• Aucun résultat trouvé

Characterization, simulation and improvement of spacer pads mechanical behaviour for sodium fast reactor fuel subassemblies

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization, simulation and improvement of spacer pads mechanical behaviour for sodium fast reactor fuel subassemblies"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: cea-02509675

https://hal-cea.archives-ouvertes.fr/cea-02509675

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Characterization, simulation and improvement of spacer

pads mechanical behaviour for sodium fast reactor fuel

subassemblies

V. Blanc, X. Jeanningros, P. Lamagnere, T. Helfer, T. Beck

To cite this version:

V. Blanc, X. Jeanningros, P. Lamagnere, T. Helfer, T. Beck. Characterization, simulation and im-provement of spacer pads mechanical behaviour for sodium fast reactor fuel subassemblies. 33SMIRT 23 - 23th International Conference on Structural Mechanics in Reactor Technology, Aug 2015, Manch-ester, United Kingdom. �cea-02509675�

(2)

Characterization, Simulation and Improvement

of Spacer Pads Mechanical Behaviour

for Sodium Fast Reactor Subassemblies

| PAGE 1

SMIRT 23 – Manchester - 10-14/08/2014

V. Blanc, X. Jeanningros, P. Lamagnère, T. Helfer, T. Beck

CEA Cadarache, DEN/DEC/SESC, F-13108 Saint-Paul-lez-Durance, France

(3)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results Conclusions

Outline

| PAGE 2

Introduction

Spacer pads

Historical overview

Objectives

Finite element model construction and validation

Geometry and stamping

Stamping simulation

Titan experiments and simulation

Optimization process

Design parameters

Results

(4)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results Conclusions

Spacer pads ?

| PAGE 3

Fast reactor core is made by a fuel subassemblies hexagonal network.

Spacer pads are embossed on the six faces of subassemblies above fissile zone.

Spacer pads ensure a good clearance between subassemblies (3 mm for ASTRID)

FI S S IL E ZON E

Main constraints :

Most of pads must be in contact at nominal temperature

Extraction forces must be minimal during handling

A reactivity insertion induced by core compaction must be eliminated

SPX CORE ASSEMBLY

4500

m

m

(5)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results Conclusions

Historical overview

| PAGE 4

Spacer pads manufacturing process Embossed :

Assembled :

A large pannel of solutions: spacer pads play a major role for the core equilibrium US 1985 US4543233 Japan 1981 US4306938 FR7902619 French 2008 FR0757745 SNR 300 German 1985 FR2509896 Japanese 2006 JP2006145506 EFR preliminary design Superphenix design 1983 Welded : SNR300, EFR

(6)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results Conclusions

Objectives

| PAGE 5 Start point

ASTRID spacer pads process = embossed surfaces

Safety recommandation : a reactivity insertion induced by core compaction must be eliminated Study objectives :

make a model in order to design the pads

Optimize the geometry in order to enhance pads stiffness

Associated criterion : Stiffness of spacer pads. various definitions :

𝐹4 2F 𝐹1 𝑢1 𝑢4 𝑢5 𝑢6 𝑢2 𝑃𝑙𝑎𝑛𝑠 𝑑𝑒 𝑠𝑦𝑚é𝑡𝑟𝑖𝑒 𝑢3 O 6F 𝐹4 𝐹1 𝐹2 𝐹3 𝐹5 𝐹6 𝑢1 𝑢6 𝑢2 𝑢3 𝑢5 𝑢4 1F-3A 𝐹1 𝐹4 𝐹3 𝐹5 𝑢5 𝑢1 𝑢3 𝑢4 𝑢6 𝑢2 Method :

make a finite element model representative of the geometry using LICOS (Cast3M- PLEIADES) Validation of FE response vs. experimental crushing test on Superphenix (SPX) design

Use of the FE model in order to optimize geometry / stiffness

𝐹𝑖[N]

(7)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Finite element model : geometry and stamping

| PAGE 6

Simulation of the stamping process leads to a « representative » geometry Design parameters :

H1,L1,R1 : pad contact surface H2,L2,R2 : embossed zone p : pad depth

e : hexagonal duct thickness Boundary conditions

Symetries  1/24 of the hexagonal duct is modelled Faces of the hexagonal duct are flat at the start

Normal displacement annealed around embossed pad Stamping load :

Normal displacement over contact surface 0(p + δ)

Material law (Ferritic steel EM10): elastoplastic law at 20 °C

Symmetries Symmetry Normal Displacement =0 Normal Displacement = (p + δ) L1/2 L2 L3/2 R3 L4 L2b/2 p e

(8)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Finite element model : stamping results

| PAGE 7

Stamping results : Plastic strain :

 Up to 15 % for SPX design (p=2,9 mm; e=4,2 mm)  Up to 8 % for ASTRID V2 (p=1,6 mm; e=3,6mm)  Strains localized in the corners and in the median plane

Thickness :

 Decrease by 3% for SPX,  Decrease by 2% for ASTRID

 thickness is minimal in the median plane

 Some cracks have occurred for SPX in this zone  Matrix and punch have been optimized for SPX  Stamping tests are currently performed for ASTRID

Deformed mesh is reproduced by symmetry in order to model each load case

Equivalent plastic strain fields 0,14 0. 0,1 0,05 Astrid V2 SPX

(9)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

FE model: validation vs TITAN experiment

| PAGE 8

Titan experiment:

Crush test performed on SPX hexagonal duct section at 550°C (1987)

Titan simulation

Unilateral contacts Various mesh sizes

Elastoplastic law at 550 °C

Force-Displacement curve (1F-3A)

Result :

Good agreement from 85 000 nodes mesh

Elastic stiffness obtained with an accurate precision (1%)

Punch 3 bearing pads Z Y X F u F u Experimental curve

(10)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Objective :  pads stiffness K in order to prevent the core compaction (∆𝑅𝑐𝑜𝑟𝑒𝐾1

𝑝𝑎𝑑𝑠 => Kx10  DR/3 )

Parametric study: pads width, stamped zone width, pads high (e,p imposed):

Optimization process : parameters

| PAGE 9

V2.0

V2.2

V2.3

V2.4

V2.5

Spacer pad size effect, case 6F 550°C case stiffness 6F [kN/mm] stiffness 6F/ ref v2.0 stiffness 1F3A/ ref V2.0 28,67 1 1 V2.2 44,52 1,5 - V2.3 28,64 1,0 - V2.4 33,28 1,2 - V2.5 62,19 2,1 1,7

6F crush curves computation at 550 °C :

stamping width doesn’t influence stiffness (kV2.3kV2.0)

pads width have a major influence on the stiffness (kV2.0 < kV2.2 < kV2.5)

(11)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

What is the maximal stiffness ?

First order parameters are used : L1, H1, R1

All parameters variations are limited by functional conditions (manufacturing, handling, geometry) As examples :

- Minimal width of flats surface between pad and duct corners is needed for stamping : L4 > 9 mm

- Minimal stamping width because of maximal deformation rate (~15 %): L2 > 5 mm

- Duct flats is imposed: L1 +2.L2 + 2.L4 = L3 – R3

- …

Optimization process : test matrix

| PAGE 10 Reference SPX V2.0 V2.5 Contact surface enlarged Minimal value for optimization Maximal value for optimization

Pad contact width L1 25 40 40 60

Stamping width L2 10 10 5 5

Total pad width L2b 45 60 50 70

Contact pad height H1 45 60 60 80

Stamping height H2 17.5 10 10 10

Total pad height H2b 80 80 80 100

Radius of pad corner R1 7 7 7 12

Radius of matrix corner R2 10 10 12 17

200 designs have been generated and stamped

(12)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Results of optimization :

Maximal stiffness : V2.6 (L1max, H1max, R1min)

Stiffness max X 7 / ref v2.0

L2 minimal, R2 minimal, H2 minimal

Optimization process : results

| PAGE 11 Kref=28 kN/mm

KV2.5=62 kN/mm Kmaxi=192 kN/mm

V2.0 V2.5 V2.6

Stiffness enhanced, but we must check :

Hydraulic flow between subassemblies  simulations of transients of loss of flow Feasibility of forming process (embossed zone plastic rate=17 % for v2.6)

 tests in progress on EM10 plates

(13)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Summary

A finite element model representative of spacer pads has been developped FE model figure out the stamping process

FE model compute the stiffness and the crush curve with accuracy Stiffness of the spacer pads can be simply enhanced until a factor 7

Maximal stiffness of embossed spacer pads is ~200 kN/mm for a 6F load case we must maximize spacer pads width

Future

FE model will be employed for stress evaluation and sizing Validation of FE model by new crush test performed at IGCAR Validation of feasibility of the stamping process (in progress) Impact of hardening rate on EM10 properties (in progress)

Impact of larger spacer pad on the hydraulic behaviour during transients of loss of flow Optimization between an high stiffness and low extraction forces

Conclusions

(14)

Thank you for your attention

Questions ?

| PAGE 13 SMIRT 23 – Manchester - 10-14/08/2014 Contact : V. Blanc victor.blanc@cea.fr

(15)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results Conclusions Results of simulations : Parameters influences : K ∝ 𝐿12, K ∝ 𝐻1 , K ∝ −𝑅1

Back up slide : Optimization process, results

(16)

Introduction

Spacer pads Historical overview Objectives

Finite element model construction and validation

Geometry and characteristics Stamping simulation

Titan experiments and simulation

Optimization process Design parameters Results

Conclusions

Contact model Hexagonal duct –Hex. duct :

a normal displacement condition between HD external face and a plane figure out the

real contact

Simulation of 6F case for spacer pads design V2.0

NB : 6F case is the stiffer case of spacer pads loading

Back up slide : Stiffness after spacer pads crushing

| PAGE 15

Final state

1

st

phase (d < 1,6 mm ) : contact

such as a punch-pad contact

k

6F

= 28 kN/mm

2

nd

phase (d > 1,6mm) : contact

on duct corners

k

6F-HDHD

~6000 kN/mm

Références

Documents relatifs

La Provence a donc été une des premières régions françaises à être étudiée avec précision, tel qu‘en témoignent les nombreuses références régionales faites dans la

New genotypes and sub-genotypes were assigned according to the criteria described by Diel et al [26] with the following modifications: – new genotypes and sub-genotypes were assigned

Supplementary Figure 12.  113

The transit authorities to be examined are: the Southern California Rapid Transit District (SCRTD - Los Angeles metropolitan area), the Southeastern Michigan

La création de cette nouvelle entité administrative, qui a pour responsabilité la coordination de la politique d’aménagement et d’équipement de la région

C’est pourquoi toutes les options abordées dans cette section possèdent une seconde manière d’être mises sur le graphique : on peut les indiquer par le biais des menus ainsi que

It is shown that the adsorption of phenol and 3-chlorophenol from aqueous solutions, by basic active carbons and at an equilibrium solution pH below that of dissociation of

Notre dispositif est donc le suivant : sur un même corpus spécialisé en français, nous avons appliqué 11 analyseurs syntaxiques en dépendances (ou versions) et extrait pour