximale de 0,6 0,7 avec un taux de 1 B 50%pm. Les rbultats de mesure sur les caractbristiques thermophy- siques et dynamique de l'bcoulement sont prbsentbs.

ABSTRACT

R e s u l t s o f t h e o r e t i c a l and e x p e r i m e n t a l s t u d i e s o f SiO 2 A1&Si.HgO.W a n d some o t h e r m a t e r i a l s t r e a t m e n t i n i n d u c t i o n t y p e h i gh-f r equenc y p1 asma under atmospher

i

c p r e s s u r e are p r e s e n t e d . Key s t u d y o b j e c t i v e

-

o p t i m i z a t i o n o f plasma i n s - t a l l a t i o n o p e r a t i n g modes w i t h maximum e f f i c i e n c y

-

0.8 -0.7;

s p h e r o i d i z a t i on e x t e n t -90-99%. s i z e of t r e a t e d p a r t i c l e s 1 -500 rnkm. Di a g n o s t i CS of thermophysi cal and gasodynami c a l plasma r e a c t o r s p e c i f i c a t i o n s h a s been p r e s e n t e d .

1. I NTRODUCTT ON

Many i m p o r t a n t t e c h n o l o g i c a l p r o c e s s e s of s y n t h e s i s , treat- ment and r e f i n i ng of d i s p e r s i o n materials may b e implemented by u s e of HF-plasma t o r c h e s . V a r i e t y of mode v a r i a n t s and d e s i g n p e c u l i a r i t i e s of HF-p1 asma g e n e r a t o r s m a k e s p o s s i b l e . on t h e one hand. t o m a k e p r a c t i c a l 1 y a n y t e c h n o l o g i c a l p r o c e s s e f f e c t i v e by c h o o s i n g a p p r o p r i a t e HF-plasma g e n e r a t o r s . On t h e o t h e r hand, a b s e n c e of HF-p1 asma g e n e r a t o r s uni v e r s a 1 1 t y i mpo- se r a t h e r h i g h requirememts t o t h e l e v e l of t h i s equipment managing. Apart from t e c h n i c a l p a r a m e t e r s i n is i m p o r t a n t t o t a k e i n t o a c c o u n t e f f i c i e n c y of plasma p r o c e s s C 1 3 . I n p a r t i

-

c u l a r . t h e h i g h e s t r e s u l t s i n s p h e r o i d i z a t i o n p r o c e s s e f f i c i

-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990503

(3)

COLLOQUE DE PHYSIQUE

e n c y of SiO2.N&i.M~0.W and o t h e r m a t e r i a l s a r e a c h i e v e d i n HF-plasma r e a c t o r s . T h i s is r e l a t e d w i t h a p o s s i b i l i t y of producing l a r g e plasma volumes BOO-1000 cu. S W w i t h low s p e e d of plasma jet /VpL=l-50 m/s/ p r a c t i c a l l y w i t h a l l g a s e s /Ar.He.N , a i r . p r o p a n e / , i n c l u d i n g hudrogen L E ] .

2. EXPERI MENTAL METODS

F i g u r e 1 schemati c a l l y p r e s e n t s t h e e x p e r i m e n t a l i n s t a l l a - t i o n . comprising: high-f r e q u e n c y g e n e r a t o r /l / w i t h power o u t - p u t of 6 0 kW and f r e q u e n c y 1 .76 MHz /some p r o c e s s e s w e r e h e l d u s i n g g e n e r a t o r w i t h 10 kW power o u t p u t and 13.33 MHz/; induc- t i o n plasma g e n e r a t o r

e/

w i t h q u a r t z d i s c h a r g e chamber. which c o n s t r u c t i o n a l l o w s t o o p e r a t e r e l i a b i l l y i n t h e r a n g e of p1 asma-f ormig g a s consumption /air. n i trOgen, a r g o n / from 201 /m t o 500 l / m i n a x i a l a n d v o r t e x f e e d ; r e a c t o r D / ; two f e e d e r s /4/. c a r r y i n g o u t f e e d of t r a n s p o r t i n g g a s /at powder treament w i t h d i s p e r s i o n of t h e powders-up t o 60 m k w and w i t h o u t i t /at powder t r e a m e n t w i t h d i s p e r s i o n more t h a n 6 0 m k w ; c o l l ec- t i n g u n i t /5/ u s i n g c l o t h o r metal f i l t e r s .

F i g . 1

-

Schematic d i a g r a m of t h e e x p e r i m e n t a l s e t - u p .

Control and measurments of t h e i n s t a l l a t i o n and t e c h n o l o - g i c a l p r o c e s s d i f f e r e n t p a r a m e t e r s h a s been c a r r i e d o u t i n a c c o r d a n c e w i t h s p e c i a l a l g o r i t h m . w i t h a l l o w s t o o p t i m i z e t h e o p e r a t i o n of HF-plasma i n s t a l l a t i o n / c r i t e r i u n

-

minimum of power l o s s e s / and t h e t e c h n o l o g i c a l p r o c e s s / c r i t e r i u m

-

maxi mum o u t p u t of good product/. From t e c h n o l o g i c a l p o i n t of view i t is d i s i r a b l e t o h a v e maximum thermal e f f i c i e n c y of p1 asma g e n e r a t o r .

F i g u r e 2 p r e s e n t s some modes of plasma gene-

r a t o r o p e r a t i o n a t d i f f e r e n t methods of g a s f e e d t o plasma g e n e r a t o r .

(4)

Fig. 2

-

C o e f f i c i e n t of performance of t h e p l a s m a t r o n V S d i s c h a r g e power a t v a r i o u s g a s f e e d a n g l e s

Speci a1 gas-f ormi ng d e v i c e a1 l owed t o change t h e

a n g l e of g a s f e e d /a/ from 0 t o 90 b o t h y i n asyazimuth and i n p l a c e a n g l e . The most e f f i c i e n t mode h a s been observed a t a=45-50

.

I n t h a t c a s e plasma g e n e r a t o r e f f i c i e n c y i s a b o u t 85-90%. The plasma jet l e n g t h depended on power i n d i s c h a r g e Pp and consumption of p1 asrna-f ormi ng g a s G p and i n our expe- r i m e n t s i t r a n g e d from 100 t o 600 mm a t mean s e c t i o n 80 mm.

Using r e s u l t s o f c a l c u l a t i o n s of movement and h e a t i n g t h e p a r t i c l e s i n plasma a c c o r d i n g t o a model which t a k e s i n t o a c c o u n t e l e c t r o - and gasodynamics of t h e HFI - d i s c h a r g e , con- d i ti o n s of mixing c o l d / t r a n s p o r t i ng g a s w i t h t h e plasma j e t . i n t e r p h a s e exchange, o p t i m a l o p e r a t i n g modes f o r HF-instal l a- t i o n h a s been chosen. as w e l l a s method. p l a c e and a n g l e of d i s p e r s i o n material i n p u t i n t o t h e plasma jet C 3 1 . The o p t i - m i z a t i o n has been c a r r i e d o u t i n a c c o r d a n c e t o c r i t e r i u m of maximum e f f i c i e n c y and o u t p u t of t h e p r o c e s s . A s a r e s u l t s of t h e o r e t i c a l a n d e x p e r i m e n t a l sr udi e s o p t i m a l t e c h n o l o g i c a l scheme of s u c h d i s p e r s i o n m a t e r i a l S t r e a t m e n t as Si02. MgO, A Z C O M

.

N&i

.

W is developed. F i g u r e 3 p r e s e n t s depedance of

3

s c h e r o i d i z a t i o n d e g r e e

-

a / W a-amount o f s p h e r o i d i z i ded sph-

mater i a1

.

A-amount of i n i ti a1 mater i a1 /from m a s s l oadi ng of plasma j e t Gm w i t h power i n t h e jet

-

40 KW.

(5)

COLLOQUE DE PHYSIQUE

F i g . 3 S p h e r o i d i z a t i o n d e g r e e o f M@ V S p r o d u c t i v i t y C e x p e r i

-

m e n t a l c o n d i ti o n s Pp=SOKW; f =l , i'6MHz ; a i r G = l l /S>.

I n c r e a s e of o u t p u t o f s p h e r o i d i z a t i on p r o c e s s a t s a t i s- f a c t o r y e f f i c i e n c y / nsOh=80Yd i s p o s s i b l e w h i l e u s i n g more p o w e r f u l p1 asma i n s t a l l a t i o n s . Type o f t r e a t e d mater i a 1 d e t e r

-

mines dynamics of i t s h a t i n g i n t h e plasma. For example. f i g u r e 4 p r e s e n t s d e p e n d a n c e of Si02 and NaBSi p a r ti c l es t e m p e r a t u r e on axial c o o r d i n a t e Z.

D i s t a n c e l e n g t h ZCsm)

F i g . 4 P a r t i c l e h e a t i n g dynamics 1 - SLOP 2 - MaBSi

(6)

s u m p t i o n Gp=l g / s - f o r Si02; C s t r = O . 65 g / s ; Gp=O:5 g / s - f o r NaBSi Plasma-forming g a s

-

a r g o n + a i r ,power i n t h e discharge-7KW.

f r e q u e n c y 13.56 MHz/. A f t e r t r e a t m e n t c h e m i c a l composotion of t h e i n i t i a l m a t e r i a l i s changed s i g n i f i c a n t l y / f u s i b l e i m p u r i t i e s u s u a l 1 y v a p o u r i z e / . I n t a b l e s 1 and 2 below SiO

2' NaBSi chemical d a t a are p r e s e n t e d as w e l l a s s p h e r o i d i z a t i o n e x e n t a t d i f f e r e n t t h e r m a l t r e a t m e n t c o n d i t i o n s . Range of d i s- p e r s i o n change of m a t e r i a l . t r e a t e d i n plasma. is d e t e r m i n e d by t h e amount of i n i t i a l m a t e r i a l a n d t h e r e g i m e of t h e t r e a t m e n t .

T a b l e 1 Chemical c o m p o s i t i o n of s o d i um-borosi l i c a t e g1 a s s

...

I n i t i a l A f t e r plasma t r e a t m e n t m01

.

% S p e c i f i c s u r f a c e m01

.

% S p e c i f 1 c s u r f a c e

...

T a b l e 2 E f f i c i e n c y of s p h e r o i d i z a t i o n p r o c e s s f o r NaBSi

D p t . g. G vor. Gas t y p e Sph.

D r G ax

...

l. 0.30 7 a r g o n 0.3

2. 0 . 3 4 6 a r g o n 0 . 3

3. 0. 40 7 a r g o n 0.5

4. 0.40 6 a r g o n + a i r l : 1 0.7

5. 0.60 9 a r g o n 0.6

6. 0.60 l 2 a r g o n + a i r 1:l 0.99

DpL.g.Dr

-

d i a m e t e r s o f plasma g e n e r a t o r and r e a c t o r Guor.Gox

-

g a s consumption a t v o r t e x and a x i a l s u p p l y o f g a s i n t o t h e d i s c h a r g e chamber.

F i g u r e 5 p r e s e n t s a s a n example d i s t r i b u t i o n o f s p h e r o i d i z i

-

ded SiO

P

a r t i c l e s i n a c c o r d a n c e w i t h t h e r s i z e a f t e r p r e c i

-

se f r a c t i o n i n g /2 s a m p l e s / t h e d a t a a r e r e c i e v e d u s i n g l aser l i g h t d i f f u s i o n i n s t r ument LS-01 .

(7)

COLLOQUE DE PHYSIQUE

P a r t i c l e s i z e C m k d

F i g . S Si02 s p h e r o i d i z a t i o n p a r t i c l e s i z e d i s t r i b u t i o n Diagram of d i s t r i b u t i o n of p l a s m a - t r e a t e d Si02 d i s p e r s i o n c o m p o s i t i o n w i t h s i z e o f 1 0 0 mkm i s p r e s e n t e d i n f i g . 6

P a r t i c l e s i z e Cmkd

F i g . 6 SiO p a r t i c l e s i z e d i s t r i b u t i o n a f f e r plasma t r e a t m e n t 2

E l e c t r i c power consumption f o r p r o d u c t i o n of 1 kg o f 5f 0 2

/ vs* =90-997d =l 0 k W/hr

.

f o r NaB5i / r ) S P ~ '95-997- =4 k W/hr

.

f o r

m0

/Vsph = 807d = l 2 kW/hr.

(8)

')soh =SE-95%. e l e c t r i c power c o n s u m p t i o n

-

8-9 kW/hr/kg.

A L C O M 3 d i s p e r s i o n t r e a t m e n t i n a i r p l a s m a / p a r t i c l e s i z e 10-200 mkm/ a l l o w e d t o r e c i e v e AL 2 3 0 power /a-phase/ o f t h e same d i s p e r s i o n w i t h c o n v e r s i o n e f f i c i e n c y SW% a n d s p h e r o l d i

-

s a t i on e x t e n t 95-99%. P r o d u c t i v i t y o f ALCOH>3 t r e a t m e n t pro- c e s s i n plasma i s s i m i l a r t o NgO t r e a t m e n t .

REFERENCES

1. P1 asma t e c h n o l o g y i n m e t a l l u r g i c a l p r o c e s s i n g . J

.

F e i nman

.

Edi t o r . I r o n a n d Steel Soc.

.

I nc.

,

l Q87

2. A. V. Donskoi ,V. M. Go1 d f ar b a n d V. S. K1 ubni ki n

,

P h y s i c s and Technology o f Low-Temperature P1 asmas.

.

S. V. D r e s v i n , l Q72 E n g l i s h e d i t i o n t r a n s l a t e d by T. Cher on a n d e d i t e d by H. V. E c k e r t

.

Iowa State Univ. P r e s s . 1 9 7 7

3. Bakhvalov A. 0. , D o b r i n s k a j a T. A. e t a l . Motion a n d h e a t l n g of f i n e d i s p o s e d m a t e r i a l s l n a p l a s m a jet / F i r s t E u r o p l a n C o n g r e s s o n t h e r m a l P1 asma and M a t e r i a l B e h a v i o u r a t h i g h t e m p e r a t u r e s

.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to