• Aucun résultat trouvé

AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION TO LMIS

N/A
N/A
Protected

Academic year: 2021

Partager "AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION TO LMIS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225955

https://hal.archives-ouvertes.fr/jpa-00225955

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION

TO LMIS

M. Chung, P. Cutler, T. Feuchtwang, E. Kazes, N. Miskovsky

To cite this version:

M. Chung, P. Cutler, T. Feuchtwang, E. Kazes, N. Miskovsky. AN ELECTROHYDRODYNAMIC

ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING

FLUIDS : APPLICATION TO LMIS. Journal de Physique Colloques, 1986, 47 (C7), pp.C7-351-C7-

358. �10.1051/jphyscol:1986760�. �jpa-00225955�

(2)

AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND

STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION TO LMIS

M. CHUNG, P.H. CUTLER, T.E. FEUCHTWANG, E. KAZES a n d

N.M. MISKOVSKY*

Department o f P h y s i c s , The P e m s y l v a n i a S t a t e U n i v e r s i t y , U n i v e r s i t y Park, P A 16802, U.S.A.

' ~ e p a r t m e n t o f P h y s i c s , Altoona Campus, The P e m s y l v a n i a S t a t e U n i v e r s i t y , A l t o o n a , PA 16603, U.S.A.

~ é s u m é

-

Une a n a l y s e e l e c t r o h y d r o s t a t i q u e du modele du cone d e Taylor u t i l a n t a l a f o i s l e s c r i t e r e s d e Taylor e t d e Zeleny f a i t r e s s o r t i r p l u s i e u r s contra- d i c t i o n s . On p e u t montrer qu'un t r a i t m e n t dynamique d e l a geometrie d ' e q u i - l i b r e e t d e l a s t a b i l i t y p e u t en résoudre l e s c o n t r a d i c t i o n s apparentes.

E t precisement, e n u t i l i s a n t l ' e q u a t i o n electrodynamique l i n e a r i s e e t d e s c o r r e c t i o n s a u 1 s t o r d r e , on montre qu'au s e u i l d ' u n s t a b i l i t e l e cone prend une forme, " c u s p i d a l e " . La t e n s i o n c r i t i q u e d e s e v i l d ' i n s t a b i l i t e e s t obtenue pour l e gallium a p a r t i r de l a r e l a t i o n d e d i s p e r s i o n . M v a l e u r c a l c u l e e d e 5.8 kV correspond b i e n aux mesures experimentales d e - 4 - 7 kV. Enfin, l e c a r a c t e r e t r e s l o c a l i s e d e l l i n s t a b i l i t e e s t en accord avec l e s o b s e r v a t i o n s experimentales obtenues en TEM p a r Sudraud, e t . a l .

A b s t r a c t

-

An e l e c t r o h y d r o s t a t i c a n a l y s i s of t h e Taylor cone model, using both t h e Taylor and Zeleny s t a b i l i t y c r i t e r i a h a s r e v e a l e d s e v e r a l i n c o n s i s t e n c i e s i n t h e model. It i s shown t h a t a dynamical t r e a t m e n t of t h e e q u i l i b r i u m shape and s t a b i l i t y c a n r e s o l v e t h e s e a p p a r e n t c o n t r a d i c t i o n s i n t h e Taylor model.

S p e c i f i c a l l y , u s i n g t h e l i n e a r i z e d electrohydrodynamic e q u a t i o n s w i t h correc- t i o n s up t o f i r s t - o r d e r , i t is shown t h a t , a t t h e o n s e t of i n s t a b i l i t y , t h e cone deforms i n t o a c u s p i d a l shape. From t h e d i s p e r s i o n r e l a t i o n s , t h e c r i t i - c a l v o l t a g e f o r t h e o n s e t of i n s t a b i l i t y i s o b t a i n e d f o r l i q u i d gallium. The c a l c u l a t e d value of 5.8 kV compares w e l l w i t h experimental v a l u e s of -4-7 kV.

F i n a l l y , t h e i n s t a b i l i t y i s p r e d i c t e d t o be h i g h l y l o c a l i z e d , which a g r e e s w i t h t h e experimental o b s e r v a t i o n s i n t h e T m images o r Sudraud, e t . a l .

1. INTRODUCTION

For t h e p a s t s e v e r a l y e a r s , we have been i n v e s t i g a t i n g i n a systematic and rigor- ous way some of t h e b a s i c p h y s i c s of conducting f l u i d s i n s t r o n g e l e c t r i c f i e l d s t 5 f . The u l t i m a t e o b j e c t i v e of t h i s s t u d y i s t o h e l p e x p l a i n t h e mechanism f o r i o n (and n e u t r a l ) emission from a f i e l d emission l i q u i d metal i o n source (LMIS).

I n t h i s s t u d y t h r e e s p e c i f i c q u e s t i o n s a r e addressed:

1. What i s t h e e v o l u t i o n of t h e dynamical e q u i l i b r i u m shape of t h e l i q u i d m e t a l e l e c t r o d e w i t h a p p l i e d f i e l d ?

2. When and how d o e s i n s t a b i l i t y o c c u r (i.e., breakdown o r d i s i n t e g r a t i o n of t h e l i q u i d e l e c t r o d e , r e s u l t i n g i n emission)?

3. what i s t h e s p e c i f i c mechanism f o r i o n formation?

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986760

(3)

C7-352 JOURNAL

DE

PHYSIQUE

The answer t o t h e f i r s t , and a l s o t o a l a r g e e x t e n t t h e second q u e s t i o n , r e q u i r e s a macroscopic t h e o r y u s i n g f l u i d mechanics and e l e c t r o s t a t i c s . The p h y s i c a l model(s) and a n a l y s i s r e q u i r e d t o answer t h e l a s t q u e s t i o n a r e microscopic. and use quantum physics. I t i s obvious t h a t a r e l a t i o n s h i p e x i s t s between t h e quantum mechanism f o r i o n formation and t h e 'macroscopic' f l u i d shape. Although this w i l l n o t b e d i s c u s s e d h e r e , some i n i t i a l r e s u l t s r e l a t i n g t o t h e f l u i d shape and i o n formation w i l l be pub- l i s h e d elsewhere. I n t h e c u r r e n t paper, we s h a l l be concerned with t h e macroscopic p a r t of t h e problem, s t a t e d i n q u e s t i o n s one and two. S p e c i f i c a l l y , we have used a f u l l electrohydrodynamic (EHD) t h e o r y t o c a l c u l a t e t h e dynamical shape of a t h r e e - dimensional e l e c t r i f i e d f l u i d a t t h e o n s e t of i n s t a b i l i t y . The r e s u l t s a r e a p p l i e d t o a G a LMIS and b o t h q u a l i t a t i v e and q u a n t i t a t i v e agreement a r e found w i t h experimental o b s e r v a t i o n s . The dynamical a n a l y s i s a l s o r e s o l v e s c e r t a i n c o n t r a d i c t i o n s and incon- s i s t e n c i e s i n t h e Taylor cone model.

In s e c t i o n II, we d e s c r i b e b r i e f l y t h e macroscopic h y d r o s t a t i c and hydrodynamic concepts of i n s t a b i l i t y . The r e s u l t s of t h e e l e c t r o h y d r o s t a t i c a n a l y s i s a r e summa- r i z e d i n S e c t i o n III. The electrohydrodynamic c a l c u l a t i o n s a r e o u t l i n e d i n S e c t i o n I V , and r e s u l t s and c o n c l u s i o n s p r e s e n t e d i n S e c t i o n V.

II. MACROSCOPIC DESCRIPTION OF INSTABILITY

An e x a c t t h e o r y f o r t h e o n s e t of i n s t a b i l i t y , o r breakdown of a f l u i d s u r f a c e , would t r e a t t h e problem dynamically, u s i n g t h e complete s e t of EHD e q u a t i o n s . I n p r i n c i p l e , t h e s e t of e q u a t i o n s would be s o l v e d , f o r a p p r o p r i a t e boundary c o n d i t i o n s , from z e r o f i e l d t o t h e c r i t i c a l v o l t a g e when i n s t a b i l i t y i n t h e f l u i d occurs. For convenience, we d e f i n e two l i m i t i n g regimes f o r an i n s t a b i l i t y :

1. The e l e c t r o h y d r o s t a t i c l i m i t : This i s c h a r a c t e r i z e d by low f i e l d s and s m a l l f l u i d v e l o c i t i e s . I n t h i s regime, a q u a s i - s t a t i c e q u i l i b r i u m shape i s assumed t o e x i s t . ~y q u a s i - s t a t i c , we mean t h e f l u i d s u r f a c e deforms i n response t o t h e e l e c t r i c f i e l d , b u t t h e f l u i d i s s t a t i c . I n this l i m i t , t h e e q u i l i b r i u m s u r f a c e of t h e f l u i d s a t i s f i e s t h e Laplace-Young s t r e s s balance c o n d i t i o n (LY):

where t h e n o t a t i o n i s s t a n d a r d , and Ap=constant#O, i n g e n e r a l . P h y s i c a l l y , an i n s t a - b i l i t y o c c u r s i f t h e outward d i r e c t e d s t r e s s e s a r e e q u a l t o o r g r e a t e r t h a n t h e in- ward s t r e s s e s . Equation 1 can be solved a n a l y t i c a l l y i n some c a s e s [ 2 ] , and numerical- l y i n o t h e r s [ l , 2 ] f o r q u a s i - s t a t i c e q u i l i b r i u m shapes. By applying a c r i t e r i o n f o r t h e s t a b i l i t y of t h e s o l u t i o n ( s e e t h e following d i s c u s s i o n ) , one can s o l v e f o r Vc, t h e c r i t i c a l o r t h r e s h o l d v o l t a g e f o r breakdown i n t h e s t a t i c ( o r q u a s i - s t a t i c ) model, This i s an i m p o r t a n t parameter, s i n c e it can b e compared w i t h e x p e r i m e n t s [ î l . I t i s e s s e n t i a l t o know whether t h e shape determined from t h e s o l u t i o n of ~ q u a t i o n 1 i s s t a b l e . * We have used two c r i t e r i a to analyze t h e s t a b i l i t y of h y d r o s t a t i c equi- l i b r i u m shapes. Given i n r e v e r s e c h r o n o l o g i c a l o r d e r i n which t h e y f i r s t appeared, t h e y a r e t h e ~ a y l o r [ S ] and Zeleny[6] s t a b i l i t y c r i t e r i a . We b r i e f l y c o n s i d e r each of them :

( i ) Taylor s t a b i l i t y c r i t e r i o n : In t h e Taylor model[51, i t i s assumed t h a t f o r e q u i l i b r i u m a c r o s s t h e f l u i d i n t e r f a c e , t h e e l e c t r i c a l s t r e s s i s balanced by t h e mechanical o r s u r f a c e t e n s i o n s t r e s s , s o t h a t Eq. 1 becomes:

E~ 1 1

S = .-

-

T (-

+ -

) = O w i t h Ap = 0.

8ïi R 1 Rz

Although Eq. 2 has been used i m p l i c i t l y by T a y l 0 ~ [ 5 1 and o t h e r s a s a s t a - b i l i t y c r i t e r i o n i n t h e a n a l y s i s of LMIS[7], i t i s , i n f a c t , o n l y a l i m i t - As i s w e l l known, "...There must be an e x a c t s o l u t i o n of t h e e q u a t i o n s of f l u i d dynamics f o r any problem w i t h g i v e n s t e a d y e x t e r n a l c o n d i t i o n s ; . . . y e t n o t every s o l u t i o n of t h e e q u a t i o n of motion, even i f i t i s e x a c t can a c t u a l l y occur i n Nature. The flows that occur i n Nature must n o t o n l y obey t h e e q u a t i o n s of f l u i d dynamics, b u t a l s o be s t a b l e . " [ 4 1

(4)

c o u n t e r - e l e c t r o d e , a r e s u l t recognized by s e v e r a l o t h e r groups[8,9].

(ii) Zeleny s t a b i l i t y c r i t e r i o n : Formally, t h i s c r i t e r i o n s t a t e s t h a t t h e f i r s t d e r i v a t i v e of t h e s t r e s s e s ( S ) w i t h r e s p e c t t o a c o o r d i n a t e , Say f3, c h a r a c t e r i z i n g t h e f l u i d s u r f a c e i s z e r o a t a p o i n t where t h e i n s t a b i l i t y may a r i s e . This i s j u s t t h e g e n e r a l c o n d i t i o n f o r mechanical s t a b i l i t y based on energy c o n s i d e r a t i o n s . It i s e q u i v a l e n t t o t h e mathematical s t a t e m e n t t h a t a 2 ~ / a ~ 2 = 0 , where U i s t h e f r e e energy of t h e system, and 3 i s t h e s u r f a c e c o o r d i n a t e [ 1 O]

.

Somewhat i n e x p l i c a b l y , t h e Zeleny c r i t e r i o n f o r s t a b i l i t y of f l u i d i n t e r f a c e s h a s g e n e r a l l y been ignored o r overlooked i n t h e a n a l y s i s of s t r e s s e d conducting f l u i d s and LMIS.

2. The electrodydrodynamic l i m i t : I n t h i s dynamic l i m i t , i t i s assumed t h e r e a r e p r e s s u r e g r a d i e n t s which g i v e r i s e t o f l u i d flow. Hence, t h e p r e s s u r e i n t h e LY s t r e s s balance c o n d i t i o n i s t r e a t e d a s a time-dependent q u a n t i t y . Fluid flow i s now included i n t h e d e s c r i p t i o n of t h e deformation of t h e f l u i d s u r f a c e i n response t o t h e a p p l i e d e l e c t r i c f i e l d . I n t h e EHù l i m i t , t h e i n s t a b i l i t y i s determined by solv- i n g boundary c o n d i t i o n s f o r t h e v e l o c i t y and e l e c t r o s t a t i c p o t e n t i a l s , and t h e f l u i d s u r f a c e deformation. Then, from t h e t h e - d e p e n d e n t LY s t r e s s b a l a n c e c o n d i t i o n , one o b t a i n s t h e d i s p e r s i o n r e l a t i o n

w h e r e w i s t h e a n g u l a r frequency of t h e p e r t u r b e d eigenmode and k is t h e wavevector.

A hydrodynamic i n s t a b i l i t y o c c u r s when w2 <0[4,111. p h y s i c a l l y , t h e amplitude of t h e eigenmode u i n c r e a s e s w i t h o u t l i m i t l e a d i n g t o an i n s t a b i l i t y , because t h e f l u i d can- n o t f o l l o w t h e o s c i l l a t i o n of t h a t mode.

It i s i m p o r t a n t t o recognize t h e d i f f e r e n t p h y s i c s , and c r i t e r i a , n e c e s s a r y t o d e s c r i b e t h e o n s e t of f l u i d i n s t a b i l i t y i n t h e EHS and EHù c a s e s .

Chung, e t . a 1 [ 2 ] have g i v e n a d e t a i l e d a n a l y s i s of an EHS i n t e r p r e t a t i o n of t h e Taylor cone model. We b r i e f l y summarize some of t h e i r conclusions.

Their r e s u l t s of t h e a n a l y s i s of t h e Taylor model can be s t a t e d a s follows:

A c o n i c a l i n t e r f a c e between two f l u i d s can e x i s t i n e q u i l i b r i u m i n t h e presence of an e l e c t r i c f i e l d , o n l y i f i ) t h e cone h a s a semi-vertex a n g l e of 49.3O(Fcx); ii) Ap=0 a c r o s s t h e i n t e r f a c e , and iii) t h e c o u n t e r - e l e c t r o d e has a shape given by r=r, [R,(cos 8 ) I - ~ . [ 5 , 7 ] F u r t h e m o r e , using E q . 2 a s a s t a b i l i t y c r i t e r i o n , t h e c r i t i c a l v o l t a g e f o r o n s e t of i n s t a b i l i t y i s found t o be15,71

vCT

= [ 4 s i n 0 ~ / ~ - + cos^) 1 / 2 I T r O ~ c o t ~ where t h e n o t a t i o n i s d e f i n e d i n Refs. 5 o r 7.

Three d i f f i c u l t i e s , o r c o n t r a d i c t i o n s , a r e a p p a r e n t i n t h e Taylor model.

1. The Taylor form of t h e s t r e s s b a l a n c e c o n d i t i o n , E q . 2, i s o b t a i n e d assum- i n g Ap=0 i n t h e g e n e r a l LY c o n d i t i o n . What i s t h e v a l i d i t y of assuming Ap=O? This q u e s t i o n has been addressed and d i s c u s s e d i n Ref. 7 , 8, and 9 ,

and w i l l n o t b e t r e a t e d f u r t h e r h e r e o t h e r t h a n t o observe t h a t i n Our dynamic t r e a t m e n t of t h e " c o n i c a l " model, we f i n d t h a t ApfO a f t e r defor- mation ( s e e S e c t i o n I V ) .

2. The cone i s t r e a t e d a s a h y d r o s t a t i c o r q u a s i - s t a t i c e q u i l i b r i u m shape.

However, t h e Taylor s t r e s s c o n d i t i o n i s regarded a s simultaneously a c r i t e r i o n f o r s t a b i l i t y , y i e l d i n g

vcT.

I f t r u e ( i . e . , i f Eq. 4 i s v a l i d ) , t h e n t h e Taylor s t a b i l i t y c r i t e r i o n p r e d i c t s an o v e r a l l

-

o r g l o b a l

-

breakdown simultaneously a c r o s s t h e e n t i r e s u r f a c e of t h e cone. This has never been observed e x p e r i m e n t a l l y i n

3

s t u d y of s t r e s s e d conducting f l u i d s o r LMIS[8,9,12,131.

(5)

C7-354 JOURNAL

DE

PHYSIQUE

3. The cone h a s a s i n g u l a r i t y a t t h e apex, where t h e f i e l d beconies i n f i n i t e . This i s obviously incompatible w i t h a s t a t i c e q u i l i b r i u m shape. The s i g - h i f i c a n c e of s i n g u l a r i t i e s on s t a b i l i t y and breakdown was f i r s t d i s c u s s e d by Chung, e t . a1.[141 i n t h e a n a l y s i s of an i d e a l c u s p i d a l model a s a s t a t i c e q u i l i b r i u m shape.

The r e s u l t s of Our c a l c u l a t i o n s s u g g e s t t h a t t h e dynamical t r e a t m e n t of an e q u i l i b r i u m shape and s t a b i l i t y can r e s o l v e t h e a p p a r e n t c o n t r a d i c t i o n s and/or in- c o n s i s t e n c i e s i n t h e Taylor model. It i s shown t h a t a t t h e o n s e t of i n s t a b i l i t y , t h e ' s t a t i c ' cone deforms i n t o a c u s p i d a l form, a h i g h l y l o c a l i z e d i n s t a b i l i t y i s p r e d i c t e d and l a s t l y t h a t ApfO. It i s a l s o concluded t h a t A p = O i s a n e c e s s a r y b u t n o t s u f f i c i e n t c o n d i t i o n f o r t h e o n s e t of a dynamic i n s t a b i l i t y . This i s i n aqree- ment with Gabovich.[9]

To o b t a i n t h e s e r e s u l t s , we have assumed t h a t t h e most g e n e r a l form of the LY s t r e s s c o n d i t i o n i s

where s u b s c r i p t I o ' r e f e r s t o t h e s t a t i c l i m i t , and ,C2 i s t h e v e l o c i t y p o t e n t i a l . Since t h e f l u i d v e l o c i t y

;=-?a,

f l o w i s no" i n t r o d u c e d i n t o t h e problem. Before d i s c u s s i n g t h e EHD c a l c u l a t i o n s , we b r i e f l y review t h e EHS a n a l y s i s of t h e s t a b i l i t y of t h e Taylor cone; Chung, e t . a1.121 have g i v e n a cornpiete t r e a t m e n t of t h e s t a - b i l i t y of b o t h simple and a r b i t r a r y shaped f l u i d s u r f a c e s i n t h e EHS l i m i t .

III. AN ELECTROHYDROSTATIC ANALYSIS OF THE STABILITY OF SIMPLE COORDINATE SURFACES:

THE TAYLOR CONE.

The o b j e c t i v e of t h i s a n a l y s i s i s to determine t h e s t a b i l i t y of some known s t a t - i c ( o r q u a s i - s t a t i c ) e q u i l i b r i u m shapes. It i s n e c e s s a r y t o know S, which r e q u i r e s a knowledge of t h e c u r v a t u r e and the e l e c t r o s t a t i c f i e l d a p p r o p r i a t e f o r t h a t shape when an e x t e r n a l v o l t a g e is a p p l i e d . I n g e n e r a l , f o r a r b i t r a r y shapes, t h e curva- t u r e and f i e l d s must be obtained n u m e r i c a l l y [ l , 8 1 r and t h e a n a l y s i s f o r t h e o n s e t of i n s t a b i l i t y done by a s p e c i a l procedure of numerical s i m u l a t i o n of t h e f l u i d s u r f a c e a s a f u n c t i o n of a p p l i e d v o l t a g e . This i s d e s c r i b e d i n t h e papers by Chung, e t . a l .

11 i21.

C e r t a i n simple c o o r d i n a t e s u r f a c e s ( o r shapes) a r e e s p e c i a l l y u s e f u l because t h e r e a r e experimental images[5,13] t o s u g g e s t t h a t each of t h e s e shapes h a s been ob- served p r i o r t o o r d u r i n g t h e o n s e t of i n s t a b i l i t y . Furthermore, f o r each of t h e s e c o o r d i n a t e s u r f a c e s , t h e cone, t h e c u s p and t h e hyperboloid of r e v o l u t i o n , t h e curva- t u r e and t h e e l e c t r o s t a t i c f i e l d can be o b t a i n e d a n a l y t i c a l l y , s o t h a t S can be e v a l u a t e d . Therefore, t h e s t a b i l i t y a n a l y s i s can a l s o be done a n a l y t i c a l l y , a l b e i t sometimes approximately.

We h e r e c o n s i d e r o n l y t h e s t a b i l i t y a n a l y s i s of t h e cone usinq t h e Taylor and Zeleny c r i t e r i a . The d e t a i l s a r e q i v e n i n Ref. 2 f o r t h e cone and t h e o t h e r equi- l i b r i u m shapes.

When t h e Taylor c r i t e r i o n ( i . e . ,

m.

2 o r S=0 w i t h Ap=O) i s a p p l i e d , Fiq. 4 re- s u l t s . I n a d d i t i o n , t h e following c o n c l u s i o n s emerge:

i ) The Taylor cone i s a n i s o b a r i c s u r f a c e , with, i n f a c t , PO.

i i ) Other cones w i t h semi-vertex a n g l e n o t e q u a l t o 49.3O a r e

net

i s o b a r i c s u r f a c e s . That i s , Ap v a r i e s i n v a l u e from p o i n t t o p o i n t on t h e s u r f a c e . I n t h e n e x t c o n c l u s i o n , we a n t i c i p a t e r e s u l t s from t h e complete EHS a n a l y s i s of s t a b i l i t y .

iii) The Taylor cone i s unique i n t h a t i t i s t h e o n l y shape of a simple coordi- n a t e system which i s allowed h y d r o s t a t i c a l l y .

(6)

f o r ro=lmm and

=

17.1 kV f o r ro=2mm. The measured vcexP

=

4-7 kV[131.

When a p p l i e d t o t h e Taylor cone, t h e Zeleny s t a b i l i t y c r i t e r i o n t a k e s t h e form ( a ~ / a 0 ) & 0 ~ = 0 w h e r e S i s s t i l l g i v e n by Eq. 2 a p p l i e d t o t h e Taylor cone. T h i s can b e s o l v e d f o r t h e c r i t i c a l v o l t a g e

where V o i s t h e n o n - i n t e g r a l index of t h e Legendre f u n c t i o n and r is t h e p o s i t i o n co- o r d i n a t e w i t h o r i g i n a t t h e apex of t h e cone. A n a n a l y s i s of E q . 6 l e a d s t o t h e following conclusions:

i ) (&S/a0),,, <O a s *O, s o t h e cone i s u n s t a b l e n e a r t h e apex. A t r = O ( i . e . , a p e x ) , t h e 0 c o n e spontaneously d i s i n t e g r a t e s .

ii) v C Z = v c Z ( r ) , and t h e r e f o r e p r e d i c t s l o c a l breakdown.

When a s i m i l a r a n a l y s i s i s done f o r t h e c u s p i d a l model a s an e q u i l i b r i u m shape, i t i s found t h a t [ 2 1

i ) The cusp i s n o t an i s o b a r i c s u r f a c e , and t h e r e f o r e cannot be a s t a t i c e q u i l i b r i u m shape.

i i ) The cusp is spontaneously u n s t a b l e n e a r and a t t h e apex. The reason is t h a t t h e high f i e l d s t r e s s e s , due t o t h e s i n g u l a r shape, exceed t h e mechanical s t r e s s e s .

S e v e r a l i m p o r t a n t c o n c l u s i o n s emerge from t h e complete EHS a n a l y s i s . A. Taylor cone model:

1. The parameter vcT, o b t a i n e d from t h e Taylor s t a b i l i t y c o n d i t i o n i s t h e v o l t - age n e c e s s a r y t o form a s t a t i c f l u i d cone w i t h t h e Taylor angle. I t i s n o t t h e c r i t i c a l o r t h r e s h o l d v o l t a g e f o r t h e o n s e t of i n s t a b i l i t y .

2. I n t h e EHS l i m i t t h e e x i s t e n c e of a s i n g u l a r i t y a t t h e apex (whether mathe- m a t i c a l l y , o r " p h y s i c a l l y " induced) i s e s s e n t i a l f o r t h e development of an i n s t a b i l i t y t h e r e .

3. The q u a n t i t y ,

vcZ,

c a l c u l a t e d from t h e use of Zeleny s t a b i l i t y c r i t e r i o n , s ' = O , i s t o b e i n t e r p r e t e d a s t h e a d d i t i o n a l v o l t a g e , o v e r and above vcT f o r t h e f l u i d t o d i s i n t e g r a t e i n t h e EHS model. F u r t h e m o r e , Vc"O a s rtO and no a d d i t i o n a l v o l t a g e beyond

vCT

i s n e c e s s a r y f o r i n s t a b i l i t i e s , t o a r i s e a t t h e apex.

B. Cuspidal shape:

1. ~t o r n e a r o n s e t of i n s t a b i l i t y where c u s p i d a l shapes a r e observed experi- m e n t a l l y i l 3 1 , a n EHD t r e a t m e n t i s n e c e s s a r y t o d e s c r i b e a c c u r a t e l y t h e shape and c r i t i c a l v o l t a g e f o r t h e o n s e t of i n s t a b i l i t y .

C. It i s c o n j e c t u r e d t h a t none of t h e simple c o o r d i n a t e s u r f a c e s , e x c e p t t h e Taylor cone, a r e allowed s t a t i c e q u i l i b r i u m shapes. However, according t o t h e Zeleny c r i t e r i o n , t h e Taylor cone i s spontaneously u n s t a b l e .

D. F i n a l l y , a r b i t r a r y shaped f l u i d s u r f a c e s w i t h a x i a l symmetry e x h i b i t h y d r o s t a t i c e q u i l i b r i u m , b u t o n l y f o r A&O.

(7)

C7-356 JOURNAL DE PHYSIQUE

I V . ELECTROHYDRODYNAMIC ANALYSIS OF EQUILIBRIUM SHAPE AND STABILITY

It i s w e l l e s t a b l i s h e d t h a t t h e Taylor cone model has been, and i s u s e f u l f o r t h e s t u d y of some q u a l i t a t i v e and q u a n t i t a t i v e f e a t u r e s of LMIS. However, i t i s a s t a t i c model, and a s h a s been demonstrated, i t h a s i n h e r e n t i n c o n s i s t e n c i e s (e.g., spontaneous d i s i n t e g r a t i o n a t t h e apex). I t i s a p p a r e n t t h a t a dynamical t h e o r y i s n e c e s s a r y f o r a c o r r e c t and a c c u r a t e d e s c r i p t i o n of t h e b a s i c p h y s i c s involved.

S p e c i f i c a l l y , i n o r d e r t o e x p l a i n t h e development and l o c a l i z a t i o n of i n s t a b i l i t i e s , a s w e l l a s t h e dynamical shapes observed e x p e r i m e n t a l l y , a n EHD t r e a t m e n t i s r e q u i r e d . We have t h e r e f o r e used an EHD t h e o r y , v a l i d t o f i r s t - o r d e r i n t h e l i n e a r approxima- t i o n , t o c a l c u l a t e t h e dynamical shape of a three-dimensional s t r e s s e d f l u i d s u r f a c e . I n this a n a l y s i s t h e zero-order ( u n d i s t o r t e d ) s u r f a c e corresponds t o one of t h e coor- d i n a t e s u r f a c e s of a s e p a r a b l e c o o r d i n a t e system (e.g., cone, cusp, etc...). I n t h e c a l c u l a t i o n r e p o r t e d below, t h e l i n e a r i z e d EHD e q u a t i o n s a r e a p p l i e d t o t h e e x a c t Taylor cone model because i t i s a u s e f u l ( i . e . , t r a c t a b l e ) zero-order approximation.

A s w i l l be shown, u s i n g t h i s dynamical t h e o r y , t h e cone deforms i n t o approximately t h e c u s p i d a l shape ur.der t h e p e r t u r b i n g a c t i o n of t h e e x t e r n a l e l e c t r i c f i e l d .

Since t h e c a l c u l a t i o n i s v e r y l e n g t h y and t e d i o u s , although s t r a i g h t f o r w a r d , o n l y t h e forma1 d e t a i l s a r e p r e s e n t e d here. The mathematical a n a l y s i s and c a l c u l a - t i o n a l d e t a i l s w i l l be published elsewhere.

The forma1 s e t of EHD e q u a t i o n s to b e solved a r e :

1. The Laplace Equations f o r t h e e l e c t r i c p o t e n t i a l @, and t h e v e l o c i t y poten- t i a l Q:

v2@

= O Outside t h e conducting f l u i d A'Q = O I n s i d e t h e conducting f l u i d

+ +

where E=-?@ and u=-$Q a r e t h e e l e c t r i c f i e l d and v e l o c i t y of t h e f i e l d , r e s p e c t i v e l y . 2. B e r n o u l l i ' s Equation

13 a0 + %P (VQ)' + P

+

Pgz = Po = c o n s t a n t ( 8 )

This i s t h e e q u a t i o n of motion f o r an incompressible and i r r o t a t i o n a l f l u i d of den- s i t y p .

3. Boundary c o n d i t i o n s on t h e p o t e n t i a l s .

@=vo

on t h e f r e e f l u i d s u r f a c e . ( 9 a )

@=O on t h e r i g i d c o u n t e r - e l e c t r o d e . (9b)

?i*$$d =O, t h e normal component of t h e f l u i d v e l o c i t y i s z e r o on t h e ( 9 c ) a x i s of symmetry.

4. L e t Z ( o , t ) b e a ( s h a p e ) f u n c t i o n which d e s c r i b e s t h e deformation of t h e f l u i d s u r f a c e , and 6=B0 be t h e c o o r d i n a t e d e s c r i b i n g t h e u n d i s t o r t e d f l u i d s u r f a c e . W e d e f i n e a f u n c t i o n F 6

-

Z ( r 2 , t ) - B o , where

B

d e f i n e s t h e deformed s u r f a c e . Then

d e s c r i b e s t h e i n s t a n t a n e o u s shape of t h e f l u i d s u r f a c e . The f u n c t i o n F must s a t i s f y [ 151

5. The time-dependent LY s t r e s s b a l a n c e c o n d i t i o n ,

e v a l u a t e d on t h e (deformed) f r e e s u r f a c e of t h e f l u i d , 6=6,

+

Z ( a , t ) . The "exact"

(8)

d i r e c t s o l u t i o n of t h e s e e q u a t i o n s i s impossible. ~ i n e a r i z a t i o n of t h e EHü Eqs.

makes some problems t r a c t a b l e , by which we mean t h a t we can s o l v e t h e e q u a t i o n s f o r approximate s o l u t i o n s t h a t d e s c r i b e t h e p e r t u r b e d motion on t h e f l u i d s u r f a c e i n terms of simple harmonic o s c i l l a t i o n s .

I n s t a b i l i t y i n t h e f l u i d i s a m a n i f e s t a t i o n of developing n o n - l i n e a r i t y i n t h e s u r f a c e waves. Therefore, t o f i n d t h e i n s t a b i l i t y , it is n e c e s s a r y t o c o n s i d e r non- p e r i o d i c motion d e s c r i b e d by t h e higher-order c o r r e c t i o n s t o t h e l i n e a r i z e d EHü eqs.

The procedure f o r o b t a i n i n g and s o l v i n g t h e l i n e a r i z e d EHù e q s . t o f i r s t - o r d e r i s a g a i n s t r a i g h t f o r w a r d , b u t v e r y t e d i o u s . A d e t a i l e d mathematical t r e a t m e n t i s given by Chung[l6] and w i l l be published elsewhere. We h e r e merely n o t e t h a t t h e procedure f i r s t e n t a i l s expanding t h e deformation and p o t e n t i a l s a s sums of 'even' and 'odd' c o n t r i b u t i o n s . Assuming t h e deformation Z t o be s m a l l , t h e p o t e n t i a l s a r e expanded i n a Taylor s e r i e s a b o u t t h e u n d i s t o r t e d s u r f a c e , and s u b s t i t u t e d i n t o t h e s e t of t h e EHD e q u a t i o n s and boundary c o n d i t i o n s . By e q u a t i n g terms of e q u a l o r d e r i n t h e r e s u l t i n g s e t of e q u a t i o n s , a new s e t of e q u a t i o n s i s o b t a i n e d f o r each of t h e s u c c e s s i v e l y higher-order c o r r e c t i o n s t o t h e p o t e n t i a l s and deformations, i n terms of lower-order c o n t r i b u t i o n s . Therefore to s o l v e t h e e q u a t i o n s t o f i r s t - o r d e r , we need t h e zeroth-order s o l u t i o n s f o r Q> and Cl on t h e undeformed s u r f a c e . !&en t h e undeform- ed s u r f a c e s correspond t o simple c o o r d i n a t e s u r f a c e s (e.g., cone, c u s p s , e t c . . . ) , t h e s o l u t i o n s f o r O o ( R o ) a r e known, and t h e f i r s t - o r d e r e q u a t i o n s can b e solved f o r t h e p o t e n t i a l s O l ( C l l ) and deformation 21.

I t can be shown[l6] t h a t t h e f i r s t - o r d e r s t r e s s c o n d i t i o n y i e l d s the d i s p e r s i o n r e l a t i o n f o r w, t h e frequency ( o r energy) a s s o c i a t e d w i t h a p e r t u r b e d s u r f a c e wave.

From t h e c o n d i t i o n u2=0, t h e c r i t i c a l v o l t a g e f o r t h e o n s e t of an EHD i n s t a b i l i t y i s o b t a i n e d

.

V. RESULTS AND CONCLUSIONS

The above mathematical procedure was f i r s t a p p l i e d t o 2-dimensional hydrodynamic f l u i d geometries c o n s i s t i n g of a p l a n a r s u r f a c e w i t h a normal e l e c t r i c f i e l d and a c y l i n d r i c a l f l u i d w i t h a r a d i a l f i e l d [ l 6 ]

,

r e s p e c t i v e l y . For l i q u i d Ga, Vc -" 50 kV and 35 kv f o r t h e 2-dimensional geometries.

We used t h e Taylor cone model i n t h e EHD c a l c u l a t i o n s f o r t h r e e reasons: 1. I t i s a simple c o o r d i n a t e s u r f a c e and t h e r e f o r e t h e zeroth-order s o l u t i o n s f o r t h e poten- t i a l s a r e known. 2. It i s an allowed EHS e q u i l i b r i u m shape, and hence a good zeroth- o r d e r model f o r a dynamical t r e a t m e n t . 3. 1t i s a ' r e a l ' 3-dimensional model, and, t o Our knowledge, t h e f i r s t - o r d e r c o r r e c t i o n s have n o t been a p p l i e d t o any t h r e e - dimensional geometry.

Consider a s m a l l deformation c ( r , t ) o f t h e l i q u i d e l e c t r o d e a b o u t t h e s t a t i c Taylor cone. We d e s c r i b e t h e deformation by O = O o + < ( r , t ) , 00=130.70 f o r t h i s model, Eqs. 9a and 11 a r e a p p l i e d a t @=Oo+<, Eq. 9b a t r=ro [P_i,(cos 0 0 ) ] - 2 and Eq. 9c a t 0=s. ( 1 71. The t e c h n i c a l d e t a i l s and s o l u t i o n s a r e d i s c i s s e d elsewhere. Here, we merely n o t e t h a t a r a t h e r complicated d i s p e r s i o n r e l a t i o n y i e l d s t h e following e x p r e s s i o n f o r t h e c r i t i c a l v o l t a g e :

which can be compared w i t h experiment and t h e o t h e r t h e o r e t i c a l e x p r e s s i o n s , vcT and

vCZ

(Eqs. 4 and 5 ) .

Vc i s r a t h e r i n s e n q i t i v e t o t h e r e s t r i c t e d v a l u e s of t h e two parameters s and a , where r t a < r o and OtstO.Z+n, ~ t t l . For l i q u i d G a , r =2mm, and ( r / a ) = 0 . 5 , Vc=5.5 kV.

It can be shown[l6] t h a t i n t h e l i m i t ( r / a ) + l , t h e c r i t i c a l v o l t a g e has t h e c o n s t a n t v a l u e Vc=5.8 kv, which is i n v e r y good'agreement with vcexP 1: 4-7 kV. For 0 t h e r

(9)

C7-358 JOURNAL

DE

PHYSIQUE

l i q u i d m e t a l s ,

vc

s c a l e s a s JT.

Since Vc

-

rs/2, t h e i n s t a b i l i t y i s h i g h l y l o c a l i z e d , which a g r e e s with experi- mental o b s e r v a t i o n s [ 1 3 1

.

F i n a l l y , t h e c a l c u l a t e d deformation of t h e cone shows t h a t i t deforms i n t o a c u s p i d a l shape. This c u s p i d a l shape a g r e e s w e l l w i t h r e c e n t o b s e r v a t i o n s of Ben Assayag, e t . a l . [ 1 3 ] , and p r e d i c t i o n s of Chung, e t . a l . [141 and of Kingham and Swanson [ 1 8 1

.

I n summary, t h e r e s u l t s of t h e p r e s e n t electrohydrodynamic c a l c u l a t i o n s have demonstrated t h a t an a p r i o r i t r e a t m e n t of t h e e q u i l i b r i u m shape and s t a b i l i t y of a s t r e s s e d conducting f l u i d i s f e a s i b l e . I n a s p e c i f i c a p p l i c a t i o n , we have p r e d i c t e d t h e dynamic shape and c r i t i c a l v o l t a g e of an o p e r a t i n g LMIS a t t h e o n s e t of i n s t a b i l - i t y t h a t i s i n good agreement w i t h e x p r i m e n t .

ACKNOWLEDGEMENTS

One of t h e a u t h o r s (P.H.C.) would l i k e t o e x p r e s s h i s s i n c e r e thanks to D r S . H.

Launois, and P. Sudraud of t h e CNRS L a b o r a t o i r e d e M i c r o s t r u c t u r e s e t d e Microelec- t r o n i q u e , Bagneux, France, f o r t h e i r generous h o s p i t a l i t y d u r i n g t h e Summer, 1986, when t h i s paper was w r i t t e n . He would a l s o l i k e t o acluiowledge u s e f u l c o n v e r s a t i o n with D r . G. Ben Assayag and a s s i s t a n c e from M. J. Gierak.

REFERENCES

/1/ P. H. C u t l e r , M. Chung, T. E. Feuchtwang and E. KaZeS, Jour. d e physique Colloque C2,

g

(1986) c2-87.

/2/ M. Chung, P. H. C u t l e r and N. M. Miskovsky, submitted to J. Vac. Sci. and Technol

.

( 1986)

.

/3/ See, f o r example, A. Wagner, Appl. Phys.

3,

(1982) 440.

/4/ L. D. Landau and E. M. ~ i f s c h i t z , F l u i d Mechanics

e erga am on

P r e s s , New York, 19591, Chapter III.

/5/

sir.

G. I. Taylor, Proc. ROY. soc., London

e,

(1964) 383.

/6/ J. Zeleny, Proc. Camb. p h i l . Soc.

E,

(1915) 71.

/ 7 / M. Chung, P. H. C u t l e r , T. E. Feuchtwang, N. M. Miskovsky and N. S u j a t h a ,

Scanning E l e c t r o n Microscopy I V , (1984) 1547.

/8/ G. H. J o f f r e , J o u r . d e Mecanique t h e o r i q u e e t a p p l i q u e s

3,

(1984) 545.

(The a u t h o r s wish t o c o r r e c t a m i s i n t e r p r e t a t i o n of Ref. 8 p r e s e n t e d i n Ref. 1 above; s p e c i f i c a l l y , J o f f r e does i n c l u d e h y d r o s t a t i c p r e s s u r e i n h i s a n a l y s i s . This i s shown e x p l i c i t l y i n G. H. J o f f r e and M. Cloupeau, t o be published i n t h e proceedings of t h e 1986 IFES B e r l i n , m l y 7-11.)

/9/ M. D. Gabovich, Sov. Phys. Usp.

26

( 5 ) (1983) 447.

/IO/ H. G o l d s t e i n , C l a s s i c a l Mechanics (Addison-wesley Pub. Co., Reading, MA, 1950).

/ I l / P. G. Drazin and W. H. Reid, Hydrodynamic S t a b i l i t y (Cambridge U n i v e r s i t y P r e s s , Cambridge, 1981 ) Chap. 1.

/12/ N. M. Miskovsky, P. H. C u t l e r and E. KaZeS, J. Vac. Sci. Technol. (1983) 202.

/13/ G. Ben Assayag, P. Sudraud and B. J o u f f r e y , ultramicroscopy (1985) 1.

/14/ M. Chung, P. H. C u t l e r , T. E. Feuchtwang, E. KazeS and N. M. Miskovsky, Jour.

d e physique Colloque Cg, 45, (1984) Cg-153.

/15/ A.

L.- ett ter

and

3.

D. walecka, T h e o r e t i c a ï Mechanics of P a r t i c i e s and c o n t i n u a ( ~ c ~ r a w - H i l l , New York, 1980). Chap. 10.

/16/ M. Chung, Ph.D. T h e s i s i n p h y s i c s , August, 1986, The ~ e n n s y l v a n i a S t a t e univer- s i t y , and t o b e published.

/17/ M. Chung, P. H. C u t l e r , T. E. Feuchtwang and N. M. Miskovsky, Jour. d e physique Colloque Cg,

g

(19841, Cg-1 53 ( s e e Fig. 7 a ) .

/18/ D. R. Kingham and L. W. Swanson, M p l . Phys.

A39

(1984) 123.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to