• Aucun résultat trouvé

STRUCTURE AND LOCAL ORDER IN AMORPHOUS Si1-x SNx SEMI-CONDUCTOR ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "STRUCTURE AND LOCAL ORDER IN AMORPHOUS Si1-x SNx SEMI-CONDUCTOR ALLOYS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225185

https://hal.archives-ouvertes.fr/jpa-00225185

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

STRUCTURE AND LOCAL ORDER IN

AMORPHOUS Si1-x SNx SEMI-CONDUCTOR

ALLOYS

M. Vergnat, M. Piecuch, J.-F. Geny, C. Mourey, G. Marchal, M. Gerl

To cite this version:

(2)

Colloque C8, supplirnent a u n012, Tome 46, d i c e m b r e 1985 page C8-287

STRUCTURE AND LOCAL O R D E R I N AMORPHOUS Sil-, SNx

SEMI-CONDUCTOR ALLOYS

M. Vergnat, M. Piecuch, 3.-F. Geny, C . Mourey, G . Marchal and M. Gerl Laboratoire de Physique du S o l i d e , (U.A. au C . N.R.S. n o 2 5 5 / ,

Universite' de Nancy I , B.P. 239, 54506 Vandoeuvre ZDs Nancy cedex, France

R6sm.6

-

La structure atcnnique d'alliages m r p h e s Sil-x Sn, (x = 0 2 0,50) obtenus par d v a p o r a t i o n sous ultravide a Bt6 &tudide par diffraction Blec- tronique, s p e c t r d t r i e Paijssbauer e t mesures de densitB. Les alliages mntrent

une nette tendance

a

l'ordre, l e s atomes d16tain Bvitant de s e placer en p-

s i t i o n de proches w i s i n s pour des raisons d'encombrement st6rique. L'analyse des spectres Mijssbauer en fonction de l a t e r a t u r e donne des i n f o m t i o n s sur l e spectre de vibration des noyaux 9 ~ n .

Abstract

-

The atomic structure of co-evaporated amrphous Sil-x Sn, a l l o - s

has been studied by electron diffraction, fBssbauer spectroscopy and. density

measurements. The alloys show a tendency t o ordering, Sn atoms avoising to

be i n close contact. The analvsis of the temperature change of Mijssbauer spec- t r a provides sorne information about the vibration spectrum of

'

9 ~ n i n the

alloys.

The aim of this paper is to provide some information on the structure of Sil-, Snx

mrphous alloys by means of 6iffraction experiments, density and hyperfine

parame-

ters nkasurements, i n order to obtain a coherent picture of t h e i r atcanic structure. The random network &el of Polk /1/ and the m e 1 develop3 by Connell and Terkin /2/, based on tetrahedral units, account for the experimental observations mde i n

mrphous group

IV

semi-conductors using X-ray, electron and neutron diffraction,

namely /3/ :

i) the average number of nearest neighbours t o a given atom i s slightly smaller than four and the n. n. distznce i s close t o that observed i n the crystalline phase,

ii) the nmber of second. neighbows is close t o twelve, as

i n the crystal.

These d e l s have been used t o interpret the phvsical progerties of s m e seni-conduc-

t o r ccnpunds /4/ and it was interesting to investigate the structure of a IV-IV

amorphous alloy i n a large cornpasition range. The S i Sn system has been chosen be- cause it i s possible t o incorporate up t o 50 % of Sn i n mrphous horogeneous S i Sn alloys. Moreover the optical band gap continuously changes with ccmpsition, so that it i s possible, by monitoring the preparation conditions, t o fabricate layers or niultilayers t o be used. i n photovoltaic conversion devices o r i n imaging systems. S i Sn mrphous alloys, p r e p r e d by r f or dc sputtering, have been studied by VBri6 e t d l . / 5 , 6 / and by ; ~ ~ i l l i ~ o n and Deb / 7 / . This method of preparation leads t o the i n t r d u c t i o n of gaseous inpurities i n the alloys, t h a t may a l t e r t h e i r atomic and electronic structure. In order t o accurately control the purity of the samples, we have constructed an apparatus for preparing Si Sn amorphous alloys by co-evaporation i n a high vacuum / 8 / . Electron diffraction, MGssbauer spectrometry expzriments and

density masuremats have been made t o investigate the structure of the mrphous

films obtained by this procedure.

(3)

JOURNAL

DE

PHYSIQUE

I1

-

EXPEFSi'4ENTAL RESULTS

Sil-x Snx samples were z,reLpred i n an ultrahigh vacuum chamber (3 x

lo-*

Torr)

,

by sinrultaneous condensation of s i l i c o n and t i n on substrates held a t 77 K. Two quartz m n i t a r i n g systems were used t o control t h e evaporation r a t e of each constituent. For x < 0.5 perfectly homgeneous m r p h o u s alloys were obtained. I n t h e concentra- t i o n range 0.50 <

x

< 0.75 small 6

-

Sn c r y s t a l l i t e s are observed, by dark f i e l d electron microscow, i n a m t r i x t h a t rewains amorphous-For x > 0.75 t h e m r p h o u s phase disappears and a mixture of B

-

Sn and S i c r y s t a l l i t e s i s observed.

2. 1

-

Electron d i f f r a c t i o n

Electron d i f f r a c t i o n patterns have been obtained using a scanning high energy e l e c tron d i f f r a c t i o n apparatus /9/. A s i n -pure amrphous s i l i c o n o r g m i u m , t h e strue

t u r e factor exhibits two ~vell-defined peaks and a. t h i r d peak with a very small inten- s i t y . The r a t i o y = k2/kl of t h e values of k a t the f i r s t

two

maxima of S (k) conti- nuously changes from yl = 1.81 f o r me a-Si t o y2 = 1.63 f o r x = 0.57 (table 1).

This can be taken as an indication t h a t t h e atomic s t r u c t u r e of t h e alloys evolves f r m a Polk-like s t r u c t u r e f o r x = 0,

tmards

a structurewhereodd-rrenbered rings

are

excludqd f o r x = 0.5. A s

shcwn

in t a b l e I, e l m t a l semi-conductors are correctly described by the Polk model (y = 1.80

-

1.82) while t h e Connell-Temkin d e l

(y = 1.67

-

1.76) seems

mre

appropriate f o r m r p h o u s compounds.

Polk Connell-Temkin

&el &el

Model values

unrelaxed 1.80 1.67 a-Sil-x

relaxed 1.82 1.76 Present work Snx

E x o e r ~ t a l values

Table I

-

The r a t i o y = k2/kl of the values of k a t the f i r s t and second d i f f r a c t i o n peaks ( f r m r e f . /3/)

.

F r m this discussion we can draw t h e conclusion t h a t i r ? S i Sn alloys, chemical and

s i z e constraints are large enough t o induce a well-characterized c h d c a l short ran- ge order. Sn atoms shacv a ten6ency t o be selectively surrounded by S i atoms so t h a t , as x increases, t h e number of odd-rmnbered rings decreases.

2.2

-

Mean interatomic distance

The m a n i n t e r a t m i c distance is determined a s f o l l w . The thickness of the

m r -

phous films i s measured by Tolanslq interferometry and t h e nu&er of atoms of each species t h a t are deposited per u n i t area is determined by t h e frequency s h i f t of t h e o s c i l l a t o r s . Assuming a tetrahedral netwogk it is possible to calculade d the avera- g e nearest neighbow distance ( f i g . 1) ; d i s found to vary l i n e a r l y with x from

d = 2.41

ic

pure a-Sir a figure 2.5 % larger than i n pure c-Si. V7emay therefore as- sums t h a t d would increase by 2.5 % when ( h y p t h e t i c a l ) c r y s t a l l i n e Sil, Sn?, alloys

(4)

the assumption that Sn atom avoid close contacts. :?it5 dSiSi = 2.35 A a s in c-Si, the experin-ental d.ata lead t o dSiSn = 2 . 5 3

A,

a figure 1.5 % smaller than

1/2 (dSisi + dsnsn)

.

Fig. 1

-

Variation with x of the average interatomic distance

3

i n a ~ r p h o u s SileX Snx alloys

2 . 3

-

~%ssbauer spectroscopy

Conventional transmission %ssbauer spectroscopy spectra have been obtained in the

tenperatwe range 4 . 2 K to 400

:<

i n alloys of different a q p s i t i o n s , using the ' ~ n resonant nucleus, with a 10 Ci Ba Sn O3 source. In mrphous alloys a single reso- nance l i n e i s observed, which f i t s accurately t o a Lorentzian of FVHM = 1.16

m.s-l .

This shows i) that there is only one s i t e for Sn atoms in our alloys, unlike in dc sputtered alloys /7/ ~Jhere the association with oxygen leads t o three lines, ii) Sn atoms tend t o avoi?. themselves because, i f the distribution of Sn atoms were randan, a broadened l i n e v~ould be observed.

The DebyeiValler and the second-order Doppler s h i f t have been masured as a function

of tempratme i n three diPferent alloys, to determine the dynamics of Sn atoms.

a

-

The t o t a l s h i f t of the absorption l i n e is made up of

two catpnents :

where IS, assured t o be independent of T I is the chemical s h i f t and the second t e r m i s due to the second-order Doppler effect. According to the conventional theory of l a t t i c e vibrations, <

v2

z can be written ;

(5)

JOURNAL

DE

PHYSIQUE

where Y is the heaviside function.

In order to determine &IS, we notice that the Debye band contributes by 3 kT/4mc to

6mes a t high temperature. A plot of

3

l

a

3

6

wE - y = s

+ - + -

m s 4 mc 8 mc

,6

9 3 coth

-

2kT

as a function of 1/T, extrapolated a t infinite tenprature, provides the value of

61s. The extrapolation process is not sensitive to the value of % ad the value

= 8 x 1013 s'-l has been selected for t h i s purpse. According to table I1 61s

1s observed to increase with x, which can be ascribed to the decrease of the number

of p-like electrons concentrated i n covalent bonds when the concentration of t i n increases.

V&en 61s i s determined, 512 variation of < v2 > with T can be obtained from eq. (1) (fig. 2 ) .

Fig. 2

-

Mean square q l i t u d e ( < x2 > ) and velocity ( < v2 > ) of l19sn nuclei i n S i 5 ~ Sn46 amorphous alloys.

b

-

The Debye-Waller factor i s determined from the Lamb-

Mijssbauer £-factor. The intensity factor E (0) i s defined as

1

(-1

-

1 (0)

E (0) = I (-)

where I (a) and I (0) are respectively the background intensity and the peak inten-

s i t y of the absorption line. It i s well k n m that E (0) can be written : -0.5 TA

E (0) = fs [l

-

e J, (i 0.5

TA)l

(4) where fs i s the recoilless fraction of the Ba Sn 03 source (fs = 0.6)

,

TA = n 0 0 f

where n

is

the number of resonant nuclei per unit surface, a, i s the

n?axir~l

reso- nance cross-section and J, i s the Bessel f n c t i o n of zero order.

Fram

the experimental absorption spectra we have determined f and the mean-square

amplitude of the oscillations of Sn nuclei from the equation

(6)

ted the Debye and Einstein frequencies defined by

eq.

(3) have been determined through a l e a s t square f i t t i n g of t h e experimmtal r e s u l t s to the theoretical expressions f o r

< x2 > and < v2 >.

I-

The values obtained f o r and % a r e recorded i n t a b l e 11.

Table I1

-

Values of t h e Debye frequency w~ and of the Einstein frequency f o r l x 9 s n i n S i Snx m r p h o u s alloys

1-x

Te f a c t t h a t

CiIs

increases with x can be ascribed to the decrease i n t h e number of p-like electrons wncentrated i n covalent bonds when the concentration of t i n in- creases /10,11/.

The values, obtained f o r wE a r e

consistent

with the Einstein frequency

9%

8.8 x1013s-I i n pure s i l i c o n /12/. The softening of the Debye frequency % when the concentration

of Sn increases can be attributed to the weakening of the force constants f o r l19sn

i n S i /12/ and to t h e presence of inpurity rides around w~ a 1.2 x

lo1

s-'

.

Detai- led calculations of t h e vibration spectra i n ordered Si50 Sn5o c r y s t a l l i n e alloys

a r e currently in progress, to obtain values of the interatomic force constants.

/1/ Polk, D. E., J. Non-Cryst. Solids,

2

(1971) 365.

Polk, D. E. and Boudreaux, D. S., Phys. Rev. Lett.,

2

(1973) 92. /2/ Connell, G. A., and TEnnkin, R. J., Phys. Rev. B

2

(197415323.

/3/ D i x m i e r , J., Gheorghiu, A. and Theye, M. L., J. Phys. C (1984)227.

/4/ Etherington, G., Wright, A. C . , Tqenzel, J. T., Dore, J. C., Clarke, J. H. and

Sinclair, R. N., J. Non-Cryst. Solids,

48

(1982) 265.

Sinclair, R. N., Desa, J. A. E., Etherington, G., Johnson, P. A. V. and lnlriqht,

A. C., J. Non-Cryst. Solids

42

(1980) 107.

/5/ V6ri6, C., Rochette, J. F. and Rebouillat, J. P., J. Phys. Paris

2

C 4 (1981) 667 /6/ V6ri6, C., Proc. 17th I. E. E. E., PVSC (to be published.).

/7/ FTilliamson, D. L. and Deb, S. K., J. Appl. Phys.

2

(1983) 2588.

/8/ Vergnat, M.

,

Thesis (1983) Nancy (unpublished)

.

Vergnat, M., Ma~chal, G., Piecuch, M., Gerl, M., Solid S t . C m . Z(Z (1984) 237. /9/ Vergn+, M., Piecuch, Y., Marchal, G., and G e r l , M., Philos. Mag.

51

(1985) 327.

/lo/

Anton&ik, E

.

,

Phys

.

Stat. Sol. (b)

2

(1977) 605.

/11/ VJeyer, G., Nylandsted-Larsen, A., Deutch, B. I., Andersen, J. V., and ~ n t o n d i k ,

E., Hyperfine Interactions, 1 (1975) 93.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to