• Aucun résultat trouvé

A gradient-like Variational Bayesian approach for inverse scattering problems

N/A
N/A
Protected

Academic year: 2021

Partager "A gradient-like Variational Bayesian approach for inverse scattering problems"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-00942863

https://hal.archives-ouvertes.fr/hal-00942863

Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-

entific research documents, whether they are pub-

lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A gradient-like Variational Bayesian approach for

inverse scattering problems

Leila Gharsalli

To cite this version:

Leila Gharsalli. A gradient-like Variational Bayesian approach for inverse scattering problems. 2014.

�hal-00942863�

(2)

❆ ❣r❛❞✐❡♥t✲❧✐❦❡ ❱❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤ ❢♦r ✐♥✈❡rs❡ s❝❛tt❡r✐♥❣

♣r♦❜❧❡♠s

▲❡✐❧❛ ●❤❛rs❛❧❧✐

▲❛❜♦r❛t♦✐r❡ ❞❡s ❙✐❣♥❛✉① ❡t ❙②stè♠❡s ✭▲✷❙✮

❯▼❘✽✺✵✻✿ ❈◆❘❙✲❙❯P❊▲❊❈✲❯♥✐✈ P❛r✐s✲❙✉❞

✸ r✉❡ ❏♦❧✐♦t✲❈✉r✐❡✱ ✾✶✶✾✵ ●✐❢✲s✉r✲❨✈❡tt❡✱ ❋r❛♥❝❡

❊✲♠❛✐❧✿ ❧❡✐❧❛✳❣❤❛rs❛❧❧✐❅❧ss✳s✉♣❡❧❡❝✳❢r

❆❜str❛❝t

■♥ t❤✐s ❞♦❝✉♠❡♥t✱ ✇❡ ♣r❡s❡♥t ❝♦♠♣✉t❛t✐♦♥s ♦❢ ✉♣❞❛t✐♥❣ s❤❛♣✐♥❣ ♣❛r❛♠❡t❡rs ❢♦r ❛ ♥❡✇ ♠❡t❤♦❞ ❜❛s❡❞ ♦♥ t❤❡

✈❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤ ✭❱❇❆✮ ❛❧❧♦✇✐♥❣ t♦ s♦❧✈❡ ❛ ♥♦♥❧✐♥❡❛r ✐♥✈❡rs❡ s❝❛tt❡r✐♥❣ ♣r♦❜❧❡♠✳ ❚❤❡ ♦❜❥❡❝t✐✈❡ ✐s t♦ ❞❡t❡❝t ❛♥ ✉♥❦♥♦✇♥ ♦❜❥❡❝t ❢r♦♠ ♠❡❛s✉r❡♠❡♥ts ♦❢ t❤❡ s❝❛tt❡r❡❞ ✜❡❧❞ ❛t ❞✐✛❡r❡♥t ❢r❡q✉❡♥❝✐❡s ❛♥❞ ❢♦r s❡✈❡r❛❧

✐❧❧✉♠✐♥❛t✐♦♥s✳ ❚❤✐s ✐♥✈❡rs❡ ♣r♦❜❧❡♠ ✐s ❦♥♦✇♥ t♦ ❜❡ ♥♦♥✲❧✐♥❡❛r ❛♥❞ ✐❧❧✲♣♦s❡❞✳ ❙♦ ✐t ♥❡❡❞s t♦ ❜❡ r❡❣✉❧❛r✐③❡❞ ❜②

✐♥tr♦❞✉❝✐♥❣ ❛ ♣r✐♦r✐ ✐♥❢♦r♠❛t✐♦♥✳ ❚❤✐s ✐s t❛❝❦❧❡❞ ✐♥ ❛ ❇❛②❡s✐❛♥ ❢r❛♠❡✇♦r❦ ✇❤❡r❡ t❤❡ ♣❛rt✐❝✉❧❛r ♣r✐♦r ✐♥❢♦r♠❛t✐♦♥

✇❡ ❛❝❝♦✉♥t ❢♦r ✐s t❤❛t t❤❡ ♦❜❥❡❝t ✐s ❝♦♠♣♦s❡❞ ♦❢ ❛ ✜♥✐t❡ ❦♥♦✇♥ ♥✉♠❜❡r ♦❢ ❞✐✛❡r❡♥t ♠❛t❡r✐❛❧s ❞✐str✐❜✉t❡❞ ✐♥ ❝♦♠♣❛❝t r❡❣✐♦♥s✳ ❚❤❡♥ ✇❡ ♣r♦♣♦s❡ t❤❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ tr✉❡ ❥♦✐♥t ♣♦st❡r✐♦r ❜② ❛ s❡♣❛r❛❜❧❡ ❧❛✇ ❜② ♠❡❛♥ ♦❢ ❛ ❣r❛❞✐❡♥t✲❧✐❦❡

❱❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ t❡❝❤♥✐q✉❡✳ ❚❤✐s ❧❛tt❡r ✐s ❛♣♣❧✐❡❞ t♦ ❝♦♠♣✉t❡ t❤❡ ♣♦st❡r✐♦r ❡st✐♠❛t♦rs ❜② ❛❧❧♦✇✐♥❣ ❛ ❥♦✐♥t

✉♣❞❛t❡ ♦❢ t❤❡ s❤❛♣❡ ♣❛r❛♠❡t❡rs ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♠❛r❣✐♥❛❧s ❛♥❞ r❡❝♦♥str✉❝t t❤❡ s♦✉❣❤t ♦❜❥❡❝t✳ ❚❤❡ ♠❛✐♥ ✇♦r❦

✐s ❣✐✈❡♥ ✐♥ ❬✹❪✱ ✇❤✐❧❡ t❡❝❤♥✐❝❛❧ ❞❡t❛✐❧s ♦❢ t❤❡ ✈❛r✐❛t✐♦♥❛❧ ❝❛❧❝✉❧❛t✐♦♥s ❛r❡ ♣r❡s❡♥t❡❞ ✐♥ t❤❡ ❝✉rr❡♥t ♣❛♣❡r✳

✶ ■♥tr♦❞✉❝t✐♦♥

❚❤❡ ❣r❛❞✐❡♥t✲❧✐❦❡ ❱❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤ ❢r♦♠ ♥♦✇ ♦♥ ❞❡♥♦t❡❞ ❛s ●❱❇❆ ✐s ❞❡r✐✈❡❞ ❢r♦♠ t❤❡ ❝❧❛ss✐❝❛❧ ✈❛r✐❛t✐♦♥❛❧

❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤ ✭❱❇❆✱ ❬✶❪✮ t❤❛t ❛✐♠s ❛t ❛♣♣r♦①✐♠❛t✐♥❣ ❛ ❥♦✐♥t ♣♦st❡r✐♦r ❞✐str✐❜✉t✐♦♥ p(x|y) ❜② ❛ s❡♣❛r❛❜❧❡ ❧❛✇

q(x) =Q

iqi(xi)✇❤✐❝❤ ✐s ❛s ❝❧♦s❡ t♦ t❤❡ ♣♦st❡r✐♦r ❞✐str✐❜✉t✐♦♥ ❛s ♣♦ss✐❜❧❡ ✐♥ t❡r♠s ♦❢ t❤❡ ❑✉❧❧❜❛❝❦✲▲❡✐❜❧❡r ❞✐✈❡r❣❡♥❝❡✳

■t ❝❛♥ ❜❡ ♥♦t❡❞ t❤❛t ♠✐♥✐♠✐③✐♥❣ t❤❡ ❑▲ ❞✐✈❡r❣❡♥❝❡ ✐s ❡q✉✐✈❛❧❡♥t t♦ ♠❛①✐♠✐③✐♥❣ t❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ❞❡r✐✈❡❞

❢r♦♠ st❛t✐st✐❝❛❧ ♣❤②s✐❝s F(q) =R

q(x) ln (p(y, x)/q(x))❞x✳ ❚❤❡ s♦❧✉t✐♦♥ ♦❢ t❤✐s ♣r♦❜❧❡♠ ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❜② ❛❧t❡r♥❛t❡

♦♣t✐♠✐③❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ❡❛❝❤ qi(xi)❛♥❞ ✐s ❣✐✈❡♥ ❜②✿

qi(xi) ∝ expD

ln(p(x, y))E

Q

j6=iqj(xj)



. ✭✶✮

❚❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ qi r❡q✉✐r❡s t❤❡ ❦♥♦✇❧❡❞❣❡ ♦❢ ❛❧❧ qj✱ j 6= i✳ ❍♦✇❡✈❡r✱ r❡❝❡♥t❧②✱ ♦t❤❡r ✇❛②s t❤❛♥ t❤✐s ❝❧❛ss✐❝❛❧

❛❧t❡r♥❛t❡ ♦♣t✐♠✐③❛t✐♦♥ ❤❛✈❡ ❜❡❡♥ ✐♥✈❡st✐❣❛t❡❞ ❬✺❪✳ ■♥ ❢❛❝t✱ t❤❡ ♦♣t✐♠✐③❛t✐♦♥ ✐♥✈♦❧✈❡❞ ✐♥ ❱❇❆ ✐s ❛♥ ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧

❝♦♥❝❛✈❡ ♣r♦❜❧❡♠✳ ❍❡♥❝❡✱ ❛♣♣r♦①✐♠❛t✐♥❣ ❞❡♥s✐t✐❡s qi(xi)❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❜② ❛❞❛♣t✐♥❣ ❛ ❝❧❛ss✐❝❛❧ ♦♣t✐♠✐③❛t✐♦♥ ❛❧❣♦r✐t❤♠✱

s✉❝❤ ❛s ❛ ❣r❛❞✐❡♥t ♠❡t❤♦❞✱ t♦ ❱❇❆✳ ❯s✐♥❣ t❤❡ ♥♦t✐♦♥ ♦❢ ♦♣t✐♠❛❧ st❡♣✱ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♠❛r❣✐♥❛❧s ❤❛✈❡ ❛♥ ✐t❡r❛t✐✈❡

❢✉♥❝t✐♦♥❛❧ ❢♦r♠✳ ❆t ✐t❡r❛t✐♦♥ n✱ t❤❡② r❡❛❞✿

e

q(n)i (xi) ∝ eqi(n−1)(xi)(1−α)

× exp



αD

ln(p(x, y))E

Q

i6=j eq(n−1) j (xj )



 ✭✷✮

✇❤❡r❡ α ≥ 0 ✐s ❛ ❞❡s❝❡♥t st❡♣ t❤❛t ♠✐♥✐♠✐③❡s t❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ❛t ❡❛❝❤ ✐t❡r❛t✐♦♥✳

(3)

✷ ❇❛②❡s✐❛♥ ❝♦♠♣✉t❛t✐♦♥s

▲❡t ✉s r❡❝❛❧❧ ♥♦✇ ❛❧❧ t❤❡ ❡①♣r❡ss✐♦♥s ♦❢ ♣r✐♦rs ❛♥❞ ❧✐❦❡❧✐❤♦♦❞s ✉s❡❞ ✐♥ t❤❡ ❇❛②❡s✐❛♥ ❢r❛♠❡✇♦r❦ ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ ♥♦♥✲❧✐♥❡❛r

✐♥✈❡rs❡ s❝❛tt❡r✐♥❣ ♣r♦❜❧❡♠ ❬✸❪✳ ❚❤❡♥ ✇❡ ❣✐✈❡ t❤❡ ❢♦r♠ ♦❢ s❡♣❛r❛t✐♦♥ ❛♥❞ ❡①♣r❡ss✐♦♥s ♦❢ ❛♣♣r♦①✐♠❛t✐♥❣ ❧❛✇s ❢♦r ❞✐✛❡r❡♥t

♣❛r❛♠❡t❡rs ✭✇❡ ❝❛♥ ❝❤❡❝❦ s❡✈❡r❛❧ r❡❢❡r❡♥❝❡s ❬✷✱ ✸✱ ✻❪ ❢♦r t❤❡ ❢♦r✇❛r❞ ♠♦❞❡❧❧✐♥❣ ♦❢ t❤❡ ♣r♦❜❧❡♠ ❛♥❞ ✐ts ❢♦r♠✉❧❛t✐♦♥✮✳

❲❡ ❤❛✈❡✿

q(y|w, vǫ) = N (Gow, vǫ■), q(w|χ, vξ) = N (mw, Vw), q(χ|z, m, v) = N (mχ, Vχ), q(z) = exp

( λX

r X

r

δ(z(r) − z(r)) )

, p(mk) = N (mk0, τ0), p(vk) = IG(vk0, φ0),

p(vǫ) = IG(vǫǫ, φǫ), p(vξ) = IG(vξξ, φξ),

✭✸✮

❲❡ ❞❡♥♦t❡ ψ = {m, v, vǫ, vξ} t❤❡ s❡t ♦❢ t❤❡ ❤②♣❡r✲♣❛r❛♠❡t❡rs ♦❢ t❤❡ ♠♦❞❡❧✳ ❈♦♥s❡q✉❡♥t❧②✱ t❤❡ ❥♦✐♥t ❞✐str✐❜✉t✐♦♥

♦❢ t❤❡ ✉♥❦♥♦✇♥s r❡❛❞s✿

p (χ, w, z, ψ|y) ∝ p (y|w, vǫ) p (w|χ, vξ) p (χ|z, m, v) p (z|λ) p (m|µ0, τ0)

× p (v|η0, φ0) p (vǫǫ, φǫ) p (vξξ, φξ)

∝ ηK(φ0 0−1)ηǫ ǫ−1)ηK(φξ ξ−1)

A exp



−||y − Gow||22 2vǫ



× exp



−||w − XEinc− XGcw||22 2vξ



× exp



−(χ − mχ)TVχ−1(χ − mχ) 2



× exp



λX i

X j

δ(z(i) − z(j)) − T (λ)



v−φǫ ǫ−1

× exp



−ηǫ

vǫ



vǫ−φξ−1exp



−ηξ

vξ

YK

k=1

vk−φ0−1

× exp



−η0

vk

 exp



−|mk− µ0|20



∝ exp {L}, ✭✹✮

✇❤❡r❡ A = (2π)M+N (NP +1)+K

2 (vǫ)M2 (vξ)N×NP2 |Vχ|(−1/2)0)(K/2)Γ(φ0)KΓ(φǫ)Γ(φξ)✇❤❡r❡ M ✐s t❤❡ ♥✉♠❜❡r ♦❢ s♦✉r❝❡s✱

N t❤❡ ♥✉♠❜❡r ♦❢ t❤❡ ❡❧❡♠❡♥t❛r② sq✉❛r❡ ♣✐①❡❧s✱ NP t❤❡ ♥✉♠❜❡r ♦❢ ♣♦❧❛r✐③❛t✐♦♥ ✭NP = 1❉✱ 2❉ ♦r 3❉✮ ❛♥❞ L r❡❛❞s✿

L = −

M 2



log(vǫ) −

N NP

2

 log(vξ)

− 1

2vǫ

||y − Gow||22− 1 2vξ

||w − XEinc− XGcw||22

− P

kNklog (vk)

2 −X

k

X r

|χ(r) − mk(r)|2 2vk

+ λX

r X

r

δ(z(r) − z(r)) − P

k|mk− µ0|20

− X

k

 η0

vk

+ (φ0+ 1) log(vk)

−ηǫ

vǫ

− (φǫ+ 1) log (vǫ)

− ηξ

vξ

− (φξ+ 1) log (vξ). ✭✺✮

(4)

❲❡ ♠❛② ♥♦t❡ t❤❛t ❛♣♣❧②✐♥❣ t❤❡ ❥♦✐♥t ♠❛①✐♠✉♠ ❛ ♣♦st❡r✐♦r✐ ✭❏▼❆P✮ ♦r t❤❡ ♣♦st❡r✐♦r ♠❡❛♥ ✭P▼✮ t♦ ❝♦♠♣✉t❡ t❤❡

❥♦✐♥t ♣♦st❡r✐♦r ❞✐str✐❜✉t✐♦♥ ✭❡q✉❛t✐♦♥ ✭✹✮✮ ②✐❡❧❞s ✐♥tr❛❝t❛❜❧❡ ❢♦r♠ ❛♥❞ ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s ♥❡❡❞❡❞ t♦ ♦❜t❛✐♥ ❛ ♣r❛❝t✐❝❛❧

s♦❧✉t✐♦♥✳ ❚❤✐s ✐s ❞♦♥❡ ❜② ♠❡❛♥s ♦❢ t❤❡ ●❱❇❆✳ ❋✐rst✱ ❛ str♦♥❣ s❡♣❛r❛t✐♦♥ ✐s ❝❤♦s❡♥✿

q(x) = q(vǫ)q(vξ) ×Y

i

q(χi)q(wi)q(zi)Y

k

q(mk)q(vk). ✭✻✮

❚❤❡♥✱ ✉s✐♥❣ ❡q✉❛t✐♦♥ ✭✷✮✱ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♠❛r❣✐♥❛❧ ❢♦r ❡❛❝❤ ✉♥❦♥♦✇♥ ✈❛r✐❛❜❧❡ ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ ❜② ♠❡❛♥s ♦❢

❢✉♥❝t✐♦♥❛❧ ♦♣t✐♠✐③❛t✐♦♥✳ ❯♣❞❛t✐♥❣ t❤❡ ❛♣♣r♦①✐♠❛t❡ ♣♦st❡r✐♦r r❡q✉✐r❡s 7 ❞✐✛❡r❡♥t ❣r❛❞✐❡♥t st❡♣s t❤❛t ✇❡ ❞❡♥♦t❡ ❜② αw✱ αχ✱ αz✱ αvǫ✱αvξ✱ αvk ❛♥❞ αmk

✷✳✶ ❯♣❞❛t❡ s❤❛♣✐♥❣ ♣❛r❛♠❡t❡rs

❆t t❤✐s ♣♦✐♥t✱ ✐t ❝❛♥ ❜❡ ♠❡♥t✐♦♥❡❞ t❤❛t t❛❦✐♥❣ t❤❡ ❧✐❦❡❧✐❤♦♦❞ ✐♥ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ❛♥❞ ✉s✐♥❣ ❝♦♥❥✉❣❛t❡ ♣r✐♦rs ✇✐❧❧

r❡s✉❧t ✐♥ ❥♦✐♥t ♣♦st❡r✐♦rs ❛♥❞ ♠❛r❣✐♥❛❧s r❛♥❣✐♥❣ ✐♥ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧②✳ ❖♣t✐♠✐③❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ qi(xi)t❤❡♥

r❡s✉❧ts ✐♥ ♦♣t✐♠✐③✐♥❣ t❤❡ ♣❛r❛♠❡t❡rs ♦❢ t❤❡s❡ ❧❛✇s✳ ■♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✇❡ s✉♠♠❛r✐③❡ t❤❡ r❡s✉❧ts ❢♦r t❤❡ ●❛✉ss✐❛♥ ✲ ✐♥✈❡rs❡

❣❛♠♠❛ ❝❛s❡✿

q(w) = N (mfw, eVw), q(χ) = N (mfχ, eVχ), q(mk) = N (eµk, eτk), q(vk) = IG(eηk, eφk),

q(vǫ) = IG(eηǫ, eφǫ), q(vξ) = IG(eηξ, eφξ),

q(z) = eζk∝ exp

λX r∈D

X r∈V (r)

ζ(re )

, ✭✼✮

✇❤❡r❡ t✐❧❞❡❞ ♣❛r❛♠❡t❡rs ❛r❡ ❣✐✈❡♥ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ ❦❡② ✉s❡❞ t♦ ♦❜t❛✐♥ t❤❡s❡ ❢♦r♠s ✐s ❡q✉❛t✐♦♥ ✭✷✮✳

✷✳✶✳✶ ❈♦♥tr❛st s♦✉r❝❡ w

log (eqn(w(i))) ∝ (1 − αw) log (eq(w(i))) + αw hlog (p (χ, w, z, ψ, y))iq(/w(˜ i))

∝ (1 − αw)h e

vw(i)w(i)2− 2fmw(i)w(i)i

+ αw hlog (p(y|w, vǫ)) + log (p(w|χ, vξ))iq(/w(˜ i))

∝ (1 − αw)h e

vw(i)w(i)2− 2fmw(i)w(i)i

− αw

2

||y − Gow||22 vǫ

+ ||w − XEinc− XGcw||22 vξ



˜

q(/w(i)) ✭✽✮

✇❤❡r❡ q(/w(i)) =Q

j6=iq(w(j))q(χ)q(z)q(ψ)✳ ❖r ||y − Gow||22

˜

q(/w(i)) ∝ X l

|Go(l, i)|2|w(i)|2

+ 2 ℜe

X k

Go∗(k, i)

y(k) −X j6=i

Go(k, j) emw(j)

 w(i)

 ,

❛♥❞

(5)

||w − XEinc− XGcw||22

˜

q(/w(i)) ∝ |w(i)|2− Gc∗(i, i) ¯χ(i) |w(i)|2− Gc(i, i) ¯χ(i) |w(i)|2

+ X

j

|Gc(j, i)| |χ(i)|2|w(i)|2− 2 ℜe Einc(i) ¯χ(i)w(i)

+ 2 ℜe

X j

|Gc∗(j, i)| |χ(j)|2|w(j)|2

− 2 ℜe

X

j6=i

¯

χ(i) Gc(i, j) ¯w(j) w(i)

− 2 ℜe

X

j6=i

¯

χ(j) Gc∗(j, i) ¯w(j) w(i)

+ 2 ℜe

X j

Gc∗(j, i)|χ(j)|2 X k6=i

Gc(j, k) ¯w(k) w(i)

+ cte.

✇❤❡r❡ ❞❡♥♦t❡s t❤❡ ❝♦♥❥✉❣❛t❡ ❝♦♠♣❧❡①✳

❍❡♥❝❡✱ ❜② ❝♦♠❜✐♥✐♥❣ ❛❧❧ t❤❡ t❡r♠s✱ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ❧❛✇✱ ❛t t❤❡ ✐t❡r❛t✐♦♥ n✱ ❜❡❝♦♠❡s qn(w) = N (fmnw, eVnw)

✇❤❡r❡✿

Vewn(i) =

"

(1 − αw) eVw(i) + αw vǫ−1

X j

|Go(j, i)|2

+ vξ−1



1 − 2 ℜe Gc(i, i) emχ(i)

+X

j

|Gc(j, i)|2 | emχ(i)|2+ eVχ(i)!#−1 ,

e mnw(i)

Vewn(i) = (1 − αw) emw(i) + αw

"

vǫ−1

X k

Go∗(k, i)

y(k) −X

j6=i

Go(k, j) emw(j)

+ v−1ξ Einc(i) emχ(i) −X j

Gc∗(j, i)



| emχ(j)|2+ eVχ(j)

 Einc(j)

+ X

j6=i e

mχ(i)Gc(i, j) emw(j) +X j6=i

e

mχ(i)Gc∗(j, i) emw(j)

− X

j

Gc∗(j, i)



| emχ(i)|2+ eVχ(i) X k6=j

Gc(j, k)w(k)

!#

,

❇② ❛❞❞✐♥❣ t❤❡ ♠✐ss✐♥❣ emw t♦ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ ♣r❡✈✐♦✉s ❡q✉❛t✐♦♥ ❛♥❞ ♣✉tt✐♥❣ ✐t ✐♥ ❛ ✈❡❝t♦r✐❛❧ ❢♦r♠✱ ✇❡

♦❜t❛✐♥ t❤❡ ✜♥❛❧ ❢♦r♠✿



























Venw=h

(1 − αw) eV−1w + αw ❉✐❛❣

v−1ǫ Γo+ v−1ξ Γxci−1

f

mnw=fmw+ αwVenw

""

v−1ǫ GoH(y − Gofmw) + vξ−1

f

mχEinc− GcH f m2χ+ eVχ

 Einc

− fmw+mfχGcmfw+ GcHfmχmfw− GcH f m2χ+ eVχ

 Gcfmw

##

✭✾✮

✇❤❡r❡ ♦✈❡r❧✐♥❡ ❞❡♥♦t❡s t❤❡ ❡①♣❡❝t❛t✐♦♥ ♦❢ t❤❡ ✈❛r✐❛❜❧❡ ✇✐t❤ r❡s♣❡❝t t♦ q ✭✐✳❡✳ u = ❊(u)q✮✱ s✉♣❡rs❝r✐♣tH ✐♥❞✐❝❛t❡s t❤❡

❝♦♥❥✉❣❛t❡ tr❛♥s♣♦s❡ ❛♥❞ Γo❛♥❞ Γxc ❛r❡ ❣✐✈❡♥ ❛s✿

(6)

Γo(i) = X j

|Go(j, i)|2,

Γxc(i) = 1 − 2ℜe(Gc(i, i) emχ(i)) + ( em2χ(i) + eVχ(i))X

j

|Gc(j, i)|2

✷✳✶✳✷ ❈♦♥tr❛st χ

log (eqn(χ(i))) ∝ (1 − α) log (eq(χ(i))) + αχ hlog (p (χ, w, z, ψ, y))iq(/χ(˜ i))

∝ (1 − αχ)h e

vχ(i)χ(i)2− 2fmχ(i)χ(i)i

+ αχ hlog (p(w|χ, vǫ)) + log (p(χ|z, v, m))iq(/χ(˜ i))

∝ (1 − αχ)h e

vχ(i)χ(i)2− 2fmχ(i)χ(i)i + αχ

||w − XE||22 vξ

+ (χ − mχ)TV−1χ (χ − mχ)



˜ q(/χ(i))

, ✭✶✵✮

✇❤❡r❡ q(/χ(i)) =Q

j6=iq(χ(j))q(w)q(z)q(ψ)✱ ♦r ||w − XE||22

˜

q(/χ(i)) ∝ −2ℜe

w(i)E(i)χ(i)

+ E2(i)|χ(i)|2

+

*

||w||22− 2ℜe

X

j6=i

w(j)E(j)χ(j)

 +X j6=i

|E(j)χ(j)|2 +

˜ q(/χ(i))

,

❛♥❞

D

(χ − mχ)TV−1χ (χ − mχ)E

˜

q(/χ(i)) ∝ X j

||χ(j) − mk||22 vk



˜ q(/χ(i))

∝ vk−1 |χ(i)|2− 2ℜe (fmkχ(i)) ,

❇② ✐❞❡♥t✐✜❝❛t✐♦♥✱ ✇❡ ✜♥❞

Veχn(i) ∝ h

(1 − αχ) eVχ(i)−1+ αχ



vξ−1E2(i) + evχ−1(i)i−1

,

❛♥❞

e mnχ(i)

Veχn(i) ∝ (1 − αχ) emχ(i) + αχ

"

e mχ(i)

Veχ(i) + vξ−1w(i)E(i)

# ,

✇❤❡r❡ wE ✐s t❤❡ ♠❡❛♥ ♦❢ t❤❡ ✈❡❝t♦r wEs✉❝❤ t❤❛t✿

wE(i) = X

NfNvN

Einc∗(i) emw(i) + emw(i)X

jb

Gc∗(i, i) emw(i)

+ Gc∗(i, i) eVw(i),

❛♥❞ E2✐s ❛ ❞✐❛❣♦♥❛❧ ♠❛tr✐❝❡ ✇❤♦s❡ ❡❧❡♠❡♥ts ❛r❡ ✇r✐tt❡♥ s✉❝❤ t❤❛t✿

E2(i) = X

NfNvNP

|Einc(i)|2+ 2ℜe Einc∗(i)Gcmew(i)

+ |X i

Gc(i, i) emw(i)|2+X i

|Gc(i, i)|2Vew(i),

(7)

❚❤❡♥ t❤❡ ✈❡❝t♦r✐❛❧ ❢♦r♠ ✐s ❣✐✈❡♥ ❜②✿



Venχ=h

(1 − αχ) eV−1χ + αχ

❉✐❛❣

vξ−1E2+ V−1χ i−1

f

mnχ = αχ VenχhP

kv−1kk◦ fmk+ v−1ξ w◦ Ei ✭✶✶✮

✇❤❡r❡ Vχ−1(i, i) =P

kk(i)v−1k .

✷✳✶✳✸ ❚❤❡ ❤✐❞❞❡♥ ✜❡❧❞ z

log (eqn(z(i))) ∝ (1 − αz) log (eq(z(i))) + α hlog (p (χ, w, z, ψ, y))iq(/z(˜ i))

∝ (1 − αz) log (eq(z(i))) + αz

*

−1

2log(vk) +||χ(i) − mχ(i)||22 2vk

− λ X

l∈V(i)

δ (z(l) − k) +

˜ q(/z(i))

∝ (1 − α) log ζek(i)

−αz

2

"

log(vk) + v−1k h|χ(i) − mχ(i)|iq(/z(˜ i))

− 2λ X

j∈V(i)

ζek(j)

#

∝ (1 − αz) log ζek(i)

−αz

2

"

Ψ(˜ηk) − log ˜φk+ vk−1h

| emχ(i)|2

+ mek− 2ℜe emχmeχ(i) i

+ λ X

j∈V(i)

ζek(j)

# ,

✇❤❡r❡ q(/z(i)) =Q

j6=iq(z(j))q(χ)q(w)q(ψ)❛♥❞ em†2χ = em2k+ eτk

❇② ✐❞❡♥t✐✜❝❛t✐♦♥✱ ✐t ❜❡❝♦♠❡s✿

ζekn = ζek(1−αz)exp (

−αz

2 Ψ(eηk) + log( eφk) + vk−1

( emχ(i) − eµk)2+ eτk

+ Veχ(r)

− λ X

i∈V(r)k(i)

!)

, ✭✶✷✮

✇❤❡r❡ Ψ(x) =∂x log Γ(x)t❤❡ ❞✐❣❛♠♠❛ ❢✉♥❝t✐♦♥ ✇✐t❤ Γ(x) ✐s t❤❡ ❣❛♠♠❛ ❢✉♥❝t✐♦♥✳

✷✳✶✳✹ ❚❤❡ ♦❜s❡r✈❛t✐♦♥ ✈❛r✐❛♥❝❡ vǫ

log (eqn(vǫ)) ∝ (1 − αvǫ) log (eq(vǫ)) + αvǫ hlog (p (χ, w, z, ψ, y))iq(/v˜ ǫ)

∝ (1 − αvǫ)



−vǫ

˜

ηǫ + ( ˜φǫlog(vǫ))



+ αvǫ hp(y|w, vǫ)p(vǫǫ, φǫ)iq(/v˜ ǫ), ✭✶✸✮

✇❤❡r❡ q(/vǫ)) = q(χ)q(w))q(z)Q

l6=vǫq(ψl)✱ ✇✐t❤✿

hp(y|w, vǫ)p(vǫǫ, φǫ)iq(/v˜ ǫ)



−M

2 log(vǫ) −||y − Gow||22 2vǫ

−ηǫ

vǫ

− (φǫ− 1) log(vǫ)



˜ q(/vǫ)

∝ −(1 + φǫ+M

2 ) log(vǫ) − v−1ǫ



ηǫ+||y − Gow||22 2



˜ q(/vǫ)

,

✇❤❡r❡

(8)

||y − Gow||22

˜

q(/vǫ) ∝ X i

|y(i)|2+X j

X k

Go(i, k) emw(j) emw(k) +X j

|Go(i, j)|evw(j)

− 2ℜe yX

j

Go(i, j) emw(j)! ,

❇② ✐❞❡♥t✐✜❝❛t✐♦♥✱ ✇❡ ♦❜t❛✐♥✿





φenǫ = (1 − αvǫ) eφǫ+ αvǫ φǫ+M2 e

ηnǫ =1−αeη

ǫ + αvǫ ηǫ+12

||y||22+ ||Gofmw||22− 2ℜe(yHGofmw) + ||Go2evw||1

!

✭✶✹✮

✷✳✶✳✺ ❈♦✉♣❧✐♥❣ ♥♦✐s❡ vξ

log (eqn(vξ)) ∝ 1 − αvξ

log (eq(vξ)) + αξ hlog (p (χ, w, z, ψ, y))iq(/v˜ ξ)

∝ 1 − αvξ

−vξ

˜ ηξ

+ ( ˜φξ− log(vξ))



+ αvξ hp(w|χ, vξ)p(vξξ, φξ)iq(/v˜ ξ), ✭✶✺✮

✇❤❡r❡ q(/vξ)) = q(χ)q(w))q(z)Q

l6=vξq(ψl)✇✐t❤

hp(w|χ, vξ)p(vξξ, φξ)iq(/v˜

ξ)



log vξNP N2 −||w − XE||22 2vξ

−ηξ

vξ

− (φξ+ 1) log(vξ)



˜ q(/vξ)



ηξ+NPN 2



log (vξ) − v−1ξ



ηξ+||w − XE||22 2



˜ q(/vξ)

,

❛♥❞

||w − XE||22

˜

q(/vξ) = X i

| emw(i)|2+ evw(i) +

| emχ(i)|2+ evw(i) E2(i)

− 2ℜe e

mχ(i)w(i)E(i)! ,

❇② ✐❞❡♥t✐✜❝❛t✐♦♥ ✇❡ ✜♥❞✿















φenξ = 1 − αvξ eφξ+ αvξ φξ+NP2N

αvξ dχ+ 1 − αvξ f mχ e

ηξn = 1−αeη

ξ + αvξ ηξ+12

||fmw||22+ || eVw||22+ || f m2χ+ eVχ

 E2||1

− 2ℜe f

mHχw◦ E ! ✭✶✻✮

✇❤❡r❡ dχ=P

kvk−1k◦ fmχ+ v−1ξ w◦ E

✷✳✶✳✻ ❱❛r✐❛♥❝❡ ♦❢ t❤❡ ❝❧❛ss❡s vk

∀κ ∈ {1, ..., K}✇❡ ❤❛✈❡✿

(9)

log (eqn(vk)) ∝ (1 − α) log (eq(vk)) + αvk hlog (p (χ, w, z, ψ, y))iq(/v˜ k)

∝ (1 − αvk)



−vk

˜ ηk

+ ( ˜φk− 1) log(vk)

 + αvk

*

−1 2

X i

δ(z(i) = κ)

× 

log(vk) +|χ(i) − mk|2 vk

 +η0

vk

+ (φ0+ 1) log(vk) +

˜ q(/vk)

∝ (1 − αvk)



−vk

˜ ηk

+ ( ˜φk− log(vk))

 + αvk

"

− φ0+ 1 + P

i eζk(i) 2

!

− vk−1

*

η0+|χ(i) − mk|2 2

+

˜ q(/vk)

#

, ✭✶✼✮

q(/vk)) = q(χ)q(w))q(z)Q

l6=vkq(ψl)✳

❇② ✐❞❡♥t✐✜❝❛t✐♦♥ ✇❡ ✜♥❞✿









φenk = (1 − αvk) eφk+ αvk

 φ0+

P

iζek(i)

2



e

ηkn= 1−αηekvk + αvk η0+12P i eζk(i)

| emχ(i)|2+ eVχ(i) + m2k+ ˜τk2! ✭✶✽✮

✷✳✶✳✼ ▼❡❛♥s ♦❢ ❝❧❛ss❡s mk

log (eqn(mk)) ∝ (1 − αmk) log (eq(mk)) + αmk hlog (p (χ, w, z, ψ, y))iq(/m˜ k)

∝ (1 − αmk) e

τkm2k− 2eµkmk

+ αmk

*1 2

X i

δ (z(i) = κ)

×

|χ(i) − mχ(i)|2 vk



+|mk− µ0| τ0

+

˜ q(/mk)

!

, ✭✶✾✮

✇✐t❤ q(/mk)) = q(χ)q(w))q(z)Q

l6=mkq(ψl)

❇② ✐❞❡♥t✐✜❝❛t✐♦♥✱ ✇❡ ♦❜t❛✐♥✿







 e τkn=

"

(1 − αmk) eτk+ αmk

0−1+ v−1k P

i eζk(i)#−1

e

µnk = eτknh

(1 − αmk) eµk+ αmk

τek

µ0

τ0 + vk−1P

i eζk(i) emχ(i)i ✭✷✵✮

✸ ❚❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣②

❚❤❡ ❡✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ❞✉r✐♥❣ t❤❡ ✐t❡r❛t✐♦♥ ♣r♦❝❡ss ❛❧❧♦✇s t♦ ❤❛✈❡ ❛♥ ✐♥❞✐❝❛t♦r ♦♥ t❤❡ ❝♦♥✈❡r❣❡♥❝❡

♦❢ t❤❡ ❛❧❣♦r✐t❤♠✳ ■♥❞❡❡❞✱ ✐ts ✈❛❧✉❡ ❛t t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ❛❧❧♦✇s ❢♦r ❛♥ ❡st✐♠❛t❡ ♦❢ t❤❡ ❡✈✐❞❡♥❝❡ t❤❛t t❤❡ ♠♦❞❡❧ ✐s ✉s❡❢✉❧

❢♦r t❤❡ ❝❤♦✐❝❡ ♦❢ t❤❡ ❧❛tt❡r✳ ■♥ t❤❡ ♥♦♥❧✐♥❡❛r ❝❛s❡✱ t❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ✐s ❣✐✈❡♥ ❜②✿

F(q) = hp(y, χ, w, z, ψ|M)iq + H(q(χ, w, z, ψ)) ✭✷✶✮

✇❤❡r❡ H ✐s t❤❡ ❡♥tr♦♣② ♦❢ q ❛♥❞ ✐s ❣✐✈❡♥ ❜②✿

(10)

H(q(χ, w, z, ψ)) = X

Nv

X

Nf

X

NP

X i

X

k

logp

2πeevw(i)

+X

i X

k

logq

2πeevχ(i)



+ X

i X

k

ζ˜κ(i) λ X j∈V(i)

ζ˜k(j) − log X

k

exp



λ X j∈V(i)

ζ˜k(j)



!

+ X

κ

logp 2πeeτκ



+X

k

e

ηk+ log

φekΓ(eηk)

− (1 + eηk)Ψ(eηk)

!

+ ηeǫ+ log

φeǫΓ(eηǫ)

− (1 + eηǫ)Ψ(eηǫ) + eηξ+ log

φeξΓ(eηξ)

− (1 + eηξ)Ψ(eηξ), ✭✷✷✮

❍❡♥❝❡✿

hp(y, χ, w, z, ψ)iq = −M + N (1 + NP) + K

2 log(2π) + (φǫ− 1) log (ηǫ) − Γ(φǫ)

− M + 2φǫ+ 2 2



Ψ(eηǫ) − log( eφǫ)

− ηǫv−1ǫ + (φξ− 1) log (ηξ) − Γ(φξ)

− N NvNPNf+ 2φξ+ 2 2

Ψ(eηξ) − log( eφξ)

− ηξvξ−1+ log(ηK(φ0 0−1))

− X

k



0+ 1 +P

i eζk(i)

Ψ(eηk) − log(fφk)

− 2η0v−1k

2 − K Γ(φ0)

− X

k

e

m2k+ eτk+ µ20− 2 emkµ0

0

+ λX i

X

k

ζek(i) X j∈V(i)

ζek(j) −vǫ−1

2

× ||y||22+ ||Gofmw||22− 2ytGomfw+ || eVwΓo||1

!

− vξ−1

2 ||fmw||22+ || eVw||1+ 

f mχ+ eVχ

 E2

1− 2fmHχw◦ E

!

− X

i X

k

vk−1ζek(i)

| emχ(i)|22+ evχ(i) + em†2χ(i) − 2 emχ(i) emχ(i)

2 , ✭✷✸✮

❲❡ ♠❛② ♥♦t❡ t❤❛t t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ❢r❡❡ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ❞❡♣❡♥❞s ♠❛✐♥❧② ✐♥ t❡r♠s ✉s❡❞ t♦ ✉♣❞❛t❡ t❤❡ ✈❛❧✉❡s

♦❢ t❤❡ ♣❛r❛♠❡t❡rs ❛♥❞ ✐ts ❡✈❛❧✉❛t✐♦♥ ❞♦❡s ♥♦t r❡q✉✐r❡ ❛ ❝♦st ♦❢ ❛❞❞✐t✐♦♥❛❧ ❝♦♠♣✉t❛t✐♦♥✳

✹ ❖♣t✐♠❛❧ st❡♣ ✈❛❧✉❡s ❝♦♠♣✉t❛t✐♦♥

❇② ❡①❛♠✐♥✐♥❣ ❡q✉❛t✐♦♥s ✭✾✮✱ ✭✶✶✮✱ ✭✶✷✮✱ ✭✶✹✮✱ ✭✶✻✮✱ ✭✶✽✮✱ ✭✷✵✮✱ ✇❡ r❡♠❛r❦ t❤❛t t❤❡r❡ ✐s ♥♦ ❞❡♣❡♥❞❡♥❝❡ ❜❡t✇❡❡♥ ❡❧❡♠❡♥ts

♦❢ t❤❡ s❛♠❡ ❣r♦✉♣ ❢♦r χ✱ z✱ vǫ✱ vξ✱ vk ❛♥❞ mk✱ ✇❤❡r❡❛s t❤❡ ✉♣❞❛t❡ ♦❢ t❤❡ ♠❡❛♥ ✈❛❧✉❡ ♦❢ t❤❡ ❝♦♥tr❛st s♦✉r❝❡ fmnw❛t t❤❡

✐t❡r❛t✐♦♥ n ❞❡♣❡♥❞s ♦♥ t❤❡ ♠❡❛♥ ✈❛❧✉❡ fmw✳ ❚❤❡♥ t❤❡ ❣r❛❞✐❡♥t st❡♣s αρ✱ ρ = χ, z, vǫ, vξ, mk, vk ❝❛♥ ❜❡ s❡t t♦ ✶ ✐♥

♦r❞❡r t♦ ❛❝❝❡❧❡r❛t❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ❛♥❞ ♦♥❧② t❤❡ ❝♦♥tr❛st s♦✉r❝❡ ✉♣❞❛t✐♥❣ st❡♣ αw✐s ❝♦♠♣✉t❡❞✳ ❚❤✐s st❡♣ ✐s ❝♦♠♣✉t❡❞

✐♥ ❛♥ ♦♣t✐♠❛❧ ✇❛② ✐♥ ♦r❞❡r t♦ ❡♥s✉r❡ ❛ ❢❛st ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❤❛♣✐♥❣ ♣❛r❛♠❡t❡r t♦✇❛r❞s t❤❡✐r ✜♥❛❧ ✈❛❧✉❡s✳ ❚❤✐s ✐s

❞♦♥❡ ❢r♦♠ t❤❡ ♥❡❣❛t✐✈❡ ❢r❡❡✲❡♥❡r❣② ❢✉♥❝t✐♦♥ ❜② ♠❡❛♥s ♦❢ ❛ ◆❡✇t♦♥✬s ♠❡t❤♦❞✳ ❚❤❡ ♦♣t✐♠❛❧ st❡♣ t❤❡♥ r❡❛❞s✿

αoptw = ∆F(αw)/∆2F(αw) αw=0

, ✭✷✹✮

✇✐t❤ ∆F = ∂F/∂αw ❡t ∆2F = ∂2F/∂2αw

❇❡❢♦r❡ ❛♣♣❧②✐♥❣ t❤❡ ◆❡✇t♦♥ ♠❡t❤♦❞✱ ✇❡ r❡✇r✐t❡ t❤❡ ✉♣❞❛t❡ ❡q✉❛t✐♦♥s ❢♦r w ✇✐t❤ ♠♦r❡ ❝♦♥✈❡♥✐❡♥t ♥♦t❛t✐♦♥s✿

(11)







 Venw=

"

(1 − αw) eV−1w + α Rw

#−1

f

mnw=fmw+ αw Venwdw

✭✷✺✮

✇❤❡r❡ Rw=❉✐❛❣

vǫ−1Γo+ v−1ξ Γxc

❛♥❞ dw=

"

v−1ǫ GoH(y − Gofmw) + vξ−1 f

mχEinc− GcH f m2χ+ eVχ

 Einc

− fmw+fmχGcfmw+ GcHmfχfmw− GcH f m2χ+ eVχ

 Gcfmw

#

❚❤❡♥✱ ✇❡ r❡✇r✐t❡ t❤❡ ♥❡❣❛t✐✈❡ ❢r❡❡ ❡♥❡r❣② ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ αw ✐♥ ♦r❞❡r t♦ ✉s❡ ✐t t♦ ♦❜t❛✐♥ t❤❡ ♦♣t✐♠❛❧ ✈❛❧✉❡✳ ■t r❡❛❞s✿

F(αw) = −vǫ−1

2 ||y||22+ ||Gomfw||22− 2ytGofmw+ || eVwΓo||1

!

−vξ−1

2 ||fmw||22+ || eVw||1

+ 

f mχ+ eVχ

 E2

1− 2fmHχw◦ E

!

+X

i

logp

2πeevw(i) ,

✭✷✻✮

❚❤❡♥✱ ✇❡ ❝❛❧❝✉❧❛t❡ t❤❡ ✜rst ❛♥❞ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡s t❤❛t ②✐❡❧❞ t❤❡ ❢♦❧❧♦✇✐♥❣✿

∂F(αw)

∂αw

= mfw dtw+X

i

evw(i)

2 evw(i)− evw(i)rw(i), ✭✷✼✮

2F(αw)

2αw

= fm′′w dtw+fmw dtw +X

i

evw′′(i)evw(i) − (evw (i))2

2 (evw(i))2 − evw′′(i)rw(i). ✭✷✽✮

✇❤❡r❡ vw(i)❛♥❞ rw(i)st❛♥❞ r❡s♣❡❝t✐✈❡❧② ❢♦r ❞✐❛❣♦♥❛❧ ❡❧❡♠❡♥ts i ♦❢ ♠❛tr✐① Vw ❛♥❞ Rw✱ ❛♥❞















Ve′nw =

Venw2

Ve−1w − Rw



Ve′′nw = Venw3

Ve−1w − Rw

2

f

m′nw = eVnwdw+ α eV′nwdw

f

m′′nw = 2 eV′nwdw+ α eV′′nw dw

✭✷✾✮

t❤❡♥ t❤❡ ♦♣t✐♠❛❧ ✈❛❧✉❡ ✐♥ t❤✐s ❝❛s❡ ❜❡❝♦♠❡s

αoptw = dtwmfw0+12P

is2wi f

m′′w0 dtw+fmw0 dtw +12P

is3wi ✭✸✵✮

✇❤❡r❡ 





















∂ fmw

∂αw

αw=0

=fmw0= eVw0dw

2mfw

2αw

αw=0

=fm′′w0= 2 eVw0dw

∂ fVw

∂αw

αw=0

= eVw0= − eVw0Sw

✭✸✶✮

❛♥❞

dtw = mfwt v−1ǫ GoGH− vξ−1

1 −mfχGc− GcHfmχ− GcH(fmχ+ eVχ)Gc!t

,

swi = rwievw0i− 1. ✭✸✷✮

✶✵

(12)

❘❡❢❡r❡♥❝❡s

❬✶❪ ❱✳ ❙♠í❞❧ ❛♥❞ ❆✳ ◗✉✐♥♥✱ ❚❤❡ ❱❛r✐❛t✐♦♥❛❧ ❇❛②❡s ▼❡t❤♦❞ ✐♥ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣✱ ❙♣r✐♥❣❡r ❱❡r❧❛❣✱ ❇❡r❧✐♥✱ ✷✵✵✻✳

❬✷❪ ❍✳ ❆②❛ss♦✱ ❇✳ ❉✉❝❤ê♥❡✱ ❛♥❞ ❆✳ ▼♦❤❛♠♠❛❞✲❉❥❛❢❛r✐✱ ✏❖♣t✐❝❛❧ ❞✐✛r❛❝t✐♦♥ t♦♠♦❣r❛♣❤② ✇✐t❤✐♥ ❛ ✈❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥

❢r❛♠❡✇♦r❦✱✑ ■♥✈❡rs❡ Pr♦❜❧❡♠s ✐♥ ❙❝✐❡♥❝❡ ❛♥❞ ❊♥❣✐♥❡❡r✐♥❣✱ ✈♦❧✳ ✷✵✱ ♥♦✳ ✶✱ ♣♣✳ ✺✾✕✼✸✱ ✷✵✶✷✳

❬✸❪ ▲✳ ●❤❛rs❛❧❧✐✱ ❍✳ ❆②❛ss♦✱ ❇✳ ❉✉❝❤ê♥❡✱ ❛♥❞ ❆✳ ▼♦❤❛♠♠❛❞✲❉❥❛❢❛r✐✱ ✏▼✐❝r♦✇❛✈❡ t♦♠♦❣r❛♣❤② ❢♦r ❜r❡❛st ❝❛♥❝❡r

❞❡t❡❝t✐♦♥ ✇✐t❤✐♥ ❛ ✈❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤✱✑ ✐♥ ■❊❊❊ ❊✉r♦♣❡❛♥ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣ ❈♦♥❢❡r❡♥❝❡ ✭❊❯❙■P❈❖✮✱

▼❛rr❛❦❡❝❤✱ ▼❛r♦❝❝♦✱ ✷✵✶✸✳

❬✹❪ ▲✳ ●❤❛rs❛❧❧✐✱ ❍✳ ❆②❛ss♦✱ ❇✳ ❉✉❝❤ê♥❡✱ ❛♥❞ ❆✳ ▼♦❤❛♠♠❛❞✲❉❥❛❢❛r✐✱ ✏❆ ❣r❛❞✐❡♥t✲❧✐❦❡ ✈❛r✐❛t✐♦♥❛❧ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤✿

❛♣♣❧✐❝❛t✐♦♥ t♦ ♠✐❝r♦✇❛✈❡ ✐♠❛❣✐♥❣ ❢♦r ❜r❡❛st t✉♠♦r ❞❡t❡❝t✐♦♥✱✑ s✉❜♠✐tt❡❞ ✐♥ ■❊❊❊ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥

■♠❛❣❡ Pr♦❝❡ss✐♥❣ ✭■❈■P✮✱ ❋r❛♥❝❡✱ P❛r✐s✱ ✷✵✶✹✳

❬✺❪ ❆✳ ❋r❛②ss❡ ❛♥❞ ❚✳ ❘♦❞❡t✱ ✏❆ ♠❡❛s✉r❡✲t❤❡♦r❡t✐❝ ✈❛r✐❛t✐♦♥❛❧ ❜❛②❡s✐❛♥ ❛❧❣♦r✐t❤♠ ❢♦r ❧❛r❣❡ ❞✐♠❡♥s✐♦♥❛❧ ♣r♦❜❧❡♠s✱✑

❚❡❝❤✳ ❘❡♣✳ ❤❛❧✲✵✵✼✵✷✷✺✾✱ ❤tt♣✿✴✴❤❛❧✳❛r❝❤✐✈❡s✲♦✉✈❡rt❡s✳❢r✴❞♦❝s✴✵✵✴✼✵✴✷✷✴✺✾✴P❉❋✴✈❛r❴❜❛②❱✽✳♣❞❢✱ ✷✵✶✷✳

❬✻❪ ❲✳ ❈✳ ●✐❜s♦♥✱ ❚❤❡ ▼❡t❤♦❞ ♦❢ ▼♦♠❡♥ts ✐♥ ❊❧❡❝tr♦♠❛❣♥❡t✐❝s✱ ❈❤❛♣♠❛♥ ✫ ❍❛❧❧✴❈❘❈✱ ❇♦❝❛ ❘❛t♦♥✱ ✷✵✵✼✳

✶✶

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to