• Aucun résultat trouvé

fenics-shells: a UFL-based library for simulating thin structures

N/A
N/A
Protected

Academic year: 2021

Partager "fenics-shells: a UFL-based library for simulating thin structures"

Copied!
29
0
0

Texte intégral

(1)

m brunetti , j s hale , s bordas , c maurini

∗ Institut Jean Le Rond d'Alembert · université pierre et marie curie

? Research Unit in Engineering Science · université du luxembourg

FEniCS-shells

a UFL-based library for simulating thin structures

Imperial College London, 01/07/2015

(2)

2/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(3)

3/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(4)

4/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Motivations

Why thin-structures?

I Shell, plate and beam (thin) structures are widely used in civil, mechanical and aeronautical engineering because they are capable of carrying high loads with a minimal amount of structural mass.

I To our knowledge a unified open-source implementation of a wide range of thin structural models is not yet available.

(5)

5/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Motivations

Some applications

Multistable shells [Coburn et al.,

2013] Stress focusing in elastic sheets

(6)

6/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Objectives

Why FEniCS-shells?

The UFL language provides an excellent framework for writing extensible, reusable and pedagogical numerical models of thin structures.

FEniCS-shells is (will be) a library consisting of various thin structural models and associated numerical techiniques expressed in the UFL.

I To have a solid and extensible open-source platform of quality numerical methods for thin structures.

I To link in a clear and direct way the continuous mathematical model and its finite element solution.

(7)

7/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(8)

8/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Remarks on shell theories

I Shells are three-dimensional elastic bodies which occupy a thin region around a two-dimensional manifold situated in three-dimensional space.

I A three-dimensional problem isreduced to a two-dimensional problem. Quantities of engineering relevance are computed directly.

I Non-trivial numerical problems arise also forflat shells (plates) andlinear models.

(9)

9/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING e.g. for the Reissner-Mindlin (RM) plate model

ERM= 1 2

Z

D∇sθ : ∇sθ +t−2 2

Z

F |∇w − θ|2− Le

Kinematic descriptors

w : transverse displacement θ = {θ1, θ2} : rotation

x1

x2

x3

(10)

9/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING e.g. for the Reissner-Mindlin (RM) plate model

ERM= 1 2

Z

D∇sθ : ∇sθ +t−2 2

Z

F |∇w − θ|2− Le

Strain measures

K = ∇sθ :curvature γ = ∇w − θ : shearing

x2

x3

θ2 γ2

θ+2

(11)

10/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING e.g. for the Reissner-Mindlin (RM) plate model

ERM= 1 2

Z

D∇sθ : ∇sθ +t−2 2

Z

F |∇w − θ|2− Le

I Bending theories (thin plates)

∇w = θ and FLEXURE = BENDING e.g. for the Kirchhoff-Love (KL) plate model

EKL= 1 2 Z

D∇∇w : ∇∇w − Le

Remark:whent → 0 the RM-model asymptotically converges to the KL-model with∇w = θ.

(12)

11/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

FEniCS-shells. Models

Shearable Bending Linear Nonlinear

X Kirchhoff-Love plate model • •

X Reissner-Mindlin plate model • •

X Hierarchical plate models

X von Kármán plate model • •

X Marguerre shallow shell model • •

Koiter shell model • •

Naghdi shell model • •

I Bending modelshave been implemented by employing theC/D Galerkin formulation [Engel et al., 2002]in order to avoid H2(Ω)-finite elements

I Shearable modelshave been implemented by employing the MITC formulation [Dvorkin and Bathe, 1986]in order to avoid numerical locking.

(13)

12/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(14)

13/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Numerical locking

We consider the sequence of problems in the thickness parametert

min

θ,w∈U

ß1

2a(θ, θ) +t−2 2

Z

|∇w − θ|2− Le

U = H1(Ω)×H1(Ω)

Fort → 0 we have the limit problem min

θ,w∈K

ß1

2a(θ, θ) − Le

K = {(θ, w) ∈ U : ∇w = θ}

while the corresponding discrete problem has limit problem min

θh,wh∈Kh

ß1

2a(θh, θh) −Le

Kh=K ∩ (Θh× Wh)

IfKhis not large enoughthe basis functions cannot properly represent the Kirchhoff's constraint∇w = θ. The shear term doesn't vanish.

(15)

14/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

ç

ç

ç

ç

á á á á

í í í í

0.02 0.05 0.10 0.20 0.50

10-4 0.001 0.01 0.1 1

mesh size

relativeerror

ç: t = 10-1 á: t = 10-2 í: t = 10-4

(16)

15/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Locking cure

Since the problem relies in theshear termγ =t−2(∇w − θ)and for θ ∈ H1(Ω),w ∈ H1(Ω)

∇w − θ ∈H(curl, Ω)

it is possible to use themixed formulationwith penalty term

Find(θ, w) ∈ U and γ ∈ H(curl , Ω) such that

a(θ, ˜θ) + (∇ ˜w − ˜θ, γ) = (f, ˜w) ∀(˜θ, ˜w) ∈ U (∇w − θ, ˜γ) −t2(γ, ˜γ) = 0 ∀˜γ ∈ H(curl, Ω)

(17)

16/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

MITC formulation

The idea:the discretization of the mixed formulation can be transformed into a displacement form

min

θh,wh∈Uh

ß1

2a(θh, θh) +t−2 2

Z

|∇wh−Rhθh|2− Le

where thereduction operator

Rh : H1(Ω) → Γh⊂ H(curl , Ω)

interpolates piecewise smooth functions into the shear spaceΓh. Main advantages

I It leads to systems of equations withpositive definite matrices and fewer unknowns

I The action ofRhis local and the system matrixcan be assembled locally

(18)

17/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Elements in MITC family are different forthe choice ofΘh,Whh andthe tying, as expressed byRh, between the interpolation inΓhand the shear strain as evaluated fromΘh,Whh.

I Duran-Liberman [Duran, Liberman, 1992]

Θh

CG2

Wh

CG1

Γh

NED1

Rh : Z

e

(θ −Rhθ) · t = 0 ∀e ∈ T

(19)

18/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

FEniCS implementation

First, we define thefullmixed spaceUhF = Θh× Wh× Γh V_3 = FunctionSpace(mesh, "CG", 1)

26 R = VectorFunctionSpace(mesh, "CG", 2) RR = FunctionSpace(mesh, "N1curl", 1)

28 U_F = MixedFunctionSpace([R, V_3, RR])

and thereduction/tying operator Z

e

h· t)(˜θRh · t)

58 def R_e(gam, R_th_t, U):

dSp = Measure(’dS’, metadata={’quadrature_degree’: 1})

60 dsp = Measure(’ds’, metadata={’quadrature_degree’: 1}) n = FacetNormal(U.mesh())

62 t = as_vector((-n[1], n[0])) area = FacetArea(U.mesh())

64 return (area*inner(gam, t)*inner(R_th_t, t))("+")*dSp + \ (area*inner(gam, t)*inner(R_th_t, t))*dsp

(20)

19/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

We define theprojection forma10

70 ga = lambda z1, z2: grad(z2) - z1 g = ga(r, w)

72 g_t = ga(r_t, w_t)

a_10 = R_e(g, rr_t, U_F) + R_e(g_t, rr, U_F)

theshear forma01

78 Pi_she = (eps**-2)*0.5*inner(T(ga(rr_, w_)), ga(rr_, w_))*dx F_she = derivative(Pi_she, u_, u_t)

80 a_01 = derivative(F_she, u_, u)

theprimalmixed spaceUh= Θh× Wh U = MixedFunctionSpace([R, V_3])

and theunprojected bending forma00

102 Pi_ben = 0.5*inner(M(ep(r_)), ep(r_))*dx dPi_ben = derivative(Pi_ben, u_, u_t)

104 a_00 = derivative(dPi_ben, u_, u)

(21)

20/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Finally, we use acustom assemblerto perform the projection at the local linear algebra level

114 A = mitc_assemble([a_00, a_01, a_10])

I C++ codeto assemble the stiffness matrix A = A00+A10A01A10

A00: unprojected bending term A01: projected shearing term A10: projection matrix

I JIT compilation with Instant

(22)

21/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(23)

22/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

RM plate. Convergence

Comparison with the analytical solution provided by [Lovadina, 1995].

ç

ç

ç

ç

á

á

á

á

í

í

í

í

0.02 0.05 0.10 0.20 0.50

0.001 0.005 0.010 0.050 0.100 0.500 1.000

mesh size relativeerrorinrotationH1-norm

ç: t = 10-2 á: t = 10-4 í: t = 10-6

ç

ç

ç

ç

á

á

á

á

í

í

í

í

0.02 0.05 0.10 0.20 0.50

10-6 10-5 10-4 0.001 0.01 0.1

mesh size

relativeerrorindisplacementsemi-norm

(24)

23/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

von Kármán plate model

Starting with the scalings

u =O(2) w = O()  = kKk

the vK plate model retainsthe minimal geometrical nonlinearitiesable to catchthe coupling between bending and membrane strains

E = ∇su +∇w ⊗ ∇w

2 K = ∇∇w

whose integrability conditions correspond to thelinearization of the Gauss theorema egregium

curl curlE =det K

SinceEvK=EKL+t−2Em, whenever possibile a plate tends to bend in a developable surface (Em= 0 for det K = 0).

(25)

24/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Circular plate with lenticular cross section subjected to a temperature gradient through its thickness

x

y

Average curvatures bifurcation at critical value [Mansfield, 1962]

κT = 8

(1 +ν)3/2

0 2 4 6 8

0 2 4 6 8

inelastic curvature averagecurvatures,kx,ky

(26)

25/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References

(27)

26/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Future Perspectives

I to implement membrane locking-free element for the nonlinear Koiter shell model

I to implement membrane and shear locking-free element for the nonlinearNaghdi shell model

(28)

27/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Main References

I Jeon, H.-M., Lee, P.-S. and Bathe, K. J., The MITC3 shell finite element enriched by interpolation covers, Computers and Structures, 2014

I Hale, J. S. and Baiz P., M., Towards effective shell modelling with the FEniCS project, FEniCS Workshop 2013

I Chapelle, D. and Bathe, K. J., The finite element analysis of shells, 2010.

I Lovadina, C., A Brief Overview of Plate Finite Element Methods, Integral Methods in Science and Engineering, 2010

I Engel, G., et al. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Computer Methods in Applied Mechanics and Engineering, 2002

I Durán, R., and Liberman, E., On mixed finite element methods for the Reissner-Mindlin plate model, Mathematics of computation, 1992

I Brezzi, F., Bathe, K .J., and Fortin, M., Mixed-interpolated elements for Reissner-Mindlin plates, International Journal for Numerical Methods in Engineering, 1989

I Mansfield, E. H., Bending, buckling and curling of a heated thin plate, Proceedings of the Royal Society of London A, 1962

(29)

28/28 m. brunetti, j. s. hale, s.

bordas, c. maurini

Motivations and Objectives Remarks on shell theories MITC implementation Results Future Perspectives and References

Thanks for listening

Références

Documents relatifs

Unité de recherche INRIA Rhône-Alpes 655, avenue de l’Europe - 38330 Montbonnot-St-Martin France Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois -

The user can then express their mathematical shell model independently from the underlying geometrical procedure using the provided high-level symbols... A

Given the limited working-memory capacity in young chil- dren, we hypothesized that increasing the working-memory load through lengthening the delay of cue maintenance would

Il semble que même si cette relation entre forme et fonction mise à jour pour Léonard entre l’emploi des fillers par rapport à l’absence de forme est réélaborée avec

-The direct influence of the alkali content of the cement on the ab- normal expansion of concretes made with the reactive dolomitic limestone i s shown in Figure

5.10 Séquence à suivre pour le déploiement ALFI de 3 tubes dans le cas de l’utilisation d’un actionneur en translation et de mors de blocage, avec la section 1 du robot

Our studies have uncovered the critical role of two TFs, IRF1 and BATF, in preparing the chromatin landscape for induction of the Tr1 gene network in response to IL-27 signaling,

This study compares the latitudes of Spectral Width Boundaries (SWBs), identified in the morning sector iono- sphere using the Super Dual Auroral Radar Network (Su- perDARN),