• Aucun résultat trouvé

GROWTH OF THIN SINGLE CRYSTAL NiSi2 FILMS OF Si SURFACES, A FIELD ION MICROSCOPE STUDY

N/A
N/A
Protected

Academic year: 2021

Partager "GROWTH OF THIN SINGLE CRYSTAL NiSi2 FILMS OF Si SURFACES, A FIELD ION MICROSCOPE STUDY"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225682

https://hal.archives-ouvertes.fr/jpa-00225682

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GROWTH OF THIN SINGLE CRYSTAL NiSi2 FILMS OF Si SURFACES, A FIELD ION MICROSCOPE

STUDY

Hong Liu, T. Tsong

To cite this version:

Hong Liu, T. Tsong. GROWTH OF THIN SINGLE CRYSTAL NiSi2 FILMS OF Si SURFACES, A FIELD ION MICROSCOPE STUDY. Journal de Physique Colloques, 1986, 47 (C2), pp.C2-315-C2- 319. �10.1051/jphyscol:1986248�. �jpa-00225682�

(2)

GROWTH OF THIN SINGLE CRYSTAL Nisi, FILMS OF Si SURFACES, A FIELD ION MICROSCOPE STUDY

H.F. LIU, H.M. LIU* and T.T. TSONG

Physics Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.

A b s t r a c t - Thin s i n g l e c r y s t a l N i s i 2 f i l m s have been grown e p i t a x i a l l y o n t h e [l111 o r i e n t e d S i t i p s u r f a c e i n UHV. A 180' change i n t h e a x i a l symmetry i s found f o r t h e f i e l d i o n images t a k e n b e f o r e and a f t e r t h e growth of t h e s i l i - c i d e l a y e r s . From t h i s o b s e r v a t i o n and a computer s i m u l a t i o n of t h e f i e l d

ion images of A- and B-type i n t e r f a c e s we conclude t h a t t h e Si-Nisi2 i n t e r - f a c e formed has t h e B-type s t r u c t u r e .

I. INTRODUCTION

Metal s i l i c i d e t h i n f i l m s grown on S i s u b s t r a t e s a r e widely used i n semiconductor in- d u s t r y a s ohmic o r Schottky c o n t a c t s . 1 The formation of Schottky b a r r i e r a t t h e metal-semiconductor i n t e r f a c e s h a s been a s u b j e c t of i n t e n s e i n t e r e s t f o r over t h i r t y

year^.^-^ I t is now c l e a r t h a t e l e c t r i c a l p r o p e r t i e s of m e t a l s i l i c i d e - s i l i c o n con- t a c t s such a s t h e Schottky b a r r i e r h e i g h t can depend on t h e chemistry and t h e atomic s t r u c t u r e of t h e s i l i c i d e - s i l i c o n i n t e r f a c e . Nickel s i l i c i d e - s i l i c o n system i s one of %he h o s t s t u d i e d systems because N i s i Z has a s i m i l a r l a t t i c e s t r u c t u r e (CaF2) t o s i l i c o n and t h e l a t t i c e m i s f i t (-1.2%) to S i is small. Thin f i l m s of s i n g l e c r y s t a l N i s i Z can be grown w i t h high degree of p e r f e c t i o n on s i l i c o n under u l t r a high vacuum

(UHV) c o n d i t i o n s . The o r i e n t a t i o n of t h e N i s i 2 f i l m s grown on t h e S i ( l l 1 ) s u r f a c e can be c o n t r o l l e d by t h e c o n d i t i o n s of t h e i n i t i a l N i d e p o s i t i o n t o be e i t h e r i d e n t i - c a l t o t h a t of t h e s u b s t r a t e , type A i n t e r f a c e , o r t o be r o t a t e d 180- about t h e sur- f a c e normal d i r e c t i o n with t h e s u b s t r a t e , o r type B i n t e r f a ~ e . ~

Atom-probe and f i e l d i o n microscope6 h a s been s u c c e s s f u l l y employed t o s t u d y t h e com- p o s i t i o n a l v a r i a t i o n and atomic s t r u c t u r e s of WSi2-W and N i s i l i c i d e - S i interface^.^^^

Four e a r l y s t a g e s of growth of WSi2 on t h e W s u r f a c e have been i d e n t i f i e d . ' The t h i r d s t a g e is an e p i t a x i a l growth o f t h i n s i l i c i d e l a y e r s on t h e (001) p l a n e s of t h e W e m i t t e r s u r f a c e . The phase boundary between s i l i c i d e and t h e s u b s t r a t e is found t o be very sharp.

Here we w i l l r e p o r t t h e growth of n e a r l y p e r f e c t s i n g l e c r y s t a l N i s i 2 f i l m s on S i t i p s u r f a c e s i n UHV by vapor d e p o s i t i o n method. A 180' change i n t h e a x i a l symmetry is found f o r t h e f i e l d i o n images taken b e f o r e and a f t e r t h e growth of t h e t h i n s i l i c i d e l a y e r s . From t h i s symmetry change and a ccinputer s i m u l a t i o n of t h e f i e l d i o n images we conclude t h a t t h e Nisi2-Si i n t e r f a c e has t h e B-type s t r u c t u r e . We f i n d t h a t S i atoms, though v i s i b l e , appear much dimmer i n t h e f i e l d ion image, and t h e q u a l i t y o f t h e Ne i o n image is good enough t o r e v e a l t h e atomic s t r u c t u r e of t h e N i l a y e r of t h e

(111) plane. The f i l m s a r e f r e e of g r a i n boundaries.

* v i s i t i n g s c h o l a r f r o m D a l i a n Marine C o l l e g e , D a l i a n , C h i n a

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986248

(3)

JOURNAL DE PHYSIQUE

S i l i c o n t i p s a r e prepared both from S i whiskers and from r o d s c u t from a [l111 o r i - ented S i c r y s t a l by e l e c t r o c h e m i c a l e t c h i n g i n HN03-HI? mixed s o l u t i o n . Before it i s put i n t o t h e FIM, i t i s f i r s t g i v e n an "RCA c l e a n " t o remove t h e o x i d e l a y e r s . The FIM is equipped w i t h a Displex R e f r i g e r a t o r s o t h a t t h e t i p temperature c a n be v a r i e d from -15 K t o 300 K. Before an experiment, t h e system is s u b j e c t e d t o a l i g h t bake o u t t o achieve a vacuum i n t h e low 10-10 Torr range. The S i t i p is t h e n f i e l d evapo- r a t e d a t 100 K i n e i t h e r H2 o r Ne image g a s u n t i l a s p h e r i c a l , c l e a n S i s u r f a c e is obtained. We f i n d t h a t f i e l d e v a p o r a t i o n of S i atoms i s n o t very smooth and t h e S i s u r f a c e developed by f i e l d e v a p o r a t i o n i s never a s p e r f e c t a s s u r f a c e s of m e t a l t i p s . However, a d e f i n i t i v e i d e n t i f i c a t i o n of c r y s t a l p l a n e s is p o s s i b l e e s p e c i a l l y when

FIG. 1. ( a ) A 60 K neon f i e l d i o n image FIG. 2. ( a ) A 25 K neon i o n image of t h e of a [l111 o r i e n t e d S i t i p . (b) A com- e x p i t a x i a l l y grown N i s i 2 l a y e r s on t h e same p u t e r simulated image of t h e same S i t i p . S i t i p . (b) A computer simulated image of a The t i p r a d i u s is taken t q be 200 a and s i n g l e c r y s t a l N i s i 2 e p i t a x i a l l y grown on t h e s h e l l t h i c k n e s s is 0.0533 a where a t h e S i (111) p l a n e with t h e B-type i n t e r f a c e . is t h e bond l e n g t h of t h e S i l a t t i c e . The t i p r a d i u s is 220 a and t h e s h e l l t h i c k -

n e s s i s 0.05 a where a is t h e l e n g t h of t h e Si-Ni bond.

(4)

t h e vapor d e p o s i t i o n , t h e t i p is annealed i n s i t u a t 500°C f o r 5 minutes to induce e p i t a x i a l s i l i c i d e formation. The t i p is t h e n imaged a t 25 K i n neon a f t e r c a r e f u l f i e l d evaporation. The f i e l d i o n image q u a l i t y is improved c o n s i d e r a b l y a s shown i n Fig. 2 ( a ) . We f i n d t h a t a t such a low temperature it is necessary t o i l l u m i n a t e t h e sample with a l i g h t beam t o reduce t h e r e s i s t i v i t y of t h e S i t i p by t h e photo con- d u c t i v i t y e f f e c t . N e images o f t h e N i s i 2 f i l m s , shown i n Fig. 2 ( a ) have t h e same

3-fold symmetry a s t h e S i image. However, we f i n d t h a t t h e N i s i 2 image is r o t a t e d 180' with r e s p e c t t o t h e image of t h e s i l i c o n s u b s t r a t e a s c a n be s e e n by comparing Fig. l ( a ) with Fig. 2 ( a ) . To e x p l a i n t h i s o b s e r v a t i o n , we r e s o r t t o a computer simu- l a t i o n of t h e f i e l d i o n images.

The shape of a f i e l d i o n e m i t t e r is approximated by an [l111 o r i e n t e d cone with a hemispherical t i p s 9 The computer s i m u l a t i o n of t h e f i e l d ion image is based on a t h i n s h e l l model.1° For a pure s i l i c o n t i p , which has t h e diamond s t r u c t u r e , t h e simulated image a g r e e s v e r y w e l l with t h e f i e l d i o n image a s shown i n Fig. l ( b ) . N i s i 2 h a s a c u b i c C1 s t r u c t u r e 1 1 a s shown i n Fig. 3. S i n c e S i atoms appear t o be

FIG. 3. The c u b i c C 1 s t r u c t u r e of N i s i 2 .

much dimmer o r not imaged a t a11,12 f o r t h e computer s i m u l a t i o n , we assume t h a t o n l y N i atoms a r e imaged i n t h e FIM. The simulated f i e l d i o n images of t h e NiSi2, shown i n Fig. 2 ( b ) , is o b t a i n e d by r e p l a c i n g t h e hemispherical p a r t of t h e S i t i p with a s i n g l e c r y s t a l N i s i 2 e p i t a x i a l l y grown on t h e S i ( l l 1 ) p l a n e w i t h a type B i n t e r f a c e . A s c a n be s e e n by camparing Figs. 2 ( a ) , t h e simulated image a g r e e s very w e l l with t h e f i e l d ion image, both show t h e same 3-fold symmetry and t h e same c r y s t a l f a c e t s . The symmetry a x i s is, however, r o t a t e d 180. with r e s p e c t t o t h a t of both t h e F1 image and t h e computer simulated image of t h e o r i g i n a l S i t i p . The f i e l d i o n images of s i l i c i d e l a y e r s show no o b s e r v a b l e g r a i n boundary.

The N i l a y e r s d e p o s i t e d on t h e S i s u r f a c e is only about 50 l a y e r s i n t h i c k n e s s , and t h e growth of N i s i 2 f i l m s s t a r t s simultaneously from t h e v a r i o u s f a c e t s of t h e hemi- s p h e r i c a l s u r f a c e o f t h e S i t i p . The c l o s e resemblence between t h e simulated image and a l l t h e f i e l d ion images taken by layer-by-layer f i e l d e v a p o r a t i o n s u g g e s t s two s i g n i f i c a n t f a c t s . F i r s t , t h e e p i t a x i a l l y grown N i s i 2 is a s i n g l e c r y s t a l . Second, t h e N i s i 2 i s grown a s a c o n t i n u a t i o n of t h e S i s u b s t r a t e i n a l l d i r e c t i o n s , o t h e r w i s e a c o n s i d e r a b l e d e t e r i o r a t i o n of t h e images should occur. Tung e t a l . f i n d t h a t S i

[l111 is t h e s t r o n g l y p r e f e r r e d o r i e n t a t i o n f o r t h e e p i t a x i a l growth.13 Our observa- t i o n s u g g e s t s t h a t i n o t h e r d i r e c t i o n s , e p i t a x i a l growth can a l s o occur, although t h e i n t e r f a c e s may n o t be p e r f e c t .

(5)

JOURNAL DE PHYSIQUE

* * *

a * .

. .

543A 1 . . l *

.

+%A + 4 543A +

( 1 1 1 ) (1001 Atomic 8 Image Struc.

a Fundamental Ptanes

(110) (110)

Atomic Struc. Image Struc.

b Superstructure Plane

FIG. 4. ( a ) The a t o m i c s t r u c t u r e s o f a few f u n d a m e n t a l p l a n e s o f N i s i 2 . ( b ) The a t o m i c and e x p e c t e d image s t r u c t u r e s o f a few s u - p e r l a t t i c e p l a n e s o f N i s i 2 .

FIG. 5. A s c h e m a t i c diagram showing t h e 3-D a t o m i c a r - rangements o f f o u r (111) l a y e r s o f NiSi2.

FIG 6. Two neon i o n images o f t h e n i c k e l l a y e r o f t h e N i s i 2

(111) p l a n e . N i atoms a r e w e l l r e s o l v e d i n t h e images which show a h e x a g o n a l s t r u c t u r e .

(6)

show t h e £cc s t r u c t u r e o f t h e Ni s u b l a t t i c e . Fig. 4 shows t h e a t o m i c s t r u c t u r e s and t h e e x p e c t e d image s t r u c t u r e s o f some low i n d e x p l a n e s . Two t y p e s o f p l a n e s e x i s t . Each l a y e r i n t h e f u n d a m e n t a l p l a n e c o n s i s t s o f o n l y o n e a t o m i c s p e c i e s . An example

is t h e (111) p l a n e where t h e a t o m i c s t r u c t u r e i s h e x a g o n a l , and between two p u r e N i l a y e r s a r e two p u r e S i l a y e r s o f t h e same s t r u c t u r e a s shown i n F i g . 5. I n s u p e r - l a t t i c e p l a n e s , e a c h l a y e r c o n t a i n s 1 / 3 o f N i atoms and 2/3 o f S i atoms. We f i n d t h a t t h e N i l a y e r i n t h e (111) f u n d a m e n t a l p l a n e c a n b e r e s o l v e d i n t h e f i e l d i o n image a s shown i n F i g . 6. Although S i l a y e r s c a n a l s o be s e e n , i n g e n e r a l much dimmer, t h e i r f i e l d e v a p o r a t i o n is n o t a s smooth, and good images c a n n o t y e t b e o b t a i n e d .

Our FIM s t u d y o f s i l i c i d e - S i i n t e r f a c e is o n l y p r e l i m i n a r y . We f i n d a d e f e c t f r e e S i t i p t o be v e r y d i f f i c u l t t o p r e p a r e . N e v e r t h e l e s s , f u r t h e r s t u d y o f t h e s t r u c t u r e of t h e i n t e r f a c e w i t h a few m o n o l a y e r s o r submonolayer o f s i l i c i d e grown o n b o t h a S i and a m e t a l s u r f a c e a p p e a r s worthwhile. W e have a l s o found i n t e r e s t i n g image s t r u c - t u r e s f o r s i l i c i d e s grown o n m e t a l s u r f a c e s s u c h a s N i , P t , I r and W. Our a t t e m p t i n t h i s d i r e c t i o n is c o n t i n u i n g and r e s u l t s w i l l b e r e p o r t e d l a t e r .

T h i s work was s u p p o r t e d by NSF under g r a n t number DMR-8308057.

/l/ T h i n F i l m s - I n t e r d i f f u s i o n and R e a c t i o n , e d i t e d by J. M. P o a t e , K. N. Tu and J. W.

Mayer (Wiley, New York, 1 9 7 8 ) ; P. S. Ho, J. Vac. S c i . Tech. 1, (1983) 745.

/2/ R. T. Tung, J. M. Gibson and J. M. P o a t e , Phys. Rev. L e t t . 50, (1983) 429.

/3/ M. S c h l u t e r , T h i n S o l i d F i l m s 93, (1982) 3.

/4/ L. J. B r i l l s o n , S u r f . S c i . Rep. 2, (1981) 123.

/5/ E. H. R h o d e r i c k , Metal-Semiconductor C o n t a c t s ( C l a r e n d o n , Oxford, 1 9 7 8 ) . /6/ S e e f o r example, E. W. Miiller and T. T. Tsong, P r o g r . S u r f . S c i . Q, (1973) 1.

/7/ T. T. Tsong, S. C. Wang, H. F. L i u , H. Cheng and M. Ahmad, J. Vac. S c i . Technol.

B 1, (1983) 917.

/8/ 0. Nishikawa, M. S h i b a t a , T. Yoshimura and E. Nomura, J. Vac. S c i . Technol. E,

(1984) 21.

/9/ E. W. M z l l e r and T. T. Tsong, " F i e l d I o n Microscopy, P r i n c i p l e and A p p l i c a t i o n s "

( E l s e v i e r , New York, 1 9 6 9 ) .

/10/ A. J. W. Moore, J. Phys. Chem. S o l i d s 2, (1962) 907.

/11/ J. M. Andrews and F. B. Kock, S o l i d S t a t e E l e c t r o n i c s 2, (1971) 901.

/12/ T. T. Tsong and E. W. Miiller, J. Appl. Phys. 3, (1969) 3531.

/13/ R. T. Tung, J. C. Bean, J. M. Gibson, J. M. P o a t e and D. C. Jackobson, Appl.

Phys. L e t t . 40, (1982) 684.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to