• Aucun résultat trouvé

PHOTOIONIZATION OF DIVALENT RARE EARTH IONS IN FLUORITE-TYPE CRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTOIONIZATION OF DIVALENT RARE EARTH IONS IN FLUORITE-TYPE CRYSTALS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225099

https://hal.archives-ouvertes.fr/jpa-00225099

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

PHOTOIONIZATION OF DIVALENT RARE EARTH

IONS IN FLUORITE-TYPE CRYSTALS

D. Mcclure, C. Pedrini

To cite this version:

D. Mcclure, C. Pedrini.

PHOTOIONIZATION OF DIVALENT RARE EARTH IONS IN

(2)

J O U R N A L DE PHYSIQUE

Colloque C7, suppl6ment a u nOIO, Tome

46,

octobre 1985 page C7-397

PHOTOIONIZATION OF DIVALENT RARE EARTH IONS IN FLUORITE-TYPE CRYSTALS

D.S. McClure and C. ~ e d r i n i '

gepartmen

t

of Chemist*,

Princeton Universi&y, Princeton,

N.

J . 08544, U . S . A . E. R. A.

No.

1003 C . N . R. S . ,

Universitd Lyon

I , 69622

Villeurbanne, France

Rdsumd

-

Les v a l e u r s d e s e n e r g i e s d e p h o t o i o n i s a t i o n d ' i o n s t e r r e s r a r e s d i v a l e n t s dans l e s c r i s t a u x f l u o r d s s o n t r e v u e s e t compardes aux s e u i l s d ' d n e r g i e c a l c u l d s p a r un s i m p l e modale d l e c t r o s t a t i q u e . Un i n t s r e s s a n t ph6nomSne r d s u l t a n t de l ' i o n i s a t i o n e s t l a f o r m a t i o n d ' u n e x c i t o n p i s g d au s i t e impuretd. Dans p l u s i e u r s c a s c e t e x c i t o n e s t m d t a s t a b l e e t respon- s a b l e d ' u n e luminescence anormale q u i Q t a i t r e s t d e j u s q u ' 8 p r g s e n t i n e x p l i q u d e . A b s t r a c t

-

The magnitudes of t h e p h o t o i o n i z a t i o n e n e r g i e s of d i v a l e n t r a r e e a r t h i o n s i n f l u o r i t e type c r y s t a l s a r e reviewed and compared t o a s i m p l e e l e c t r o s t a t i c model f o r t h e t r e s h o l d e n e r g y . An e s p e c i a l l y i n t e r e s t i n g o c c u r r e n c e r e s u l t i n g from i o n i z a t i o n i s . t h e f o r m a t i o n of an i m p u r i t y - t r a p p e d e x c i t o n . T h i s e x c i t o n i s m e t a s t a b l e i n s e v e r a l c a s e s and i s t h e c a u s e of a n anomalous luminescence which h a s h e r e t o f o r e remained unexplained.

The d i v a l e n t r a r e e a r t h i o n s can be chemically s t a b i l i z e d a s i m p u r i t i e s i n CaF2, SrF2, BaF2 and o t h e r c r y s t a 1 s . l But i n CdF2, only E U ~ + can be o b t a i n e d as a s t a b l e s p e c i e s as shown by Kingsley

6;

prener.* An a t t e m p t t o reduce t h e i o n s i n CdF2 o t h e r t h a n E U ~ + l e a d s t o t h e p r o d u c t i o n of semiconducting c r y s t a l s . 3 We have found t h a t t h e p h o t o i o n i z a t i o n e n e r g i e s of t h e d i v a l e n t r a r e e a r t h s i n CaF2, SrF2 and BaF2 a r e on t h e o r d e r of a few e V t h u s showing t h a t t h e i r chemical s t a b i l i t y i n t h e s e l a t - t i c e s is not g r e a t . Furthermore, t h e p h o t o i o n i z a t i o n l e a d s , i n some c a s e s t o a t r a ped e x c i t o n s t a t e which may be a model f o r t h e semiconducting s t a t e of doped CdF2.

g

-

The p r e s e n t l y known v a l u e s of t h e p h o t o i g n i z a t i o n e n e r g i e s have r e c e n t l y been

reviewed and compared t o a s i m p l e model. I n t h i s model we assume t h a t t h e t h i r d i o n i z a t i o n p o t e n t i a l of t h e d i v a l e n t r a r e e a r t h atom is reduced i n t h e c r y s t a l by t h e l o c a l e l e c t r o s t a t i c f i e l d a t t h e i o n ' s s i t e and by t h e e l e c t r o n a f f i n i t y of t h e c r y s t a l . Removal of t h e e l e c t r o n a l s o produces an e l e c t r o n i c p o l a r i z a t i o n of t h e c r y s t a l which reduces t h e energy needed. The r e s u l t is :

Ep1 =

I3

-

Em

-

AEm

-

Epol

-

EA

Here E, is t h e e l e c t r o s t a t i c p o t e n t i a l at t h e u n d i s t u r b e d m e t a l i o n s i t e and AEm is t h e c o r r e c t i o n due t o t h e d i s t o r t i o n i n t r o d u c e d by t h e impurity. Epol i s t h e pol- a r i z a t i o n c o r r e c t i o n and EA t h e e l e c t r o n a f f i n i t y . These q u a n t i t i e s can be d e t e r - mined w i t h s u f f i c i e n t a c c u r a c y f o r a test of t h e model a g a i n s t experiment, a s noted i n t h e r e f e r e n c e s 4-8.

The v a l u e of AEm is i m p o r t a n t but n o t w e l l known s i n c e i t i s t h e e l e c t r o s t a t i c e f f e c t of t h e l o c a l d i s t o r t i o n due t o t h e i m p u r i t y . I n t h e c a s e of SrF2 where t h e r a d i u s of

sr2+

i s n e a r l y t h e same a s t h a t of t h e d i v a l e n t r a r e e a r t h s , t h e agree- ment w i t h t h e model i s f a i r l y good a s shown i n f i g u r e 1. The t h r e e e x p e r i m e n t a l c a s e s shown by an X, a r e ce2+, Tm2+ and ~ b 2 + . The p o i n t s marked w i t h a s q u a r e a r e t h e f u l l y c a l c u l a t e d v a l u e s from eq 1, and f o r t h o s e marked w i t h t r i a n g l e s AEm has been omitted. The l a t t e r c o r r e c t i o n i s , t h e r e f o r e , s i g n i f i c a n t . For BaF2 and CaF2

(3)

C7-398 JOURNAL

DE

PHYSIQUE

F i g u r e 1. Comparison of c a l c u l a t e d and observed p h o t o i o n i z a t i o n t h r e s h o l d s of d i v a l e n t r a r e e a r t h i o n s i n SrF2 h o s t c r y s t a l . Squares r e p r e s e n t v a l u e s c a l c u l a t e d by eq. 1, o m i t t i n g EA. T r i a n g l e s repre- s e n t v a l u e s a l s o o m i t t i n g AEm. The X p o i n t s , a r e observed v a l u e s : ~ e 2 + , ~ m ~ + , yb2+. - 2 1 : : :

: : . : : . : : : I

CePrNdPmSmEuGdTbDy HoGTmYb t h e c o r r e c t i o n s a r e m c h l a r g e r , and t h e r e i s l e s s agreement w i t h eq 1. It i s , t h e r e f o r e , an i m p o r t a n t c o n c l u s i o n t h a t t h e l o c a l d i s t o r t i o n has a s i g n i f i c a n t e f f e c t on t h e p h o t o i o n i z a t i o n t h r e s h o l d .

The d i v a l e n t r a r e e a r t h s u s u a l l y have a ground s t a t e a r i s i n g from t h e f n con- f i r a t i o n , and e x c i t e d s t a t e s which arise from t h i s and t h e fn-ld c o n f i g u r a t i o n . Ceg, ~ d and ~ b ~ ~ have ground s t a t e s from t h e l a t t e r , however. ~ + I n t h e c a s e s of

E U ~ + and yb2+ t h e lowest e x c i t e d s t a t e i n most l a t t i c e s belongs t o fn-Id, and nor- mally s t r o n g s h o r t - l i v e d f l u o r e s c e n c e occurs from t h i s t o t h e f n ground s t a t e a f t e r e x c i t a t i o n i n t o any of t h e e x c i t e d l e v e l s . I n c e r t a i n c r y s t a l l a t t i c e s t h e s e i o n s emit an "anomalous luminescence". Table 1 compares s p e c t r a l p r o p e r t i e s of yb2+ i n SrFg, SrC12 and NaC1. I n t h e f i r s t of t h e s e only a ~ o m a l o u s e m i s s i o n is observed w h i l e i n t h e o t h e r s normal e m i s s i o n , t h e r e v e r s e of t h e l o c a l i z e d absorp- t i o n p r o c e s s , is observed. The anomalous e m i s s i o n o c c u r s from a d e l o c a l i z e d s t a t e , a s is shown by t h e d a t a g i v e n i n f i g u r e 2.

T a b l e 1. Peak p o s i t i o n of allowed and f o r b i d d e n a b s o r p t i o n and e m i s s i o n , and anomalous emission of yb2+ i n t h r e e h o s t c r y s t a l s , i n eV. T=80K.

Forbidden: Allowed: Anomalous

System Abs

.

Em. Abs

.

Em. Em. Ref S ~ F ~ : Y ~ Z + 3.22

-

3.45

-

1.69

src12:yb2+ 3.15 3.04 3.41 3.28 i a , b Ilac1:yb2+ 2.93 2.86 3.25 3.10

-

c

*

I n a d d i t i o n t o t h e normal e m i s s i o n s , src12:yb2+ shows unexplained e m i s s i o n bands under some c o n d i t i o n s . See r e f . a.

a. H. Witzke, D.S. McClure and B. M i t c h e l l , i n Luminescence of C r y s t a l s , Molecules. and s o l u t i o n s , (F.E. Williams, ed) Plenum P r e s s , New York 1973, p. 598.

(4)

F i g u r e 2. s r F 2 : ~ b 2 + : P h o t o c o n d u c t i v i t y (P), a t 10K, l i n e a r s c a l e a t l e f t ; absorp- t i o n (A) a t 10 K, absorbance s c a l e a t r i g h t ; f o r b i d d e n a b s o r p t i o n (A"), anomalous e m i s s i o n (F) a t 80K; e s t i m a t e d t r a p p e d e x c i t o n a b s o r p t i o n (A") a t 80K ( s e e t e x t ) ; e s t i m a t e d z e r o phonon l i n e ( 0 ) . The f l u o r e s c e n c e s p e c t r u m shown i s t h a t g i v e n by Reut, r e f

.lo.

e m i s s i o n spectrum is a l s o shown. It is an example of anomalous emission s i n c e t h e normal e m i s s i o n s would be much narrower and 'would o c c u r j u s t t o t h e r e d of t h e allowed and f o r b i d d e n a b s o r p t i o n bands.

. - -

-

7

F

.Sr~:l'b~;-

F i g u r e 3. Energy l e v e l diagrams f o r CaF2 and f o r yb2+ i n SrF2. At l e f t i s

I

-

6 " c o r r e c t e d " band s t r u c t u r e f o r CaF2 of A l b e r t e t a l . ( r e f . 9 ) ,

showing t o p of v a l e n c e band and

-

5 c o n d u c t i o n band ( u s e l e f t s c a l e ) . At r i g h t i s energy d i a ram f o r l o c a l i z e d l e v e l s of Yb5+ i n SrF2, a V b u t w i t h ground l e v e l placed 3 eV below t h e r l - p o i n t of conduction band; shown i n same s c a l e as CaF2,

-

\

'\

-

2

and i n magnified s c a l e a t r i g h t .

(5)

JOURNAL

DE

PHYSIQUE

n e a r 3 eV, but a l l of t h e l o c a l i z e d l e v e l s l i e above 3 eV. T h e r e f o r e , e x c i t a t i o n i n t o any of t h e l o c a l i z e d l e v e l s l e a d s t o t h e p o s s i b i l i t y of p h o t o i o n i z a t i o n . Furthermore, e l e c t r o n i c r e l a x a t i o n , which normally l e a d s t o p o p u l a t i n g t h e lowest e x c i t e d l o c a l i z e d l e v e l followed by f l u o r e s c e n c e w i l l l e a d t o a new kind of r e s u l t i n t h i s case. The e x c i t a t i o n can i n s t e a d l e a d t o an e l e c t r o n i n t h e conduction band, i.e. yb2+ + yb3+

+

e. The e l e c t r o n i n i t s lowest energy s t a t e s would occupy

t h e 4s o r b i t a l s of t h e 12 n e a r e s t neighbor ca2+ i o n s i n <110> d i r e c t i o n s from t h e i m p u r i t y . R e l a x a t i o n of t h e i o n i c p o s i t i o n s would cause t h e n e a r e s t F- neighbors t o c o l l a p s e toward t h e Yb by about 0.2

8.

T h i s type of e x c i t a t i o n could be c a l l e d a n impurity-trapped e x c i t o n , s i n c e i t c o n s i s t s of a h o l e on t h e Yb and an e l e c t r o n i n t h e l a t t i c e .

The emission spectrum of t h e t r a p p e d e x c i t o n is t h e anomalous luminescence. I t s r e d - s h i f t compared t o t h e expected p o s i t i o n of t h e normal luminescence (Table 1 ) is due: a ) t o t h e lower energy of t h e conduction band r e l a t i v e t o t h e lowest loca- l i z e d e x c i t e d s t a t e s , b) t o t h e binding energy of t h e e x c i t o n and c ) t o t h e Franck-Condon f a c t o r r e s u l t i n g from t h e 0.2

A

F s h i f t . Its band width of 3200 cm-l, f i v e times t h e normal band width, i s a l s o due t o t h e 0.2 8 F- s h i f t . I n f i g u r e 2, t h e emission spectrum p u b l i s h e d by ~ e u t l O i s shown. A s t u d y of t h e ano- malous emission of yb2+ and E U ~ + was done by Reut

,

'

O K a p l y a n s k i i , l 1 ~ e o f i l o v l and t h e i r coworkers,,but without t h e p h o t o c o n d u c t i v i t y d a t a , a d e f i n i t i v e i n t e r p r e t a - t i o n was not p o s s i b l e . Other d a t a published by t h e s e workers is i n agreement with t h e p r e s e n t i n t e r p r e t a t i o n .

The emission l i f e t i m e was measured by Reut t o be 10 vsec a t 8 0 ~ . l ' Mancuso

measured t h e quantum y i e l d of t h e emission t o be 0.035

*

.01. l 3 Thus t h e r a d i a t i v e l i f e t i m e is about 300 vsec, l e a d i n g t o an o s c i l l a t o r s t r e n t h of 10-5. This is about of t h e v a l u e f o r t h e allowed 4f+5d

transition^.'^

I f we " r e f l e c t " t h e f l u o r e s c e n c e around a p o i n t on t h e energy s c a l e i n f i g u r e 2 near 2.5 eV, we g e t a r e a s o n a b l e looking p o s s i b l e a b s o r p t i o n spectrum a s shown i n t h e f i g u r e . This spectrum a p p e a r s t o peak n e a r t h e low energy p h o t o c o n d u c t i v i t y peak. Its maximum e x t i n c t i o n c o e f f i c i e n t can be found from t h e o s c i l l a t o r s t r e n g t h and t h e band shape t o be E = 0.2 l/mole-cm. An a b s o r p t i o n c o e f f i c i e n t could be e s t i m a t e d from t h e yb2+ c o n c e n t r a t i o n of about 0.1 mole p e r c e n t i n our sample: i t would be 0.006 cm-l, s u f f i c i e n t f o r a l a s e r f l u o r e s c e n c e e x c i t a t i o n experiment. Indeed, we have s e e n i n d i c a t i o n s of t h i s weak a b s o r p t i o n and p l a n t o i n v e s t i g a t e i t thoroughly. The binding energy of t h e e x c i t o n ought t o be s i m i l a r t o t h e a c t i v a t i o n energy f o r conduction i n semiconducting CdF2. E i s e n b e r g e r and p e r s h a n L S showed t h a t a l i k e l y e l e c t r o n i c s t r u c t u r e i n t h i s m a t e r i a l a t low temperatures is t o have an e l e c t r o n s p r e a d over t h e 12 m e t a l i o n s i t e s around t h e t r i v a l e n t impurity ion. An a c t i v a - t i o n energy of 0.16 eV t o f r e e t h e e l e c t r o n h a s been found f o r t h i s p r o c e s s by Weller.16 E i s e n b e r g e r and Pershan showed t h a t a Bohr model f o r t h e h o l e - e l e c t r o n p a i r g i v e s a good f i r s t approximation t o t h e binding energy and e l e c t r o n o r b i t a l r a d i u s . At lOOK t h e s t a t i c d i e l e c t r i c c o n s t a n t of CdF2 is 7.85, and t h a t of SrF2 i s 6.21, g i v i n g r = 4.158, Eb = 0.22 eV f o r CdF2 and r = 3.298 and Eb = 0.35 eV f o r SrF2. These numbers a r e c l o s e t o t h e v a l u e s of t h e impurity-metal i o n d i s t a n c e 3.80 and 4.09 r e s p e c t i v e l y , and t h e binding energy of 0.16 eV i n CdF2.

The only evidence t h a t t h e e x c i t o n binding energy is of t h i s magnitude i n CaF2 SrF2 and BaF2 i s g i v e n by t h e occurrence of anomalous luminescences i n C ~ F * : Y ~ ~ + . No p h o t o c o n d u c t i v i t y 4 h a s been d e t e c t e d i n t h i s system, but i t s t h r e s h o l d should be somewhat below 4 eV. The z e r o phonon l i n e of t h e lowest l o c a l i z e d t r a n s i t i o n i n t h i s system is 3.28 eV. T h e r e f o r e , i n o r d e r f o r t h e system t o r e l a x i n t o t h e exci- t o n s t a t e , t h e p h o t o i o n i z a t i o n t h r e s h o l d minus t h e binding energy would have t o f a l l below 3.28 eV. T h i s r e q u i r e s a v a l u e on t h e o r d e r of 0.5 eV.

(6)

a b l e t o " t u n n e l " i n t o t h e e x c i t o n s t a t e b e f o r e t h e r a p i d allowed e m i s s i o n p r o c e s s o c c u r s .

The p r e s e n t l y known systems i n which an impurity-trapped e x c i t o n p r o b a b l q forms a r e : caF2:yb2+, srF2:yb2+, BaF2:yb2+, BaF2:~u2+, cdc12:cu+, cdBr2:cu+. A l l of t h e s e i m p u r i t y i o n s have f i l l e d o r h a l f - f i l l e d s h e l l ground s t a t e s , and t h e i r f i r s t e x c i t e d s t a t e s belong t o a d i f f e r e n t e l e c t r o n c o n f i g u r a t i o n from t h e ground s t a t e ( i . e . , f 1 3 d , f 6 d o r d 9 s ) . The c r y s t a l L a t t i c e s p r o v i d e t h e n e g a t i v e p o t e n t i a l t o h e l p e x p e l t h e e l e c t r o n , and i n t h e c a s e of Cd-compounds, a l s o p r o v i d e a l a r g e e l e c t r o n a f f i n i t y t o a c c e p t t h e e l e c t r o n i n t o t h e c o n d u c t i o n band. The extreme c a s e of t h e l a t t e r is CdF2 c o n t a i n i n g t h e r a r e e a r t h s where t h e e l e c t r o n a f f i n i t y of t h e l a t t i c e i s g r e a t e r t h a n t h a t of t h e t r i v a l e n t i m p u r i t y atom.

The impurity-trapped e x c i t o n i s an i n t e r e s t i n g o b j e c t f o r s t u d y . T r a n s i t i o n s from i t t o h i g h e r p a r t s of t h e c o n d u c t i o n band may g i v e u s e f u l i n f o r m a t i o n about t h e l a t t e r s i n c e t h e t r a p p e d e l e c t r o n o c c u p i e s a f a i r l y l a r g e volume of t h e c r y s t a l ; and a l s o because i t w i l l have d i f f e r e n t o v e r l a p w i t h c o n d u c t i o n band s t a t e s t h a n does t h e v a l e n c e band. D i r e c t t r a n s i t i o n s from t h e i m p u r i t y t o t h e e x c i t o n s t a t e w i l l g i v e i n f o r m a t i o n on o v e r l a p between atoms s e p a r a t e d by about 48, i n t h e

c r y s t a l . It w i l l be i n t e r e s t i n g t o compare t h e s e o v e r l a p s w i t h t h e p a r a m e t e r s of o t h e r e l e c t r o n t r a n s f e r systems, p a r t i c u l a r l y m o l e c u l a r ones.

The t u n n e l i n g r a t e between l o c a l and e x c i t o n s t a t e s may be measureable, a s Chase was a b l e t o o b s e r v e e l e c t r o n s p i n r e s o n a n c e of t h e lowest l o c a l i z e d s t a t e of E U ~ +

i n BaF i n s p i t e of t h e f a c t t h a t t h i s s t a t e i s decaying i n t o a t r a p p e d e x c i t o n l e v e l . 3 8

REFERENCES

1. s e e C r y s t a l s w i t h t h e F l u o r i t e S t r u c t u r e (W. Hayes, ed.) Clarendon P r e s s , Oxford, 1974.

2. J.D. K i n g s l e y and J. S. P r e n e r , Phys. Rev. L e t t e r s

8,

315 (1962). 3. J.S. P r e n e r and J.D. K i n g s l e y , J. Chem. Phys.

38,

667 (1963). 4. D.S. McClure and C. P e d r i n i , t o be p u b l i s h e d .

5 . C. P e d r i n i , Rogemond and D.S. McClure, t o be p u b l i s h e d .

6. C. P e d r i n i , D.S. McClure and C.H. Anderson, J. Chem. P h y s . 7 0 , 4959 (1979). 7. C. P e d r i n i , P.O. P a g o s t , C. Madej and D.S. McClure, J. Phys. P a r i s

2,

323

(1981).

8 . C. P e d r i n i , F. Gaume-Mahn and D.S. McClure, "The Rare E a r t h s i n Modern S c i e n c e and Technology", v o l . 3 , (1982), p. 165 Ed. G.J. McCarthy, H.B. S i l b e r and J.J. Rhyne, Plenum P r e s s , New York.

9. J.P. A l b e r t , C. J o u a n i n and C. Gout, Phys. Rev.

G,

4619 (1977).

10. E.G. Reut, Opt. S p e c t r o s c . (USSR) 4 5 , 290 (1978),

s,

99 (1976);

g,

55 (1976). 11. A.A. K a p l y a n s k i i , V.N. Medvedev a n n . ~ . Smolyanskii, Opt. S p e c t r o s c . (USSR)

41, 615 (1976),

2,

74 (1977),

34,

361 (1973).

12.

Es.

Z a p a s s k i and P.P. F e o f i l o v , Opt. S p e c t r o s c .

2,

620 (1976). 13. C. Mancuso, s e n i o r t h e s i s , P r i n c e t o n U n i v e r s i t y 1985.

14. S. P i p e r , J.P. Brown and D.S. McClure, J. Chem. Phys., 46, 1353 (1967). 15. P. E i s e n b e r g e r and P.S. Pershan, Phys. Rev.

167,

292 (1968).

16. P a u l F. W e l l e r , I n o r g . Chem.

6,

1545 (1965).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to