• Aucun résultat trouvé

POLARIZATION OBSERVABLES AND HIGH MOMENTA IN THE DEUTERON WAVE FUNCTION

N/A
N/A
Protected

Academic year: 2021

Partager "POLARIZATION OBSERVABLES AND HIGH MOMENTA IN THE DEUTERON WAVE FUNCTION"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00230868

https://hal.archives-ouvertes.fr/jpa-00230868

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

POLARIZATION OBSERVABLES AND HIGH

MOMENTA IN THE DEUTERON WAVE FUNCTION

M. Garçon

To cite this version:

M. Garçon. POLARIZATION OBSERVABLES AND HIGH MOMENTA IN THE DEUTERON WAVE FUNCTION. Journal de Physique Colloques, 1990, 51 (C6), pp.C6-61-C6-69.

�10.1051/jphyscol:1990605�. �jpa-00230868�

(2)

POLARIZATION OBSERVABLES AND HIGH MOMENTA IN THE DEUTERON WAVE FUNCTION

M. GARCON

Service d1Exp6rimentation en Physique NucleJaire, CEN Saclay, F-91191 Gif sur Yvette Cedex, France

Resume

-

Des experiences recentes de p o l a r i s a t i o n donnent un j o u r nouveau S l ' e t u d e de m u c t u r e du deuton. Des mesures de p o l a r i s a t i o n t e n s o r i e l l e en d i f f u s i o n e l a s t i q u e electron-deuton permettent pour l a premicre f o i s l a separation des f a c t e u r s de forme 61 e c t r i ques monopolai r e e t quadrupol a i re. La cassure de deutons p01 a r i ses, hadronique e t Electromagnetique, d e v r a i t conduire b i e n t B t S l a determination du r a p p o r t D/S en f o n c t i o n de l ' i m p u l s i o n i n t e r n e du deuton.

A b s t r a c t

-

We w i l l review r e c e n t progress i n t h e measurements o f p o l a r i z a t i o n obser- vables, t h e i r t h e o r e t i c a l i n t e r p r e t a t i o n and t h e new i n s i g h t they give on t h e h i g h momentum behaviour o f the deuteron wave f u n c t i o n . New r e s u l t s i n e l a s t i c e l e c t r o n - deuteron s c a t t e r i n g a l l o w f o r t h e f i r s t time the separation o f t h e charge monopole and quadrupole e l e c t r i c form f a c t o r s o f t h e deuteron. P o l a r i z e d deuteron break-up, both hadronic and electromagnetic, should y i e l d i n t h e near f u t u r e the D/S r a t i o as a func- t i o n o f t h e deuteron i n t e r n a l momentum.

I

-

INTRODUCTION

The deuteron s t r u c t u r e i s r a t h e r w e l l known f o r r e l a t i v e distances between neutron and p r o t o n l a r g e r than 1 fm, t h a t i s f o r i n t e r n a l momenta smaller than 200 MeV/c. A d e s c r i p t i o n o f t h e deuteron i n terms o f two nucleons allows one t o study t h e nucleon-nucleon p o t e n t i a l i n a com- plementary way compared t o the i n f o r m a t i o n e x t r a c t e d from NN s c a t t e r i n g : one i S a1 so sensi

-

t i v e t o t h e o f f - s h e l l behaviour o f the p o t e n t i a l . I n f a c t , i n many instances, t h e two nucleon p i c t u r e o f the deuteron seems t o work up t o 500 !ieV/c o r above. S t i l l a t these h i g h momenta, o r s h o r t distances, our d e s c r i p t i o n o f t h e deuteron s t r u c t u r e i s n o t unique : one may add o t h e r degrees o f freedom, namely baryon resonances o r quarks, and n o t change considerably t h e d e s c r i p t i o n o f the observables. Furthermore, some non r e l a t i v i s t i c c a l c u l a t i o n s seem adequate t o s u r p r i s i n g l y h i g h momenta. I n r e l a t i v i s t i c c a l c u l a t i o n s , t h e choice o f the dynamics, as w e l l as t h e necessary approximations, are a l s o n o t unique. I n these conditions, only through p r e c i s e experiments, as we1 l as r e f i n e d and c o n s i s t e n t c a l c u l a t i o n s , can our knowledge pro- gress.

We w i l l s t a r t w i t h some d e f i n i t i o n s and n o t a t i o n s :

I n presence o f a t e n s o r i n t e r a c t i o n , t h e Schrodinger equation f o r t h e neutron-proton i s equiv- a l e n t t o a s y s t e m o f two c o u p l e d equations, the s o l u t i o n s o f which a r e u ( r ) and w ( r ) ( o r U,

and U,), t h e S and D components o f t h e d e u t e r o n w a v e - f u n c t i o n . This wave f u n c t i o n can be w r i t t e n , f o r a given s p i n s t a t e M :

pp -

ifn

The conjugate v a r i a b l e o f

f

=

tp - tn

i s =

-.

2 By a F o u r i e r t r a n s f o r m of yM, one d e f i n e s :

I n the momentum range of 200-500 MeV/c on which we w i l l concentrate, t h e S-wave component i s expected t o e x h i b i t a node (Fig. 1). A1 l cross-section measurements ( i n ed e l a s t i c as we1 l as deuteron break-up) w i l l be s e n s i t i v e mostly t o t h e dominating D-wave component. A d e t a i l e d knowledge o f t h e S-wave behaviour i s however o f the utmost importance : i t s node i s character- i s t i c o f the short-range r e p u l s i o n o f t h e M-N i n t e r a c t i o n , and i t s p r e c i s e behaviour c o u l d c o n t a i n i n f o r m a t i o n about non-nucleonic degrees o f freedom. Thus one has t o perform neasure- ments of p o l a r i z a t i o n observables t o separate t h e S and D-waves.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990605

(3)

COLLOQUE DE PHYSIQUE

Fig. 1

-

p ( p ) = u 2 ( p ) + w2(p)

-

A(qi) = G$

+ g o 2

66 + $ v & , $

-

adapted from /l/

The same reasonning a p p l i e s t o t h e electromagnetic form f a c t o r s , t h e deuteron being o f s p i n 1, i t s e l e c t r o m a g n e t i c s t r u c t u r e i s described by t h r e e form f a c t o r s : GC ( e l e c t r i c monopole, o r c h a r g e ) , GQ ( e l e c t r i c q u a d r u p o l e ) a n d Gb, ( m a g n e t i c d i o l e

.

Cross-section measurements i n

2 2 2 2

e l a s t i c e-d s c a t t e r i n g determine C$, on one hand, and GC

+ Q

on the o t h e r hand (, = q /4m

,

and q i s the 4-momentum t r a n s f e r ) . The measurement o f anoyher independent observable, depend- i n g upon p o l a r i z a t i o n , i s necessary t o f u r t h e r separate GC and G Whatever t h e model i n t e r - p r e t a t i o n o f these form f a c t o r s , t h i s separation i s fundamental T o completely determine the deuteron electromagnetic s t r u c t u r e . The observable which most conveniently a1 lows t h i s separa- t i o n i s :

which i s a measure o f t h e alignement o f the r e c o i l deuteron, t h a t i s a measure o f the probabi- l i t y o f t h e deuteron o f being i n s t a t e M = 0 as opposed t o s t a t e s M = 2 1, the q u a n t i z a t i o n a x i s being chosen along t h e deuteron d i r e c t i o n . A1 t e r n a t i v e l y

,

t h i s measurement can be done w i t h the use o f a tensor p o l a r i z e d t a r g e t .

Whenever one can n e g l e c t t h e magnetic c o n t r i b u t i o n &forward angles and Gfi much s m a l l e r than G: and n 2 ~ $ ) , t 2 o depends o n l y on t h e r a t i o X =

2 19

:

GC

W 1

Of p a r t i c u l a r i n t e r e s t i s t h e p o s i t i o n o f t h e node o f GC, determined by X + : tno =

- - .

~5

(4)

To g a i n more i n s i g h t i n t o t h e d e s c r i p t i o n o f t h e observables, and i n t o t h e l i n k between t h e electromagnetic form f a c t o r s and t h e momentum d i s t r i b u t i o n , i t i s u s e f u l t o consider t h e im- p u l s e approximation ( I A ) .

1) El a s t i c e l e ~ t r o n ~ d e u t e r o n s c a t t e r i n g The d wave f u n c t i o n i s t e s t e d a t r e l a t i v e momentum

4

between t h e two nucleons.

The e l e c t r i c form f a c t o r s have t h e f o l l o w i n g expression :

where f+S(q) i s t h e i s o s c a l a r combination o f t h e neutron and p r o t o n e l e c t r i c form f a c t o r s (GES

= GE,

+

GE,). I n t h e r a t i o X, and t h e r e f o r e i n t 2 0 , t h e dependence upon GE

,

which i s n o t so

r n

we1 l known, disappears. Even when going beyond the impulse approximation, a l l c a l c u l a t i o n s have shown t h a t t h e dependence o f t20 on GE, i s extremely small up t o 5 fm-l, i n c o n t r a s t w i t h t h e s t r u c t u r e f u n c t i o n s A and B ( B = A q ( 1 v)Gk).

3

Z)p(a,$p)n The n e u t r o n i s s p e c t a t o r and t h e r e a c t i o n i s e q u i v a l e n t t o a q u a s i - f r e e pp e l a s t i c s c a t t e r i n g . The wave f u n c t i o n

#

_----_ - _

i s t e s t e d a t momentum

3

w i t h r e s p e c t t o t h e deuteron

. - .

,' NN scatterins\'\.

c e n t e r o f mass

(3

= 4/21:

-

\

0 'I The cross s e c t i o n i s p r o p o r t i o n a l t o t h e f r e e pp cross s e c t i o n ( w i t h an ambiguity on t h e passage from an o f f -

/

f s h e l l p r o t o n t o an on-she1 l one) and t o t h e p r o b a b i l i t y

I p t o f i n d a nucleon w i t h an i n t e r n a l momentum p.

.

The p o l a r i z a t i o n observables, s t i l l i n IA, a l l o w t e W( P9 s e p a r a t i o n o f U and W a t each value o f p. With z =

-

u ( p ) ' one g e t s :

Tensor analyzing power :

Vector a n a l y z i n g power : Ay =

3

PNN P O ( z ) ( 3 )

PNN + Po(z)DNN P o l a r i z a t i o n o f t h e forward s c a t t e r e d p r o t o n : P =

1 + PO(z/PNN

l

' -

z i s the (p-dependent) p o l a r i z a t i o n o f the proton w i t h i n t h e pola- where P o ( z ) = , L , 2

I '

r i z e d d e u t e r o n , PNN ;nd DDN a r e r e s p I c t i v e 1 y t h e p o l a r i z a t i o n and d e p o l a r i z a t i o n o f e l a s t i c p r p s c a t t e r i n g . Note t h e siml a r i t y between formulae ( 1 ) and (2).

The t h r e e observables a l l determine t h e r a t i o z ( p ) and are thus redundant w i t h i n IA. O f course r e s c a t t e r i n g c o r r e c t i o n s w i l l have t o be considered, b u t then t h e measurement o f a l l these observables should g i v e a reasonable handle on the v a r i o u s c o r r e c t i o n s . The disadvantage of d e a l i n g w i t h hadronic probes and w i t h a more complicated r e a c t i o n mechanism i s here counter- balanced by the f a c t t h a t one can measure many more observables, w i t h h i g h e r s t a t i s t i c a l pre- c i s i o n , than i n t h e case o f e l e c t r o n s c a t t e r i n g .

S i m i l a r expressions can be d e r i v e d i n t h e case of i n c l u s i v e break-up /2/ and o f e l e c t r o d i s i n - t e g r a t i o n /3/.

(5)

COLLOQUE DE PHYSIQUE

I 1 1

-

EXPERIMENTAL RESULTS

Tensor Polarization

t,,

( P a r i s , 8,. 7 0 " )

0

0 + N -

v - , -

1) P o l a r i z a t i o n measurements i n e l a s t i c e-d s c a t t e r i n g :

(D -

The tensor p o l a r i z a t i o n has been measured r e c e n t l y i n two experiments, one a t VEPP-3 (USSR) u s i n g a p o l a r i z e d atomic beam i n an i n t e r n a l storage c e l l /4/, and t h e o t h e r a t Bates (USA) u s i n g t h e d e t e c t o r AHEAD (A1 b e r t a High E f f i c i e n c y Analyzer f o r .Deuterons) t o determine t h e p o l a r i z a t i o n o f the r e c o i l deuteron /5/. The l a t e r i s reaching momentum t r a n s f e r s where one i s indeed s e n s i t i v e t o t h e t h e o r e t i c a l d e s c r i p t i o n o f the form f a c t o r s . A d e s c r i p t i o n o f t h i s experiment can be found i n /6/. The p r e l i m i n a r y r e s u l t s are displayed on Fig. 2, where the e r r o r s bars represent s t a t i s t i c a l and systematic e r r o r s added i n quadrature.

Ue are now i n a p o s i t i o n t o perform f o r t h e f i r s t time a meaningful experimental s e p a r a t i o n o f t h e monopole and quadrupole form f a c t o r s o f t h e deuteron. The s e t o f 3 equations (A, B, t = f ( G

,

G

,

GM) can e a s i l y be i n v e r t e d . F o r A and B, we use parametrizations ( p i o v i d e d gy S.

~ 1 a F c h t g v ) of the w o r l d data, and we n e g l e t t e r r o r s ( t h e e r r o r s on GC and GQ come mostly from t h e tZ0 measurements). Since the equations are quadratic, t h e r e are i n general two s o l u t i o n s f o r

(GC,

Go);a c o n t i n u i t y requirement t o the values a t q = 0 i s s u f f i c i e n t t o s e l e c t

-

t h e pro- -

I 2 3 4 5 6

q ( f r n - l )

Fig. 2

-

eci e l a s t i c

-

t,, ; empty c i r c l e s : N o v o s i ~ i r s k /7/ ; f u l l c i r c l e s : Bates-Argonne /8/ ; empty squares: Novosibirsk-Argonne /4/ ; f u l l squares: Bates-AHEAD /5/ ( p r e l i m i n a r y r e s u l t s ) ; see t e x t f o r t h e curves.

-

p e r s o l u t i o n ; we a l s o assumed a c o n t i n u i t y o f t h e d e r i v a t i v e dGC/dq a t t h e p o i n t tZ0 =

- fi

where t h e two s o l u t i o n s cross each other. The r e s u l t s are i l l u s t r a t e d i n Fig. 3. Note t h a t GC i s determined w i t h i t s sign, so t h a t one can conclude, from our re1 im i n a r y r e s u l t s , t o t h e e x p e r i m e n t a l o b s e r v a t i o n o f t h e node o f GC a t 4.45

*

0.15 fin-!. GQ does n o t b r i n g any new i n f o r m a t i o n around 4 fm-' since i t i s completely determined by A.

I

2) Exclusive hadronic break-up, dp + ppn (LNS experiment # 145) :

I I

The 2 GeV p o l a r i z e d deuteron bean) o f Saturne was sent on a l i q u i d hydrogen target. The f a s t forward p r o t o n was detected a t 18" i n t h e magnetic spectrometer SPES4 and i t s p o l a r i z a t i o n measured . w i t h t h e new p o l a r i m e t e r POMME /9/ l o c a t e d on t h e f o c a l plane. The slow p r o t o n was

-

(6)

Fig. 3

-

GC ; same p o i n t s as f i g u r e 2 ; t h e curve i s t o guide t h e eye.

-

\

\

\

- , [\

/

i I

detected i n coincidence i n a r e c o i l spectrometer c o n s i s t i n g o f 2 w i r e chambers and an a r r a y o f 7 A E and 28 E s c i n t i l l a t o r s ( s c a t t e r i n g angle 57 i4.2 deg., azimuth k 8 deg.)

.

I I I I

V

(3

I

- I

I O - ~

-to'3

0 %%.

-. -. -

The p r e l i m i n a r y r e s u l t s o f t h e a n a l y z i n g powers A (Fig. 4) and Ay show s t r o n g d e v i a t i o n s from 'the I A as o f 150 fdeV/c. This can q u a l i t a t i v e l y 'ge accounted f o r by p r e l i m i n a r y c a l c u l a - t i o n s o f 0. Grebenyuk t a k i n g i n t o account r e s c a t t e r i n g o r FSI, i g n o r i n g i n t e r m e d i a t e pions o r d e l t a s (3N-only graphs). We a n t i c i p a t e t h a t the p r o t o n p o l a r i z a t i o n measurement w i l l h e l p f i x i n g the r e a c t i o n mechanism ( t h e s p i n - f l i p p r o b a b i l i t y i s p a r t i c u l a r l y s e n s i t i v e t o rescat- t e r i n g ) so t h a t u s e f u l i n f o r m a t i o n on t h e D/S r a t i o as a f u n c t i o n o f p can be extracted.

-

3) I n c l u s i v e hadronic break-up dp + pX, o r dA + pX :

3 6 4 4.4 4.8

q(frn-11

I I I I I

T h i s r e a c t i o n was s t u d i e d w i t h t h e 7.3 GeV p o l a r i z e d d beam a t Dubna by the ALPHA c o l l a b o r a t - i o n and w i t h t h e 2.1 GeV beam a t Saturne (Lids experiment $202). The cross s e c t i o n s were found t o e x h i b i t a shoulder around p = 350 MeV/c f o r both i n c i d e n t energies and f o r many d i f f e r e n t t a r g e t s . Ploreover the tensor analyzing power TZ0 was shown t o be independent on energy and t a r g e t nature /2/. Therefore i t was assumed t h a t t h e observables were a d i r e c t r e f l e x i o n o f t h e deuteron s t r u c t u r e . Since the data c o u l d n o t be explained by a formula o f type ( 2 ) w i t h any conventional 2-nucleon deuteron wave f u n c t i o n , one had t o add ( w i t h i n t h e IA) a 6 quark component t o t h e deuteron. One then obtained an S-wave momentum d i s t r i b u t i o n w i t h o u t a node.

(7)

COLLOQUE DE PHYSIQUE

F i g . 4

-

2 GeV/c.

( f o r m u l a

F i g . 5

-

f r o m I A .

- - c - -

l -

I.A. 1.6 QeV/c

1 :

.G-

2.0 QeV/c , I

I

k (GeV/c)

Ayy f o r Or, + ppn a t 2 GeV ; f a s t p r o t o n angle 18", momenta 1.6 GeV/c, Dashed curves t o guide t h e eye. ( P r e l i m i n a r y ) . F u l l c u r v e f r o m impulse (1) and P a r i s d-wave f u n c t i o n ) .

- v . .

k

(GeVlc 1

d

+

12C + p

+

X a t 9 GeV/c (ep=OO) /10/. K p o l a r i z a t i o n t r a n s f e r c o e f f i c

l. 8 GeV/c and a p p r o x i m a t i o n

. i e n t . Curves

(8)

However, one should n o t r e l y on I A t o draw such conclusions. F i r s t i t i s c l e a r now t h a t an S wave f u n c t i o n w i t h o u t a node i s incompatible w i t h t h e new Bates data i n ed s c a t t e r i n g /5/.

Also some c a l c u l a t i o n s /2,11/ o f r e s c a t t e r i n g and f i n a l s t a t e i n t e r a c t i o n s w i t h o n l y 3-nucleon graphs were performed t o e x p l a i n e x i s t i n g data b u t have had l i m i t e d success i n doing so. An- o t h e r one /12/, i n c l u d i n g i n t e r m e d i a t e pions and i n e l a s t i c elementary NN cross-sections, i s a b l e t o reproduce the main f e a t u r e s o f t h e Dubna data, t h a t i s t h e enhancement i n t h e cross- s e c t i o n a t 350 MeV/c and t h e r e l a t i v e l y shallow minimum o f T2 (as i l l u s t r a t e d i n Fig.5).

I t would be i n t e r e s t i n g t o check whether t h a t same c a l c u l a t i o n aqso e x p l a i n s t h e Saturne data and thus r e s o l v e t h e puzzle o f the u n i v e r s a l behaviour r e f e r r e d t o hereabove.

I V

-

MODEL INTERPRETATIONS OF GC and t,,

As demonstrated above, t h e new Bates-AHEAD data a l l o w a separation o f the two e l e c t r i c form f a c t o r s o f t h e deuteron. Any model o r theory o f the deuteron s t r u c t u r e and i t s electromagnetic c u r r e n t should describe e q u a l l y we17 a l l t h r e e form f a c t o r s , o r e q u i v a l e n t l y A, 8, and t,9.

T h e o r e t i c i a n s w i l l f i n d i t more u s e f u l t o compare t h e i r c a l c u l a t i o n s d i r e c t l y t o t h e i n d i v i - dual form f a c t o r s , thus g a i n i n g more p h y s i c a l i n s i g h t . We w i l l i l l u s t r a t e t h e s i g n i f i c a n c e o f t h e new Bates data on

k , ,

b u t one should bear i n mind t h a t i n most instances, t h e magnetic form f a c t o r /13/ i s a l s o very s e n s i t i v e t o t h e d e t a i l o f the dynamics and o f t h e deuteron s t r u c t u r e .

When i n c l u d i n g meson-exchange c u r r e n t s (MEC) and some re1 a t i v i s t i c c o r r e c t i o n s , t h e non- r e 1 a- t i v i s t i c NN c a l c u l a t i o n s o f t h e form f a c t o r s y i e l d very s i m i l a r p r e d i c t i o n s f o r tZ0, f o r most r e a l i s t i c p o t e n t i a l s . One would need a t z o < 0.1 a t 5 fm-l t o d i s c r i m i n a t e between P a r i s and Argonne p o t e n t i a l s , f o r example. One exception i s t h e " f u l l " Bonn p o t e n t i a l /14/, f o r which however a r i g o u r o u s treatment o f t h e energy dependence i s needed /15/.

I n s p i t e o f 20 years o f a c t i v e work, t h e i s o s c a l a r MEC are s t i l l uncertain. Recently, a reeva- l u a t i o n o f MEC (pny and way graphs) was performed i n a r e l a t i v i s t i c approach c o n s i s t e n t w i t h NN dynamics ( w i t h i n OBE model ) /16/. The p ~ y c o n t r i b u t i o n was found s i g n i f i c a n t l y s m a l l e r than i n previous n o n - r e l a t i v i s t i c c a l c u l a t i o n s and the way term was proven t o be important. The r e s u l t f o r t2, a r e i n agreement w i t h our p r e l i m i n a r y data.

Other r e l a t i v i s t i c c a l c u l a t i o n s /17/, which d i f f e r by some choices i n the NN dynamics ( l i g h t - f r o n t form vs i n s t a n t form) and by various approximations, g i v e a reasonable d e s c r i p t i o n of t h e form f a c t o r s , which l e d some authors t o conclude t h a t t h e r e was no need t o consider MEC. A f u l l y c o n s i s t e n t approach o f MEC w i t h i n r e l a t i v i s t i c models i s needed before a d e f i n i t e con- c l u s i o n can be drawn on t h i s respect.

AA components i n the wave f u n c t i o n have been considered i n coupled channel c a l c u l a t i o n s . I n a boundary c o n d i t i o n model /18/, t2, i s n o t very s e n s i t i v e t o t h e balance between d i f f e r e n t AA channels, b u t our data favours, w i t h i n t h i s model, the s m a l l e s t " r a d i u s o f asymptotic f r e e - dom", o r bag r a d i u s . I n another model /19/ w i t h a s m a l l e r amount o f AA s t a t e i n t h e deuteron (0.36 % compared t o 2 % f o r t h e previous one) t h e e f f e c t o f i s o b a r s on t h e observable t2, i s n e g l i g i b l e up t o q = 6 fm-l.

One c l e a r i m p l i c a t i o n o f t h e observation o f t h e node o f

GC

i s t h a t "naive" quark models, where one adds by hand" a 6q component t o t h e deuteron /20/ do n o t work, since they would imply t h a t t remains l a r g e and n e g a t i v e as shown i n Fig. 2. On t h e o t h e r hand c a l c u l a t i o n s w i t h Quark t f u s t e r Models /21/ o r a H y b r i d Quark-Hadron model /22/ show t h e same behaviour f o r t as conventional NN c a l c u l a t i o n s , so t h a t quark degrees o f freedom (which i n some cases can

6;

expressed as a 2 t o 3 % p r o b a b i l i t y o f a 6q c o n f i g u r a t i o n i n t h e deuteron) would have l i t t l e e f f e c t s on the observables.

F i n a l l y i t i s a l s o c l e a r t h a t p e r t u r b a t i v e QCD, which p r e d i c t s a

-

J? a t very h i g h q, i s s t i l l f a r (we a1 r e a d y knew i t from t h e observation o f a d i f f r a c t i v e minimum i n /13/) and t h a t no simple p r e s c r i p t i o n as t o how t h e t r a n s i t i o n t o t h e p e r t u r b a t i v e regime s e t s i n can even be guessed /23/.

5

-

COIJCLUSIONS

The new tZ9 data i n ed s c a t t e r i n g , though s t i l l p r e l i m i n a r y , shows unambiguously t h e existence o f a node i n t h e charge form f a c t o r o f t h e deuteron. We have discussed t h e main aspects o f t h e

(9)

C6-68 COLLOQUE DE PHYSIQUE

comparison o f these data w i t h v a r i o u s c l asses o f model S. More p r e c i s e comparisons w i t h speci- f i c models remain t o be done when t h e f i n a l data w i l l be a v a i l a b l e .

More t,, data c o u l d be obtained i n t h e n e x t few years, b u t t e c h n i c a l progress i n t h i s f i e l d , though spectacular, i s always t o o slow i n regard o f t h e t h e o r e t i c a l i n t e r e s t . For a q u a n t i t a - t i v e comparison o f t h e d i f f e r e n t experimental approaches t o t h i s measurement, t h e reader i s r e f e r r e d t o r e f ./6/.

High energy p o l a r i z e d deuteron hadronic break-up i s promising t o e x t r a c t , as a f u n c t i o n o f i n t e r n a l momentum, t h e r a t i o o f D over S components o f t h e wave f u n c t i o n . The complications which a r i s e from t h e hadronic i n t e r a c t i o n a r e n o t mastered a t t h e present, b u t t h e o r e t i c a l c a l c u l a t i o n s are i n progress and t h e i n c r e a s i n g number o f p01 a r i z a t i o n observabl es being meas- u r e d should c o n s t r a i n them.

The n e x t experimental achievement t o be expected i n t h i s f i e l d i s t h e measurement o f t h e ten- s o r analyzing power i n d(e,elp)n r e a c t i o n . Since already, t h e r e i s a good confidence t h a t t h e momentum d i s t r i b u t i o n p ( p ) up t o 500 MeV/c was r i g h t l y e x t r a c t e d from c r o s s - s e c t i o n measure- ments /24/ w i t h t h e o r e t i c a l c o r r e c t i o n n o t exceeding 50% /25/, t h e t e n s o r a n a l y z i n g power should g i v e almost unambiguously t h e D/S r a t i o .

I w i l l f i n i s h w i t h a s p e c i a l acknowledgement t o a l l my colleagues :

"t,," c o l l a b o r a t i o n a t Bates (A1 berta, CALTECH, IUCF, MIT, Saclay, Syracuse, Worcester) : L. Antonuk, J. Arvieux, D. Beck, E. Beise, A. Boudard, E.B. Cairns, J.M. Cameron (spokes person), G. Dodson, K. Dow, M. Farkhondeh, H.W. F i e l d i n g , J. Flanz, M. G a r ~ o n (sp.), R. Goloskie, S. ~ l i b r i t e n , J. Jourdan, S. Kowalski, C. Lapointe, W.J. McDonald, B. Ni, D. Pham, R. Redwine, N Rodning, G. Roy, M.E. Schulze, P.A. Souders, J. Soukup, I. The ( t h e s i s ) W. Turchinetz (sp.), G. van den Steinhoven, J. Wagner, C.F. Williamson, K. Wilson, S. Wood and W. Z i e g l e r .

"Cassure du deuton" c o l l a b o r a t i o n a t SATURNE (LNPI-Gatchina, Sac1 ay, CRIP-Budapest, W i l l iam &

Mary college, V i r g i n i a ) :

S.L. B e l o s t o t s k y (sp.), H.C. Bhang, M. Boivin, B. Bonin, A. Boudard (sp.), J. Ero, Z. Fodor, M. Gar~on, L. Kudine, P. Koncz, R. Lombard, B. Mayer, V.N. N i k u l i n , C.F. P e r d r i s a t , V. Punjabi, Z. Seres, Y. Terrien, E. Tomasi-Gustafsson, J. Yonnet and M. Youn ( t h e s i s ) . REFERENCES

/l/ FRULLANI,S., and MOUGEY,J., Adv. Nucl. Phys. 14 (1984) 92

/2/ PUNJABI,V., e t al., Phys. Rev. C39 (1989) 608; ABLEEV,V.G., e t al., JETP L e t t . 47 (1988) 649

/3/ FRANKFURT,L.L., and STRIKMAN,M. I., Nucl. Phys. A405 (1983) 571

/4/ GILMAN,R., e t al., p r e p r i n t PHY-6630-ME-90, Argonne (1990) ; HOLT,R.J., p r i v a t e communication and i n v i t e d paper t o t h i s conference.

/5/ THE,I., e t al., c o n t r i b u t i o n t o PANIC 90, Cambridge (1990), t o be published i n Nucl.

Phys.

/6/ GARCON,M., Nucl. Phys. (1990) 445c

/7/ VOITSEKHOVSKII,B.B., e t al., JETP L e t t . 43 (1987) 733 /8/ SCHULZE,M.E., e t al., Phys. Rev. L e t t . 5 2 ( 1 9 8 4 ) 597 /9/ BONIN,B., e t al., Nucl. I n s t r . & ~ e t h o d s ~ 2 8 8 (1990) 379 /10/ ABLEEV,V.G., e t al., c o n t r i b u t i o n 40F t o t h i s conference

/11/ DAKHNO,L.G., and NIKONOV,A., Sov. J. Nucl. Phys.

50

(1989) 1091 ; PERDRISAT,C., and PUNJABI,V., p r e p r i n t 1990

/12/ DOLIDZE,M.G., and LYKASOV,G.I., Z. Phys. A336 (1990) 339 ; and c o n t r i b u t i o n 50F t o t h i s conference

/13/ BOSTED,P.E., e t al., Phys. Rev.

C42

(1990) 38 ; AUFFRET,S., e t al., Phys. Rev. L e t t .

2

(1985) 649

/14/ PAUSCHENWEIN,J., e t al., Nucl. Phys. A508 (1990) 253c / l 5 1 DESPLANQUES,B., Phys. L e t t . B203 (1988) 200

/16/ HUMMEL,E., and TJON,J .A., Phys. Rev.

-

C42 (1990) 423.

(10)

1191 DYMARZ,R., and KHANNA,F .C., Phys .-v. C41 ( 1990) 2438

1201 KOBUSHKIN,A.P., and SHELEST,V.P., Sov. %-Part. Nucl.

-

14 (1983) 483 ; BUROV ,V.V. and DOSTOVALOV,V.N., Z. Phys. A326 ( 1987) 245

/211 YAMAUCHI ,Y., and WAKAMATSUX Nucl. Phys. A457 (1986) 621 ; ITO,H., and FAESSLER, A., Nucl. Phys. A470 (1987) 626

1221 CHENG,T.S., andISSLINGER, L.S., Phys. Rev. C35 (1987) 1432 1231 CARLSON,C.E., Nucl. Phys. A508 (1990) 481c

-

1241 TURCK-CHIEZE,S., e t al., P h y s . L e t t . B142 (1984) 145

1251 LAGET,J

.M.,

Phys. L e t t .

-

B199 (1987) 4 9 3 MORGENSTERN,J., p r i v a t e communication

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to