• Aucun résultat trouvé

RECENT PROGRESS IN HIGH FIELD SYSTEMS

N/A
N/A
Protected

Academic year: 2021

Partager "RECENT PROGRESS IN HIGH FIELD SYSTEMS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223559

https://hal.archives-ouvertes.fr/jpa-00223559

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECENT PROGRESS IN HIGH FIELD SYSTEMS

M. Leupold

To cite this version:

M. Leupold. RECENT PROGRESS IN HIGH FIELD SYSTEMS. Journal de Physique Colloques,

1984, 45 (C1), pp.C1-9-C1-14. �10.1051/jphyscol:1984102�. �jpa-00223559�

(2)

JOURNAL

DE

PHYSIQUE

Colloque C1, supplbment a u no 1, Tome 45, janvier 1984 page CI-9

R E C E N T P R O G R E S S IN H I G H FIELD S Y S T E M S

M . J . Leupold

Francis B i t t e r NatiomZ Magnet .kzboratory,

MIT *

Cambridge, Maasachuse t t s , U.S.A.

sum& -

Les l a b o r a t o i r e s d ' a i m a n t s

2

champs i n t e n s e s c o n t i n u e n t f a i r e dans l a t e c h n o l o g i e des aimants d e s p r o g r g s q u i p r o f i t e n t 5 l a communaute' d e s chercheurs t o u t e e n t i h r e . Dans c e r a p p o r t , nous p a r l o n s des a c t i v i t 6 s en cours concernant l e s aimants h y b r i d e s

2

r e f r o i d i s s e m e n t

2

eau e t supra- c o n d u c t e u r s , e t l e s a i m a n t s p u l s 6 s , e t nous commentons l e u r importance g b n 6 r a l e pour l a t e c h n o l o g i e d e s a i m a n t s .

A b s t r a c t

-

High-field magnet l a b o r a t o r i e s c o n t i n u e t o make advances i n magnet technology which b e n e f i t t h e magnet community a s a whole. I n t h i s paper we r e p o r t on c u r r e n t water-cooled, s u p e r c o n d u c t i n g , h y b r i d , and p u l s e magnet a c t i v i t i e s and comment on t h e i r g e n e r a l s i g n i f i c a n c e t o magnet technology.

INTRODUCTION

I n t h i s t a l k h i g h - f i e l d magnets a r e t a k e n t o b e t h o s e whose purpose is t o p r o v i d e f i e l d s f o r e x p e r i m e n t e r s , and t h e c l a s s e s i n c l u d e water-cooled, s u p e r c o n d u c t i n g hy- b r i d , and p u l s e magnets. S p e c i a l purpose o r d e v i c e magnets l i e beyond t h e s c o p e of t h i s t a l k . H i g h - f i e l d l a b o r a t o r i e s where r e s e a r c h measurements a r e b e i n g m a d e e x i s t i n v a r i o u s c o u n t r i e s throughout t h e world:

England 0

France 0

Germany 0

Japan 0

0 N e t h e r l a n d s 0 0

Poland @

USA 0

USSR 6

Clarendon L a b o r a t o r y , Oxford

The High F i e l d Laboratory of Grenoble I n s t i t u t e of T e c h n i c a l P h y s i c s , K a r l s r u h e High F i e l d Laboratory f o r Superconducting M a t e r i a l s , Tohoku U n i v e r s i t y

Osaka U n i v e r s i t y U n i v e r s i t y of Amsterdam U n i v e r s i t y of Nijmegen

I n t e r n a t i o n a l Laboratory of High Magnetic F i e l d s and Low Temperature, Wroclaw

F r a n c i s B i t t e r N a t i o n a l Magnet Laboratory,MIT Kurchatov I n s t i t u t e , Moscow

Aside from t h e r e s e a r c h programs which a r e s u p p o r t e d by t h e magnets i n u s e i n t h e s e f a c i l i t i e s , t h e magnets themselves a r e r e l e v a n t t o magnet technology a s v e h i c l e s f o r t r y i n g o u t new i d e a s . AS such t h e y a f f o r d o p p o r t u n i t i e s t o experiment w i t h new ma- t e r i a l s , t o r e f i n e computational t e c h n i q u e s , and t o improve r e l i a b i l i t y .

WATER-COOLED MAGNETS

I n s e r t s f o r h y b r i d s a r e i n c l u d e d i n t h i s c a t e g o r y . B i t t e r and p o l y - h e l i x a r e pre- s e n t l y t h e o n l y c o n s t r u c t i o n s t y l e s which a r e s u i t a b l e f o r r e a l l y h i g h performance.

A v a r i a n t of t h e B i t t e r c o n s t r u c t i o n i s t o g l u e t h e p l a t e s t o g e t h e r f o r t h e sake of a c h i e v i n g g r e a t e r s t r e n g t h and b e t t e r c o o l i n g h o l e r e g i s t r a t i o n . /1/

*supported by N a t i o n a l S c i e n c e Foundation

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984102

(3)

JOURNAL

DE

PHYSIQUE

At MIT and a t Nijmegen a new B i t t e r magnet o f f e r s improvements o v e r t h e ones i t i s d e s t i n e d e v e n t u a l l y t o r e p l a c e . I n t h e Nijmegen v e r s i o n i t g e n e r a t e s 20T i n a 32mm b o r e . The f i r s t MIT magnet w i l l b e a 50 mm i n s e r t f o r t h e h y b r i d . It c o n s i s t s of c o n c e n t r i c c o i l s i n s e r i e s , b u t where i t d i f f e r s from i t s p r e d e c e s s o r s i s t h a t t h e c o i l s a r e d i v i d e d a t t h e 150 mm d i a m e t e r i n s t e a d of a t 114.

L a r g e l y due t o a new i n s u l a t i o n m a t e r i a l s e v e r a l of our 54 mm magnets have been pushed t o an h o n e s t 20T. They o p e r a t e q u i t e h o t , i n e x c e s s of 130 C; t h e h e a t f l u x i s on t h e o r d e r of 800 w a t t s p e r s q u a r e cm.

P o l y - h e l i x magnets e x i s t i n Grenoble and a t Oxford i n t h e i r h y b r i d . The Oxford mag- n e t h a s g i v e n yoeman s e r v i c e l o n g e r t h a n any o t h e r . I n Grenoble t h e y have succeeded w i t h a 25T 50 mm magnet, and t h i s d e s i g n w i l l b e used i n t h e i r 30T h y b r i d .

The p o l y - h e l i x c o n s t r u c t i o n h a s i t s g r e a t e s t a d v a n t a g e i n t h e s t r u c t u r a l e f f i c i e n c y which d e r i v e s from s e v e r i n g t h e r a d i a l c o n t i n u i t y between r e g i o n s w i t h i n t h e winding.

By f r e e i n g t h e i n s i d e from r a d i a l t e n s i o n t h e r e i s a g r e a t r e d u c t i o n i n t h e hoop s t r e s s which i s by f a r t h e dominant component. / 2 /

SUPERCONDUCTING MAGNETS

New magnets i n t h i s c a t e g o r y i n c l u d e s e v e r a l 40 cm niobium-titanium magnets and some s m a l l e r niobium-tin magnets whose b o r e s measure a p p r o x i m a t e l y 5 cm. With t h e excep- t i o n of Turowski's magnet i n K a r l s r u h e /3/ t h e l a r g e ones a l l a r e p a r t of h y b r i d s y s - tems. The K a r l s r u h e magnet i s i n c l u d e d b e c a u s e i t s s t a t i s t i c s a r e s i m i l a r t o t h o s e o f t h e o t h e r s .

The K a r l s r u h e magnet g e n e r a t e s 8T when o p e r a t e d a t 4.2 K w i t h 1090 A. It i s n o t f u l l y s t a b i l i z e d under t h e s e c o n d i t i o n s ; t h e h e a t f l u x i s around 0.5 W/sq.cm. At 1 . 8 K i n a new c r y o s t a t i t i s d e s i g n e d t o make 10T w i t h 1350 A.

I n Grenoble t h e new h y b r i d system w i l l have a s u p e r c o n d u c t i n g magnet which c o n t r i - b u t e s 11T t o 30T c e n t e r l i n e f i e l d / 4 , 5 / I t i s a b i g magnet: 42 cm b o r e x 1099 cm O.D.

x 85 cm l o n g , and i t i s d e s i g n e d t o o p e r a t e a t 1 . 8 K. There a r e two c o n c e n t r i c c o i l s . The i n n e r i s a 22 l a y e r winding, and i t i s surrounded by a c o i l assembled from 60 double pancakes. T h i s magnet s t o r e s 22 M J i n i t s f i e l d . The o p e r a t i n g c u r - r e n t of o n l y 850 A i s a b o u t h a l f of t h a t of t h e o t h e r magnets i n t h i s group.

l o l o k u U n i v e r s i t y i n Japan / 6 / i s b u i l d i n g a new l a b o r a t o r y , and t h e i r program i s t o h a v e , among o t h e r t h i n g s , 3 h y b r i d magnets: 20, 25, and e v e n t u a l l y 30T. Two s u p e r - c o n d u c t i n g magnets have been b u i l t t h u s f a r . One, c a l l e d HM-A, h a s a 29 cm b o r e and g e n e r a t e s 8T. It i s n o t c r y o s t a b l e and c o n s e q u e n t l y i s c o m p a r a t i v e l y s m a l l . I t s b r o t h e r , HM-B, i s a 42 cm b o r e magnet which g i v e s 8T, and i t is c r y o s t a b l e . T h i s i s a 1470 A magnet which was b u i l t b y Toshiba o u t of double pancake c o i l s .

A somewhat s m a l l e r magnet i s t h e MIT h y b r i d s u p e r c o n d u c t o r which g e n e r a t e s 7.5T i n a 40 cm b o r e . / 7 / The O.D. i s o n l y 71 cm. The magnet i s by no means c r y o s t a b l e ; t h e h e a t f l u x i s .55 t o .6 W/sq.cm,but i t h a s n e v e r quenched d e s p i t e s m a l l s e c t i o n s hav- i n g been d r i v e n i n t o c u r r e n t s h a r i n g d u r i n g t e s t s . R e c e n t l y t h e q u e s t i o n of quench d e t e c t i o n i n t h i s magnet h a s been s t u d i e d a f r e s h . A new scheme which i s b a s e d on comparing a l l t h e p a i r s of a d j a c e n t pancakes h a s been t r i e d on an e x p e r i m e n t a l b a s i s and shows promise. / 8 / The problem i n quench d e t e c t i o n i s t o f i n d s m a l l r e s i s t i v e v o l t a g e s d e v e l o p i n g among much l a r g e r i n d u c t i v e v o l t a g e s .

Under development f o r s e v e r a l y e a r s h a s been niobium-tin i n m u l t i - f i l a m e n t a r y form, and now we a r e b e g i n n i n g t o s e e some magnets made from i t . The s i g n i f i c a n c e of t h e development i s i n i t s a p p l i c a b i l i t y t o l a r g e magnets f o r which t h e more f a m i l i a r t a p e form of niobium-tin i s i n a p p r o p r i a t e . These magnets do n o t f i n i s h t h e c h a p t e r on t h e s u b j e c t though, a s t h e y were wound from "green" c o n d u c t o r and r e a c t e d l a t e r . F o r l a r g e - s c a l e c o n s t r u c t i o n i t i s g e n e r a l l y h e l d t h a t t h e p r e f e r r e d way w i l l be t o wind w i t h p r e v i o u s l y r e a c t e d c o n d u c t o r .

(4)

MIT t o g e t h e r w i t h A i r c o i s b u i l d i n g a 15T magnet w i t h a 5 cm b o r e . There w i l l b e 4 c o n c e n t r i c c o i l s made from m u l t i - f i l a m e n t a r y niobium-tin c o n d u c t o r on t h e i n s i d e which w i l l b e surrounded by a niobium-titanium magnet c o n s i s t i n g of 3 c o i l s o n one form. The two innermost niobium-tin c o i l s have been t e s t e d t o f u l l f i e l d i n a water- c o o l e d magnet; t h e o t h e r two a r e p r e s e n t l y under c o n s t r u c t i o n . The s u b j e c t o f c o i l p r o t e c t i o n h a s r e c e i v e d a l o t of a t t e n t i o n . The c o n c e r n i s o v e r how one s e c t i o n i s a f f e c t e d by a quench i n t h e o t h e r , and i n p a r t i c u l a r , t h e build-up of c u r r e n t i n t h e i n n e r c o i l s i n t h e e v e n t of a quench i n t h e o u t e r o n e s . I n an i n g e n i o u s scheme de- v i s e d by Iwasa, t h e c u r r e n t b u i l t - u p i s opposed by a n o u t e r winding connected i n s e r i e s w i t h i t .

There i s a 13T m u l t i - f i l a m e n t a r y niobium-tin magnet b e i n g b u i l t f o r Tohoku Univer- s i t y f o r t h e purpose of e s t a b l i s h i n g a t e c h n i c a l f o u n d a t i o n f o r t h e i r 30T h y b r i d . It i s a two-coil magnet: t h e i n n e r one w i l l c o n t r i b u t e 4.5T, and t h e o u t e r of nio- bium-titanium w i l l g i v e 8.5T. The b o r e of t h e i n n e r c o i l i s 58 mm y i e l d i n g a c l e a r b o r e of 47 mm.

PULSE MAGNETS

P u l s e magnets c o n t i n u e t o b e b u i l t f i r s t , because t h e y o f f e r a r e l a t i v e l y inexpen- s i v e means t o h i g h f i e l d s and s e c o n d , b e c a u s e o n l y w i t h p u l s e magnets i s i t p o s s i - b l e t o a t t a i n f i e l d s much h i g h e r t h a n 30T. The p r i n c i p l e , conceived by K a p i t z a , i s t o o p e r a t e on a d u t y c y c l e w i t h r e s p e c t t o b o t h power and c o o l i n g . Energy i s de- l i v e r e d v e r y r a p i d l y from e i t h e r a s t o r a g e d e v i c e o r from a s o u r c e which i s s o l a r g e t h a t a s h o r t b u r s t won't b e missed. Among s t o r a g e d e v i c e s t h e most p o p u l a r a r e c a p a c i t o r s , b u t f o r l o n g e r p u l s e s e s p e c i a l l y , f l y w h e e l o r r o t a t i o n a l energy s t o r a g e i s more s u i t a b l e .

At b e s t , making measurements i n p u l s e d f i e l d s i s l e s s p o p u l a r t h a n i n DC f i e l d s s i m p l y b e c a u s e of t h e b a s i c p r e f e r e n c e which we a l l have f o r l e i s u r e o v e r h a s t e , b u t t h e n i n s t r u m e n t a t i o n i s more d i f f i c u l t , and s o a r e t h e t e c h n i q u e s . N e v e r t h e l e s s , p u l s e magnets a r e h e r e t o s t a y ; t h e h i g h f i e l d s o f f e r c h a l l e n g i n g o p p o r t u n i t i e s t o e x p e r i m e n t e r s , and b u i l d i n g t h e s e magnets o f f e r s immense c h a l l e n g e t o magnet tech- n o l o g i s t s .

The technology i s v a l u a b l e , f o r what i t t e a c h e s i s r e l e v a n t t o t h e s t r u c t u r a l d e s i g n of magnets g e n e r a l l y . I t i s a l s o v a l u a b l e t o t h e f u s i o n energy community which i s h e a v i l y committed t o v e r y l a r g e p u l s e d d e v i c e s .

P u l s e magnets f i t i n t o s e v e r a l c a t e g o r i e s . F i r s t , we have t o d i s t i n g u i s h between l o n g and s h o r t p u l s e s , and f o r s h o r t p u l s e magnets we have t o make a f u r t h e r d i s - t i n c t i o n between t h o s e which s u r v i v e and t h o s e which d e s t r o y themselves (and unfor- t u n a t e l y o f t e n t h e sample on which measurements a r e b e i n g made).

The d e s i g n of l o n g p u l s e magnets i s c o n s t r a i n e d by t h e r m a l c o n s i d e r a t i o n s . The windings become h e a t e d and must b e r e c o o l e d i n time f o r t h e n e x t s h o t . O f t e n t h e r e c o o l i n g t i m e d i c t a t e s t h e pace of t h e t e s t i n g ; i t i s seldom t h a t r e c h a r g i n g cap- a c i t o r s o r a c c e l e r a t i n g a f l y w h e e l l i m i t s t h e c y c l e time. T h e r m a l e f f e c t s a f f e c t d i f - f e r e n t magnet c o n s t r u c t i o n s i n o t h e r ways t o o . Non-uniform c u r r e n t d e n s i t y windings s u c h a s i n B i t t e r magnets w i l l respond t o h e a t i n g w i t h changing f i e l d c o n s t a n t s a s t e m p e r a t u r e n o n - u n i f o r m i t i e s f o r c e a r e d i s t r i b u t i o n of c u r r e n t d u r i n g a p u l s e . For s h o r t p u l s e s , t h o s e measured i n microseconds, magnet d e s i g n i s more h e a v i l y i n - f l u e n c e d by t h e n e c e s s i t y t o keep i n d u c t a n c e s s m a l l and by t h e need t o u s e t h e s t r o n g e s t c o n d u c t o r s . Whether t h e y a r e r e s i s t i v e o r n o t i s of r e l a t i v e l y l i t t l e importance.

P u l s e f i e l d f a c i l i t i e s c a t e r i n g t o o u t s i d e u s e r s a r e n o t t h e norm. I n s t e a d , we t e n d t o have p u l s e magnets which have been b u i l t by l a b o r a t o r i e s f o r t h e i r own programs.

Recent i n t e r e s t i n r e s e a r c h i n v e r y h i g h f i e l d s w a r r a n t s t h e i r i n c l u s i o n i n t h i s d i s c u s s i o n however.

(5)

C1-12 JOURNAL DE PHYSIQUE

Perhaps t h e m o s t v e n e r a b l e p u l s e magnet f a c i l i t y i s t h e one a t t h e Univery,itv of Amsterdam. / 9 / I t h a s been making f i e l d s of 40T s i n c e 1969. These a r e semi-con- t i n u o u s " ; t h e f i e l d s a r e on f o r about 1 s e c , and t h e y c a n b e r e g u l a t e d . The b o r e s i z e of 16 mm i s more o r l e s s t y p i c a l . The magnets a r e wound w i t h g r e a t c a r e o u t of h e a v i l y cold-worked copper. They a r e cooled w i t h l i q u i d neon t o a t e m p e r a t u r e of 25T u s i n g a l i q u e f i e r . Depending whether t h e y go t o 20 o r 40T, t h e r e c o o l time i s e i t h e r 20 minutes o r two h o u r s .

Kurchatov I n s t i t u t e i n Moscow r e p o r t e d a 50T magnet w i t h a 1 5 t o 20 mm b o r e a n d p u l s e d u r a t i o n s on t h e o r d e r o f 1 5 msec.

/ l o /

T h i s magnet i s i n t e r e s t i n g i n t h a t i t u s e s copper r e i n f o r c e d w i t h niobium-titanium a s t h e c o n d u c t o r .

Kurchatov h a s a l s o succeeded w i t h lOOT f i e l d s i n b o r e s of 1 cm l a s t i n g on t h e o r d e r of s e v e r a l microseconds. The magnets l a s t f o r about 10 s h o r t s . They a r e e n e r g i z e d from 50 K J , 25 Kv c a p a c i t o r bank.

I n t h e l a b o r a t o r y a t Wroclow t h e r e i s a SOT p u l s e magnet w i t h a 1 3 mm b o r e and a 50 msec p u l s e d u r a t i o n .

At Osaka U n i v e r s i t y M. Date and h i s c o l l e a g u e s a r e working toward 100T.

I l l /

Pre- s e n t l y they a c h i e v e f i e l d s of JOT i n a 20 mm b o r e f o r t i m e s of 350 t o 400 micro- seconds. T h e i r magnet i s a r o b u s t l y c o n s t r u c t e d two-coil p o l y - h e l i x made of marag- i n g s t e e l . There i s no c o o l i n g ; none i s r e q u i r e d when t h e r e i s no copper. Using b e r y l l i u m copper t h e y have a c h i e v e d 44T.

At t h e U n i v e r s i t y of Tokyo I n s t i t u t e o f S o l i d S t a t e P h y s i c s (ISSP) N. Miura and h i s coworkers have a t t a i n e d f i e l d s of 45T l a s t i n g f o r 27 msec i n 1 3 t o 20 mm b o r e s . /12/.

The c o i l s a r e l a y e r wound and r e i n f o r c e d w i t h a s t a i n l e s s s t e e l o u t e r c y l i n d e r . The winding i s immobilized w i t h epoxy r e s i n which i s p r e s s u r e impregnated w i t h 50 atm.

At MIT S. Foner h a s m a i n t a i n e d a p u l s e f i e l d c a p a b i l i t y o v e r t h e l a s t 20 y e a r s . To accommodate t h e r e c e n t i n t e r e s t i n h i g h f i e l d s h i g h speed d a t a a c q u i s i t i o n equip- ment i s b e i n g added, and t h e s e f a c i l i t i e s w i l l become a v a i l a b l e t o e x p e r i m e n t e r s on a r e g u l a r b a s i s . The magnets a r e layer-wound copper c o i l s w i t h b o r e s of 20 mm which a c h i e v e 45 t o 50T i n 10 msec p u l s e s .

B a r t of MIT's r e a s o n f o r making F o n e r ' s p u l s e d f i e l d s a v a i l a b l e on a f a c i l i t y b a s i s i s t o p r e p a r e f o r t h e time when we w i l l o f f e r h i g h e r f i e l d s a n d / o r l a r g e r b o r e s . There a r e two d e s i g n s t u d i e s under way: one i s concerned w i t h g e n e r a t i n g f i e l d s of 60 t o lOOT i n a b o r e of 20 mm and t h e o t h e r i s a p r o j e c t t o g e n e r a t e 1 second-long f i e l d s of 50T i n l a r g e b o r e s , on t h e o r d e r of 10 cm. I n almost every r e s p e c t t h e l a t t e r i s a l a r g e u n d e r t a k i n g ; i t i s made p o s s i b l e by t h e a v a i l a b i l i t y of t h e A l c a t o r C a l t e r n a t o r power s u p p l y (150 MW).

I n p u l s e magnets, r e g a r d l e s s of whether t h e y l a s t f o r s e v e r a l o r f o r hundreds of s h o t s , f a i l u r e i s almost always a s s o c i a t e d i n some way w i t h f a t i g u e . It i s probably s a f e t o s a y t h a t f a t i g u e p l a y s a p a r t i n t h e e v e n t u a l demise of a l l h i g h performance magnets. A common element i n t h e p u l s e magnets we have d i s c u s s e d i s some means of p r e v e n t i n g t h e development of s l a c k w i t h i n t h e windings. Most o f t e n i t i s t h e i n - s u l a t i o n system which i s degraded when t h e r e i s s l a c k and working can o c c u r . The p i c t u r e i s complicated by t h e f a c t of t e m p e r a t u r e changes and t h e r m a l d e f o r m a t i o n s . CONCLUSION

I n each c l a s s of magnet t h e p r o g r e s s which h a s been made should be m e a s u r e d a g a i n s t t h e problems s o l v e d . Obviously, t h e r e i s no p o i n t i n comparing 15T a c h i e v e d by a s u p e r c o n d u c t i n g magnet w i t h 150T f o r a few microseconds i n a p u l s e magnet, and y e t each marks a s i g n i f i c a n t accomplishment. Nor is t h e r e c o m p e t i t i o n among t h e s e v e r a l k i n d s of magnets a s t h e r e once was p e r c e i v e d t o be. There was a time when t h e r e l a - t i v e m e r i t s of s u p e r c o n d u c t o r s and water-cooled magnets were debated a s though a c h o i c e had t o b e made between them. Even a t MIT where we a r e h e a v i l y committed t o w a t e r magnets we acknowledge t h e e x i s t e n c e and p l a c e of o t h e r ways of making h i g h f i e l d s

.

(6)

Continued p r o g r e s s toward h i g h e r f i e l d s becomes more d i f f i c u l t a s t h e t e c h n o l o g y m a t u r e s . I n t h e b e g i n n i n g t h e r e were a l o t of new i d e a s t o t r y o u t , and p r o g r e s s sometimes came s w i f t l y a s t h e b e s t o n e s proved t h e m s e l v e s . With s u p e r c o n d u c t o r s , s o o n a f t e r we l e a r n e d t h a t t h e r e had t o b e f i l a m e n t s , we l e a r n e d t h a t t h e y had t o b e t w i s t e d . B e f o r e t h a t we l e a r n e d t h a t s u p e r c o n d u c t o r s had t o be s t a b i l i z e d . I n w a t e r magnets t h e B i t t e r d e s i g n was a b r e a k t h o u g h and was r e g a r d e d a s t h e u l t i m a t e u n t i l t h e t h r u s t toward h i g h e r f i e l d s prompted t h e in-depth s t r u c t u r a l a n a l y s i s which c u l m i n a t e d i n t h e p o l y - h e l i x . / 2 / By a d d r e s s i n g a fundamental s t r u c t u r a l pro- blem t h e p o l y - h e l i x c o n c e p t h a s found i t s way i n t o t h e d e s i g n of u l t r a - h i g h f i e l d p u l s e magnets.

What we n e e d n e x t a r e b e t t e r m a t e r i a l s , and a s t h o s e a r e developed o u r c h a l l e n g e w i l l be i n l e a r n i n g t o u s e them. The c a l l f o r b e t t e r m a t e r i a l s i s a c r o s s t h e b o a r d i n c o n d u c t o r s , i n i n s u l a t o r s , and i n r e i n f o r c i n g m a t e r i a l s . The g r e a t e s t promise seems t o b e i n t h e a r e a of c o m p o s i t e s where s e v e r a l c o n s t i t u e n t s c a n b e b l e n d e d t o produce p r o p e r t i e s t a i l o r e d t o s p e c i f i c r e q u i r e m e n t s .

F a t i g u e e f f e c t s h a v e g e n e r a l l y been i g n o r e d i n m a g n e t s , l a r g e l y o u t of i g n o r a n c e on t h e p a r t o f magnet d e s i g n e r s working i n t h e c o n t e x t o f DC magnets. However, t h e q u e s t f o r h i g h f i e l d s w i l l demand t h e u t m o s t from m a t e r i a l s which w i l l n e v e r b e s t r o n g enough f o r c o m f o r t a b l e m a r g i n s . I n d e e d , i f t h e y were, d e s i g n e r s would s o o n push f o r e v e n h i g h e r f i e l d s . But i n o r d e r t o make utmost u s e of a m a t e r i a l , we must know i t s s t r e n g t h , n o t i n t h e a b s t r a c t , b u t i n r e l a t i o n t o t h e s e r v i c e c o n d i t i o n s which f o r magnets means f a t i g u e . O b v i o u s l y , economics e n t e r s t h e d e s i g n p r o c e s s a s s e r v i c e l i f e i s t r a d e d a g a i n s t performance. But t h e r e a r e two problems: t h e f i r s t i s t h a t f a t i g u e p r o p e r t i e s o f most, m a t e r i a l s and n o t j u s t t h e advanced ones under c o n d i t i o n s o f t e n e n c o u n t e r e d i n magnets, e g . c r y o g e n i c e n v i r o n m e n t s , a r e n o t w e l l known, and t h e second i s t h a t f a t i g u e e f f e c t s a r e p r e s e n t on b o t h macro and micro- s c o p i c s c a l e s . I n p u l s e magnets, l o n g b e f o r e t h e r e i s f a i l u r e from m e t a l f a t i g u e , t h e s t r u c t u r e a s a whole s u f f e r s from t h e l a r g e r - s c a l e e f f e c t s of i n s u l a t i o n crumbl- i n g and c r e a t i n g v o i d s w i t h i n which m o t i o n becomes p o s s i b l e . When we u n d e r s t a n d f a t i g u e , we w i l l b e a b l e t o make t h e f u l l e s t u s e of t h e m a t e r i a l s which a r e a v a i l - a b l e t o u s .

Saying we need b e t t e r m a t e r i a l s i s a vague s t a t e m e n t which encompasses a complex in- t e r a c t i o n between i d e a s , t e c h n i q u e s , d e s i g n , and a v a i l a b i l i t y . D e c i d i n g where t o s t a r t i s much l i k e t r y i n g t o u n r a v e l a n u n t i d y b a l l of s t r i n g . P r o m i s i n g i d e a s s u c h a s niobium s t r e n g t h e n e d copper /13/ have been d e m o n s t r a t e d i n t h e l a b o r a t o r y . C l o s e r t o r e a l i t y a s m a t e r i a l s from which magnets c a n b e made a r e m e t a l l u r g i c a l l y bonded c o m p o s i t e s o f copper and s t a i n l e s s s t e e l which a r e h e a v i l y c o l d worked t o p r o d u c e h i g h s t r e n g t h s . However, once someone s u c c e e d s i n making a m a t e r i a l w i t h t h e r e - q u i s i t e p r o p e r t i e s , ' t h e n e x t q u e s t i o n i s how t o u s e i t t o make a magnet. A s l a b of copper and s t a i n l e s s s t e e l sandwiched t o g e t h e r might b e bandsawed i n t o a s p i r a l . On t h e o t h e r h a n d , t h e same c o n s t i t u e n t s i n t h e form of a m u l t i - p l y c y l i n d e r would sug- g e s t machining i n t o a h e l i x . There i s no s u g g e s t i o n t h a t machining e i t h e r would b e e a s y . The f o u r t h k n o t i n o u r b a l l of s t r i n g is a v a i l a b i l i t y . What a r e t h e i n c e n - t i v e s f o r t h e i n d u s t r i e s which p o s s e s s t h e equipment f o r c a r r y i n g o u t t h e s e p r o c e s s - e s t o d i v e r t i t from p r o d u c t i o n f o r t h e s a k e of t h e r e l a t i v e l y s m a l l q u a n t i t i e s which we might s e e k ? I s u g g e s t t h a t t h e f i e l d s p e r s e t o g e t h e r w i t h t h e i d e a t h a t t h e s e magnets a r e i n f a c t v e h i c l e s f o r t e s t i n g m a t e r i a l s under extreme c o n d i t i o n s might b e s u f f i c i e n t j u s t i f i c a t i o n f o r i n d u s t r i a l i n t e r e s t .

Even w i t h wonder m a t e r i a l s we c a n s t i l l e x p e c t s u r p r i s e s when we b u i l d magnets w i t h them. I am reminded of t h e motion p i c t u r e "The Man i n t h e White S u i t " w i t h Alec Guinness made o v e r 30 y e a r s ago. As a c h e m i s t h e d i s c o v e r e d a m a t e r i a l of i n c r e d i - b l e s t r e n g t h and t o u g h n e s s and d e c i d e d t o make some i n t o a s u i t of c l o t h e s a s a de- m o n s t r a t i o n . H i s s u i t m a t e r i a l a f t e r a l l t h e problems of working w i t h something s o tough were s o l v e d and a m a r v e l l o u s s u i t was f i n a l l y made, t u r n e d o u t t o be chemical- l y u n s t a b l e and d i s i n t e g r a t e d s p o n t a n e o u s l y i n s h o r t o r d e r . Watch f o r t h e unex- p e c t e d ! Lex Murphii!

(7)

Cl-14 JOURNAL DE PHYSIQUE

The table summarizes the activities of the various laboratories with respect to the different classes of magnets.

REFERENCES

1. Katrukhin, Y., Khrustalev, B.P., Trojnar, K.A., Trans Magnetics MAG-17 (1981) pp. 1896-1899.

2. Carden, P.O., Journal of Physics E. Scientific Instruments, 1972 Vol 5, pp.

654-656.

3. Turowski, P., "Die Hochfeld-Experimentieranlage Homer, Bau und Test des 8T.40 cm Nb-Ti Solenoiden", ITP, KFK, Karlsruhe.

4. Schneider-Muntau, H.J., Picoche, J.C., Rub, P., Vallier, J.C., "The Generation of High Magnetic Fields in Grenoble-Installations and Magnets".

5. Picoche, J.C., Rub, P., Vallier, J.C., Schneider-Muntau, H.J., in High Field Magnetism, ed. by M. Date (North Holland, Amsterdam) 1983 pp. 249-255.

6. Miura, S., Hoshi, A., Nakagawa, Y., Noto, K., Watanabe, K.. Muto, Y., in High Field Magnetism, ed. by M. Date (North Holland, Amsterdam) 1983 pp. 331-338.

7. Rubin, L.G., Weggel, R.J., Leupold, M.J., Williams, J.E.C., Iwasa, Y., in High Field Magnetism, ed. by M. Date (North Holland, Amsterdam) 1983 pp. 249-255.

8. Ishigohka, T., Iwasa, Y., submitted to Cryogenics, Aug. 1983.

9. Gersdorf, R., deBoer, J.C., Wolfrat, J.C., Muller, F.A., Roeland, L.W., in High Field Magnetism, ed. by M. Date (North Holland, Amsterdam) 1983 p p 277-287.

10. Ozhogin, V.I., Gurtovoj, K.G., Lagutin, A.S. in High Field Magnetism ed. by M.

Date (North Holland, Amsterdam) 1983 pp. 267-275.

11. Yamagishi, A., in High Field Magnetism ed. by M. Date (North Holland, Amster- dam) 1983 pp. 289-298.

12. Kido, G., Miura, N., Nakamura, K., Miyajima, H., Nakao, K., Chikazumi, S., in High Field Magnetism ed. by M. Date (North Holland, Amsterdam) 1983 pp. 309- 318.

13. Bevk, J., Harrison, J.P., Bell, J.L., in J. Appl. physics 49 (12) Dec. 1978.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to