• Aucun résultat trouvé

Reliability model of a component equipped with PHM capabilities

N/A
N/A
Protected

Academic year: 2021

Partager "Reliability model of a component equipped with PHM capabilities"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01652191

https://hal.archives-ouvertes.fr/hal-01652191

Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reliability model of a component equipped with PHM capabilities

Michele Compare, Luca Bellani, Enrico Zio

To cite this version:

Michele Compare, Luca Bellani, Enrico Zio. Reliability model of a component equipped with PHM capabilities. Reliability Engineering and System Safety, Elsevier, 2017, 168, pp.4-11.

�10.1016/j.ress.2017.05.024�. �hal-01652191�

(2)

ContentslistsavailableatScienceDirect

Reliability Engineering and System Safety

journalhomepage:www.elsevier.com/locate/ress

Reliability model of a component equipped with PHM capabilities

Michele Compare

a,b

, Luca Bellani

a

, Enrico Zio

a,b,c,

aEnergy Department, Politecnico di Milano, Italy

bAramis S.r.l., Italy

cChair on Systems Science and the Energetic challenge, Foundation Electricité de France at CentraleSupélec, France

a r t i c le i n f o

Keywords:

PHM metrics Reliability Particle Filtering Monte Carlo Simulation

a b s t r a ct

Weproposeananalytic,time-variantmodelthatconservativelyevaluatestheincreaseinreliabilityachievable whenacomponentisequippedwithaPrognosticsandHealthManagementsystemofknownperformancemetrics.

Thereliabilitymodelbuildsonmetricsofliteratureandisapplicabletodifferentindustrialcontexts.Asimulated casestudyconcerningcrackpropagationinamechanicalcomponentisconsideredtovalidatetheproposedmodel.

© 2017ElsevierLtd.Allrightsreserved.

1. Introduction

Inthelastdecade,PrognosticsandHealthManagement(PHM)has oftenbeenproposedasaneffectivetechnologytorespondtothereli- abilitychallengesposedbythemodernsafety-criticalcomponentsand systems(e.g.,nuclearpowerplants,oil&gasassets,etc.),inwhichfail- urescanresultnotonlyinsignificantcosts,butalsoinlife-threatening consequencessuchasexplosionsandnaturaldisasters.

PHMallows inprinciple monitoringthesystem healthcondition, predictingitsRemainingUsefulLife(RUL)and,ultimately,preventing catastrophicfailures[1–5].However,inpracticeitisimportanttoknow whicharethereliabilityandavailabilityofacomponentorsystem.In thisrespect,totheauthors’ bestknowledgeamodelingframeworkthat allowstranslatingthePHMcontributionintothecomponentorsystem reliabilityisstilllacking.

AfewworkshaveattemptedtoevaluatetheinfluenceofPHMon systemLifeCycleCost(LCC, [6–11]),lookingat theeconomicbene- fitsofPHMintermsofincreaseofcomponentorsystemavailability.

Ontheotherhand,forsafety-criticalapplicationsPHMisexpectedto mainlyincreasethecomponentorsystemreliability(ratherthanavail- ability).PHMhelpsavoidingover-estimationsoftheactualcomponent RUL,whichmayleadtoaccidentswithpossibleconsequencesonthe asset,theenvironmentandthepublic.

ToevaluatetheaddedvalueofthePHMtechnologyonsystemre- liability, itis necessarytocharacterizethe performanceofthe PHM adopted.Inthisrespect,avarietyofperformancemetricsandindica- torshavebeenintroducedfordetection(i.e.,therecognitionofade- viationfromthenormaloperatingconditionscausingsuchdeviation, e.g.,[8,12]),diagnostics(i.e.,thecharacterizationoftheabnormalstate, e.g.,[13])andprognostics,(i.e.,thepredictionoftheevolutionofthe

Corresponding author at: Energy Department, Politecnico di Milano, Italy.

E-mail address: enrico.zio@polimi.it (E. Zio).

abnormalstateuptofailure,e.g.,[2,14,15]).Theoriginalcontribution ofthisworkistoproposeageneralmodelinganddecisionframework forlinkingPHMmetricsofliteraturetothecomponentreliability.This frameworkalsoallowsaccountingforthedecisioncriterionadoptedfor maintenance(overhaul),whichheavilydependsontheriskattitudeof thedecisionmaker.

Theproposedreliabilitymodelisvalidatedbywayofasimulated casestudyconcerningthecrackpropagationinamechanicalcompo- nent,whichrequirestoestimatethevaluesoftherelevantPHMmetrics.

Although various definitions of performance metrics exist in the PHMliterature,adetailedproceduretoestimatetheirvaluesisstilllack- ing,apartfromafewmetricssuchastheMTTF[16].Forthis,afurther originalcontributionofourworkistheMonteCarlo(MC)procedure proposedtoestimatetheperformancemetricsencodedinthedeveloped reliabilitymodel.

Theremainderofthepaperisorganizedasfollows:Section2briefly introducesthegeneralframework;inSection3,theimpactofaPHMtool onsystemreliabilityismodeled;Section4illustratesasimulatedcase studyconcerning thecrack propagationina mechanicalcomponent;

Section5validatesthedevelopedmodelbywayofthesimulatedcase study;Section6concludesthework.

2. Modelingframework

We considera degrading component, whose degradation state is monitoredeveryΔtunitsoftimewithrespecttoacontinuousindicator variable(Fig.1).Thedegradationprocessisstochasticforthedegrada- tionstateandtwothresholdsareconsidered:thedetectionthreshold, whichmainlydependsonthecharacteristicsoftheinstrumentusedfor monitoringthedegradationvariable(forexample,consideringthatthe instrumentisnotcapableofdetectingthedegradationstateforvalues

http://dx.doi.org/10.1016/j.ress.2017.05.024 Available online 10 May 2017

0951-8320/© 2017 Elsevier Ltd. All rights reserved.

(3)

M. Compare et al. Reliability Engineering and System Safety 168 (2017) 4–11

Nomenclature

𝜆 Timewindowmodifier,suchthat𝑡𝜆=𝑇𝑝𝑟+𝜆(𝑇𝑓𝑇𝑝𝑟); 𝜆∈[0,1]

𝜆 Timefromwhichthevaluesoftheperformancemetrics areestimated

Td Timeinstantatwhichthesystemreachesthedetection threshold

Tf Timeinstantatwhichthesystemreachesthefailure threshold

T𝜙 Lengthofthetimeinterval𝑇𝑓𝑇𝑑 𝑓𝑇𝑑 pdfoftimeTd

𝑓𝑇𝜙 pdfofT𝜙 𝑓𝑇𝑓 pdfofTf

Δt TimeintervalbetweentwosuccessiveRemainingUse- fulLife(RUL)predictions

DTD DetectionTimeDelay,𝑇𝑝𝑟𝑇𝑑

fDTD probabilitydensityfunction(pdf)ofDTD 𝑃𝜆𝛼 𝛼𝜆performance

⌊x⌋ Integerpartofx;thatis,𝑛𝑥<𝑛+1,𝑥∈ℝ,𝑛∈ℕ N NumberofmaximumRULpredictionsbeforefailure k Indexofthefirsttimechannelatwhichthedecisionto

removethesystemfromoperationcanbetaken h Indexofthefirsttimechannelatwhichamissingalarm

isrisky

R𝜆 UncertainpredictedRULattimeindicatedby𝜆 Y𝜆 PointsummarizingtheuncertaintyinR𝜆(e.g.,mean,

median,10thpercentile,etc.) 𝑅𝑈𝐿𝜆 ActualRULatthetimeindicatedby𝜆 Tpr TimeofthefirstRULprediction FP Falsepositives

FN Falsenegatives

m EmpiricalestimateofmetricM

𝑓𝑅𝜆 pdfofthepredictedRULatthetimewindowindicated by𝜆

(𝜇,𝜎2) Normaldistributionwithmean𝜇andvariance𝜎2

(𝑎,𝑏) Uniformdistributionbetweenaandb

belowsuchthreshold),andthefailurethreshold,abovewhichthecom- ponentdoesnotfunctionanymoreor,morepractically,mustbemain- tainedorreplacedforavoidingacatastrophicfailure.

The uncertaintyin the time instant Td at which the component reachesthefirstthresholdisdescribedbytheprobabilitydensityfunc- tion(pdf)𝑓𝑇𝑑.Ifnoactionistaken,thecomponentcontinuesitsdegrad- inguptofailureoccurringattimeTf;itsuncertaintyisdescribedbypdf 𝑓𝑇𝑓.Finally,wealsoconsidertherandomvariable𝑇𝜙=𝑇𝑓𝑇𝑑,whose pdfis𝑓𝑇𝜙.

Realistically,itisassumedthatdetectionisnotperfect.Thus,metrics ofliteratureareexploitedtocharacterizethedetectionperformance.In thisrespect,thefollowingtwoarewidelyusedinpractice:falsepos- itiveprobability(i.e.,theprobabilityoftriggeringunduealarms)and falsenegativeprobability(i.e.,theprobabilityofmissingalarmwhen required)[8]).Inaddition,DetectionTimeDelay(DTD,[12])isade- tectionmetricwhichmeasurestheintervalfromthetimewhenthede- tectabledegradationstateisreachedbythecomponentuptoitsdetec- tion.Weusethisperformancemetric,duetotwomainreasons:onone hand,DTDisviewedasafalsenegativeindicatorwhichdepends on time(i.e.,alarmsaremissinguptoDTD);ontheotherhand,theDTD valuesaredependentonthedetectionalgorithmsettings,whichcanbe adjustedsothatthefalsepositiveprobabilityisnegligibleintheinital partofthecomponentlife[12].Thisway,themodeldevelopmentissim- plified.Toberealistic,weassumethatDTDisaffectedbyuncertainty, whosepdfisfDTD(𝛿).

Fig. 1. Model setting description; = 4 , 𝛼= 0 . 1 , 𝑁 1= 11 and 𝑁 2= 19 .

Inthis setting,thePHM systemstarts topredict theRULat time 𝑇𝑝𝑟=(⌊𝑇𝑑+Δ𝐷𝑇 𝐷𝑡 ⌋+1)Δ𝑡,where⌊○⌋indicatestheintegerpartofitsar- gument.ThenumberofpredictionsthatthePHMcanperformbefore failureis𝑁=⌊𝑇𝑓Δ𝑡𝑇𝑝𝑟⌋.Fromnowon,itisassumedthatthesystemac- tuallyfailsattime𝑇𝑝𝑟+𝑁Δ𝑡,insteadofTf;thesmallerΔt,thesmaller theapproximation.

Notice that wehave assumed,forsimplicity, that theconsidered componentisaffectedbyasinglefailuremode,sothatwedonothave theneedoftacklingtheissueofembeddingdiagnosticmetricsintothe reliabilitymodel,andofconsideringallscenariosoriginatingfromdeci- sionsbasedonerroneousdiagnosesofthefailuremode.Suchdiagnostic issueisleftforthefutureresearchwork.

Finally, notice also that, in practice, both detection and failure thresholdsmaynot beeasily determined.Forexample,in helicopter applications, PHMsystems(alsocalledHealth andUsage Monitoring System,HUMS)aremainlybasedonvibrationmonitoringtoinferthe equipment health [17–19]; thus,there is no simplewaytodefinea thresholddirectlyrelatedtofailure.Similarchallengesareencountered inthepackagingindustry,wherethefailureconditionsofcomponents maynotbepreciselyknown[20].Nonetheless,theapproachproposed inthepresentworkappliestoanysystem,providedthatsomecriterion todefinethethresholdsexists.Thedefinitionofsuchcriterionisoutof thescopeofthiswork,whereweassumethattheDecisionMaker(DM) hasalreadydefinedathresholdcoherentwithhis/herobjective.

3. Reliabilitymodel

InthisSection,weillustratethemathematicalmodeldevelopedto evaluatetheincreaseinsystemreliabilitybroughtbyaPHMsystem.

WeassumethatthePHM-equippedcomponentisstoppedwhenthe (100−𝛽)thpercentile(e.g.,100−90=10th)ofthecurrentlypredicted RULpdfissmallerthanh ·Δt:thelargerthevalueof𝛽,thesmaller thevalueofthepredictedRULpercentile,themorerisk-aversethedeci- sion.Similarly,thelargerthevalueofh,themorecautiousthedecision maker.

Tosethand𝛽 inrealindustrialapplications,itshouldbekeptin mindthatthevalueofhstronglydependsonthetimerequiredtosafely removethecomponentfromoperation(e.g.,timerequiredforsystem shutdown),whereas𝛽relatestotheriskassociatedtothefailure(e.g., 𝛽=5isaveryconservative value,suitableforsafetycriticalapplica- tion).TohelptheDMtosethand𝛽wecanusetheproposedreliability modelina‘reverse’ way,tofindthecombinationsofvaluesofhand𝛽 thatallowmeetingthesystemreliabilityrequirements,alsotakinginto accounttheconsideredPHMperformancevalues.Furthermore,wecan evaluatethesensitivityofthecomponentreliabilityvaluetotheselected applicablevaluesofhand𝛽,tofindthesettingswhicharelesssensitive tothepossiblevariabilityofthemetricsduetotheuncertaintyintheir estimations.

Toevaluatetheprobabilityofremovingthesystemfromoperation before failure,we needtoconsideratime-variantprognostic perfor- 5

(4)

Fig. 2. 𝑃 𝜆𝛼description.

manceindexandlinkittotheprobabilityofbeinginstoppingcondi- tions.

Amongtheprognosticmetricsavailableintheliterature[14,15],the mostsuitableisthe𝛼𝜆performanceindex,𝑃𝜆𝛼,whichisatime-variant accuracyindicatorrangingin[0,1];thisallowsustogive𝑃𝜆𝛼aprob- abilisticinterpretation.Variousdefinitionsof𝑃𝜆𝛼 havebeenproposed intheliterature[14,15],referringtoeitherpoint-wiseorpdfRULpre- dictions.Inthiswork,wegivethefollowingdefinition,derivedfrom [14](Fig.2).

Considertheindicatorvariable:

Π𝛼𝜆= {

1, if𝑓𝑅𝜆|𝛼𝛼𝜆+ 𝜆𝛽 0, else

(1)

where𝑓𝑅𝜆isthepdfoftheRULR𝜆predictedattime𝑡𝜆=𝑇𝑝𝑟+𝜆(𝑇𝑓𝑇𝑝𝑟),𝜆∈[0,1],whereas𝛼isauser-definedparameterwhichindicates therequiredtolerancearoundthevalueofRUL(e.g.,𝛼∈[0.05,0.2]).

Then,𝑃𝜆𝛼isthemeanvalueofΠ𝛼𝜆,i.e.,𝑃𝜆𝛼=𝔼[Π𝛼𝜆].

Namely,duringthetestcampaignof thealgorithm,in whichthe valueoftheprognosticperformancemetricsarecomputed,thealgo- rithmisrunontheworkingsystemanaslargeaspossiblenumberof times.Then,atanytrial,Π𝛼𝜆issetto1iftheRULpdfpredictedatt𝜆has anarealargerthan𝛽between𝛼𝜆=(1−𝛼)𝑅𝑈𝐿𝜆and𝛼+𝜆 =(1+𝛼)𝑅𝑈𝐿𝜆, being𝑅𝑈𝐿𝜆theactualRULattimet𝜆,i.e.,thetimeuptoreachingthe failurethresholdorthethresholdabovewhich amaintenanceaction mustbeperformed,depending ontheapplication(Fig.2).TheRUL valueisexactlyknownattheendofeverytrial.

𝑃𝜆𝛼is,then,practicallygivenbytheestimate𝑝𝛼𝜆,whichiscalculated byaveragingthevaluesΠ𝛼𝜆gatheredfromdifferenttrialsofthePHM toolatasmanyaspossibleinstantst𝜆.Thelargerthevalueof𝑃𝜆𝛼,the betterthePHM systemprediction capability.Formore detailson𝑝𝛼𝜆 computation,seeSection5.2.

NoticethatwhenΠ𝛼𝜆=0,noinferencecanbemadeaboutthevalue oftheuncertainRULprediction:oneonlyknowsthattheareaoverlap- ping[𝛼𝜆,𝛼𝜆+]issmallerthan𝛽,withnofurtherinformationabouteither theactualextentofthisoverlappingortheportionofprobabilitymass locatedbelow𝛼𝜆,above𝛼+𝜆 orinanin-betweenposition.

NoticealsothatwhenΠ𝛼𝜆=1,thentheinterval[(1−𝛼)𝑅𝑈𝐿𝜆,(1+ 𝛼)𝑅𝑈𝐿𝜆]is the2-sided𝛽confidence intervalofthefailuretimepre- dictedattimet𝜆.However,forthepredictionmetricstobeapplicable forsupportingrisk-aversedecisionmaking,weneedtorefertoanup- perbound oftheprobability of over-estimatingtheRUL(i.e.,of not stoppingthecomponent),ratherthantoa2-sidedconfidenceinterval.

Tocopewiththissituation,wecombine𝑃𝜆𝛼withthefalsepositiveand falsenegativemetrics[15],whicharetime-variantindexesdefinedas, respectively:

𝐹𝑁𝜆=𝔼[Φ𝑁𝜆],Φ𝑁𝜆=

{1, ifΥ𝜆𝑅𝑈𝐿𝜆>𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝜆

0, else (2)

𝐹𝑃𝜆=𝔼[Φ𝑃𝜆],Φ𝑃𝜆=

{1, ifΥ𝜆𝑅𝑈𝐿𝜆<𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝜆

0, else (3)

Fig. 3. Regions partitioning the time horizon and examples of possible RUL predictions.

whereY𝜆isapointestimateofthepredictedRULdistribution(e.g.,the mean,themedianoranyotherpercentileofR𝜆,etc.)and𝑑𝜆𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑 isa user-definedthresholdvalue,whichdependsonthePHMapplication.

Proceedingexactlyinthesamewayasthatof𝑝𝛼𝜆,wewillconsiderthe estimatesfn𝜆andfp𝜆ofFN𝜆andFP𝜆,respectively,whicharegivenby thecorrespondingempiricalaveragesofΦN𝜆andΦP𝜆overtheavailable numberoftesttrials,achievedthroughanalgorithmtestcampaign.As mentionedabove,noticethatwhenperformingaPHMtest,RULisex- actlyknownattheendofeverytrial.Thisvalueis,then,usedtoestimate ΦN𝜆,ΦP𝜆andtheothervariablesofthemodel,asshowninSection5.2. Inoursetting,Y𝜆isthe(1−𝛽)thpercentileof𝑓𝑅𝜆 and𝑑𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑= 𝛼×𝑅𝑈𝐿𝜆.Then,FP𝜆measurestheaverageportionoftimesinwhich Y𝜆isbelow𝛼𝜆 =(1−𝛼)𝑅𝑈𝐿𝜆and,thus,itbecomesanindicatorofhow muchconservativeourPHMpredictionsareattimet𝜆.Similarly,FN𝜆 indicatestheriskinessofthePHMalgorithm.

Basedontheseconsiderations,wecanbuildthereliabilitymodelofa PHM-equippedcomponentwithestimatedvalues𝑝𝛼𝜆,𝑓𝑛𝜆,𝑓𝑝𝜆ofmetrics 𝑃𝜆𝛼,𝐹𝑁𝜆,𝐹𝑃𝜆,respectively.Todothis,wedividethetimehorizoninto threeregions(Fig.3):

1. Theregioninproximityoffailure,whichisdefinedbythetime indexes𝑘𝑁suchthat(1+𝛼)𝑅𝑈𝐿𝜆Δ𝑡,where𝑅𝑈𝐿𝜆= (𝑁𝑡.Thisisthesameaskh,where=⌊𝑁−

1+𝛼⌋.Ge- ometrically,thisregioncorrespondstotimevaluesontherightof theintersectionbetweentheerrorupperboundline(1+𝛼)𝑅𝑈𝐿𝜆 andthehorizontallinepositionedat𝑅𝑈𝐿=Δ𝑡(Fig.3).

2. Thesaferegion,whichisindicatedbytimeinstantsk<k,where kgeometricallycorrespondstothepredictionmostproximalto theintersectionbetween thepredictionerrorlowerbound line (1−𝛼)𝑅𝑈𝐿𝜆andthehorizontallineat𝑅𝑈𝐿=Δ𝑡(Fig.3).

3. Thein-betweenregion,identifiedbykk<h.

Withrespect toregion1, wecan notethattohavea failure,the alarmisrequiredtobe missinghconsecutivetimes.Now,ifΠ𝛼𝜆=1, thenthealarmistriggeredandthecomponentfailureisavoided.On thecontrary,ifΠ𝛼𝜆=0,thenecessaryconditiontonotactivatethealarm isthattheRULisover-estimated.Thissituationoccurswithprobability (1−𝑃𝜆𝛼)𝐹𝑁𝜆≃ (1−𝑝𝛼𝜆)𝑓𝑛𝜆.Weassumethatthisprobabilityvaluealso describestheuncertaintyinhavingmissingalarms;thisisaverycon- servativeassumptions:thecloserthecurrenttimetofailure,thelarger

(5)

M. Compare et al. Reliability Engineering and System Safety 168 (2017) 4–11

theover-estimationerrorrequiredtonottriggerthealarm(predictions mustbeabovethehΔtthreshold(seeFig.3)).

Withrespecttothesaferegion,wefirstnotethatwhicheverthevalue ofΠ𝛼𝜆,anover-estimationof𝑅𝑈𝐿𝜆leadstonotstoppingthesystembe- forefailure.Thisdoesnotentailanyriskofmissingstops.Onthecon- trary,anunder-estimationoftheRULcouldleadtocomponentstop.In therisk-aversesettingwearedealingwith,theanticipatedmaintenance isbeneficialforsystemreliability,asitavoidscomponentfailure.For this,weconservativelyassumethat inthisleft-mostregionthePHM systemneverstopsthecomponent.

Finally,withrespecttothein-betweentimehorizonregion,torig- orouslyderivetheprobabilityofnotstoppingthesystem,wehaveto giveaccounttothefactthatsomeextremecasesmayoccur,whereeven ifΠ𝛼𝜆=1,the1−𝛽probabilitymassand,thus,the(1−𝛽)thpercentile, ispositionedabovehΔt.Forexample,Fig.3showsthesituationwhere 𝑡𝜆1=(𝑁𝑡andallthe𝛽massisconcentratedbetween𝑅𝑈𝐿𝜆=Δ𝑡 and𝛼𝜆+.Inthiscase,PHMwillnotadvicetostopthecomponentat𝑡𝜆1. Thus,weconservativelyassumethatinthisregionthecomponentdoes notundergoamaintenanceactionaslongasΠ𝛼𝜆=1.

Onthecontrary,whenΠ𝛼𝜆=0,whichoccurswithprobability(1− 𝑃𝜆𝛼),thefollowingthreepossiblesituationscanoccur:

The(1−𝛽)thpercentile,Y𝜆,issmallerthan(1−𝛼)𝑅𝑈𝐿𝜆.Inthissitu- ation,whichoccurswithprobability(1−𝑃𝜆𝛼)𝐹𝑃𝜆,evenifweconser- vativelyassumethatthe(1−𝛽)thpercentiletakesthelargestpossi- blevalue(i.e.,Υ𝜆=(1−𝛼)𝑅𝑈𝐿𝜆),thecomponentisstoppedasthis timeissmallerthanhΔt.

Withprobability(1−𝑃𝜆𝛼)𝐹𝑁𝜆,Y𝜆willbeabove(1+𝛼)𝑅𝑈𝐿𝜆.Inthis situation,wewillnotstopthecomponent.

Withprobability 1−𝐹𝑁𝜆𝐹𝑃𝜆 wearein thesituationin which thepredictedRULvalueisbetween[𝛼𝜆𝛼𝜆+].Tobeconservative,we assumethatalsointhiscasewedonotremovethecomponentfrom operation.

Toconclude,aconservativeestimationofthestopprobabilityinthe timewindow[𝑇𝑝𝑟+𝑘Δ𝑡,𝑇𝑝𝑟+Δ𝑡]is(1−𝑃𝜆𝛼)𝐹𝑃𝜆≃ (1−𝑝𝛼𝜆)𝑓𝑝𝜆.

Fig.1brieflysummarizestheconsiderationsproposedabove.Two differenttrialsofthesamePHM-equippedcomponentareplottedover time,whichareindicatedwithsuperscript1(continuousline) and2 (dashedline).𝑇𝑝𝑟1 and𝑇𝑝𝑟2 indicate thecorrespondingfirst prediction times,whereask1andk2representthefirsttimeinstantswherethe systemcanbestoppedwithprobabilities(1−𝑃𝜆𝛼)𝐹𝑃𝜆;h1andh2are thefirsttimeindexesfromwhichthesystemisstoppedwithprobability 𝑃𝛼𝑘

𝑁

+(1−𝑃𝛼𝑘

𝑁

)(1−𝐹𝑁𝑘

𝑁).Finally,𝑇𝑓1 and𝑇𝑓2 representthelastpossi- blepredictioninstantsbeforefailureandareconsideredasfailuretimes withinourframework.

Basedontheconsiderationsabove,itisnowpossibletocomputethe unreliabilityU(t)attimet,whichisheredefinedastheprobabilityof reachingthefailurethresholdbeforet:

𝑈(𝑡)=ℙ(𝑇𝑓𝑡 ∩ systemnotstoppedbefore𝑡;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)

=ℙ(𝑇𝑓𝑡|systemnotstoppedbefore𝑡;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)

×ℙ(systemnotstoppedbefore𝑡;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)

where𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆explicitlyindicatethedependenceoftheun- reliabilityvalueontheparametersdeterminingtheperformanceofthe PHMsystem.

Noticethatthereareseveraldefinitionsof reliability[21].Differ- entlyfromthe‘traditional’ definitions,inwhichtheunreliabilityisthe CDFofthefailuretimeand,thus,ittendstooneastincreases(i.e.,the componentwillalwaysfail,[21,22]),inthiscasewearecompelledto consider

𝑡lim𝑈(𝑡)=ℙ(systemnotstoppedbefore𝑡;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)≤1 Thedifferenceisduetothefactthatifthecomponentisremovedfrom operationbeforefailure,thenitsfailuretimewillno-longerexistand

K(t, F ailed) K(t, Remov

ed)

Fig. 4. Three-state system.

the‘traditional’ definitionsarenolongerapplicable.Thatis,thePHM- equippedcomponentcanbeframedasathree-statesystem,thepossible statesbeing:Working,FailedandRemoved(Fig.4),inwhichU(t)repre- sentstheprobabilityofhavingatransitionfromWorkingtoFailedbe- foretimet.Accordingtothisview,wederiveU(t)fromtheprobabilistic transport kernelK(t,Failed|t′, s′),which isdefined astheprobability density thatthecomponentmakesthenexttransitionbetweentand 𝑡+𝑑𝑡towardstateFailed[23],providedthattheprevioustransitionhas occurredattimet′andhatthesystemhadenteredinstates′.However, inourcaseweassumethatthecomponentalwaysstartsat𝑡=0instate Working.Forthis,wewillindicatethekernelasK(t,Failed),withoutthe conditioningevent.

TocalculateK(t,Failed),wefirstfirstcalculatethefailuretransporta- tionkernelgivenarealization𝛿fromfDTD:

𝐾(𝑡,𝐹𝑎𝑖𝑙𝑒𝑑|𝛿;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)

=∫

𝑡

𝑡𝛿𝑓𝑇𝑑(𝜏)𝑓𝑇𝜙(𝑡𝜏)𝑑𝜏+

𝑡𝛿

0 𝑓𝑇𝑑(𝜏)𝑓𝑇𝜙(𝑡𝜏)

−1 𝑘=𝑘

[1−(1−𝑝𝛼𝑘

𝑁

)𝑓𝑝𝑘 𝑁]

𝑁−1

𝑘=

[(1−𝑝𝛼𝑘

𝑁

)𝑓𝑛𝑘

𝑁]𝑑𝜏 (4)

Inotherwords,itisassumedthatafailureoccurswhenoneoutofthe followingconditionsissatisfied,whicharerepresentedbythefirstand thesecondaddendofEq.(4),respectively:

1. ThecomponentfailsbeforePHMalertsthedetectionthreshold (detectionerror);thismayhappenincasethecomponentfails abruptly.

2. PHMcorrectlydetects,withdetectiondelay𝛿,thatthedegrada- tionhasreachedthedetectionthresholdbut,then,over-estimates theactualfailuretimeTf(prognosticerror);thishappensafter 𝑇𝑝𝑟+𝑘Δ𝑡(i.e.,thefirstpredictioninstantwherethestopping decisionshouldbemade),withprobability1−(1−𝑝𝛼𝑘

𝑁

)𝑓𝑝𝑘 𝑁 and withprobability(1−𝑝𝛼𝑘

𝑁

)𝑓𝑛𝑘

𝑁 from𝑇𝑝𝑟+Δ𝑡on.

Toremove thedependencefrom 𝛿,we integrateEq.(4)over the distributionofDTD:

𝐾(𝑡,𝐹𝑎𝑖𝑙𝑒𝑑;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)

=∫

0 𝐾(𝑡,𝐹𝑎𝑖𝑙𝑒𝑑|𝛿;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)𝑓𝐷𝑇 𝐷(𝛿)𝑑𝛿 (5) Generallyspeaking,theintegralofK(t,Failed)overthetimeinterval [t1,t2]givestheprobabilityof failurein thattimespan[23]. Then, 7

(6)

Fig. 5. Crack propagation process: example

Eq.(5)allowsestimatingthecomponentunreliabilityas:

𝑈(𝑡)=

𝑡

0 𝐾(𝜏,𝐹𝑎𝑖𝑙𝑒𝑑;𝛼,𝛽,Δ𝑡,ℎ,𝑓𝑛,𝑓𝑝,𝑝𝛼𝜆)𝑑𝜏 (6) Finally,noticethatthedevelopedmodelallowsconsideringalsothecase wherethereisnoadvantageinremovingthecomponentfromoperation thelasth instants:in thiscase,stopping thecomponent inthethird region(region1inFig.3)isequivalenttohavingafailure.

4. Casestudy

InthisSection,weillustratetheapplicationofthemodelingframe- workdevelopedtoacomponentaffectedbyfatiguedegradation,de- scribedbytheParisErdogan(PE)model([2,24],Fig.5):

1. Thecracklengthxireachesthefirstthreshold,𝑥=1mm,accord- ingtothefollowingequation:

𝑥𝑖+1=𝑥𝑖+𝑎×𝑒𝜔1𝑖

where 𝑎=0.003 is the growth speed parameter and 𝜔1𝑖

(−0.625,1.5)modelstheuncertaintyinthespeedvalues.The uncertaintyinthearrivaltimeat𝑥=1isdescribedbypdf𝑓𝑇𝑑(𝑡). 2. Thecrack lengthreachesthefailurethreshold𝑥=100mmac-

cordingtothefollowingequation:

𝑥𝑖+1=𝑥𝑖+𝐶×𝑒𝜔2𝑖(𝜂𝑥𝑖)𝑛

where𝐶=0.005and𝑛=1.3areparametersrelatedtothecom- ponentmaterialproperties,andaredeterminedbyexperimental tests;𝜂=1isaconstantrelatedtothecharacteristicsoftheload andthepositionofthecrackand𝜔2𝑖∼(0,1)describestheun- certaintyinthecrack growthspeedvalues.Theuncertaintyin thearrivaltimeat𝑥=100isdescribedbypdf𝑓𝑇𝑓(𝑡).

Thenumericalvaluesaretakenfrom[2].

5. Validationofthereliabilitymodel

TheaimofthisSectionistovalidatethereliabilitymodeldeveloped inSection3bywayofthecasestudypresentedabove.Todothis,we carryoutthefollowingsteps,whicharedetailedinthenextSections:

Choosetheprognosticanddetectionalgorithmsthatareassumedto beimplementedinthePHMsystem.

Estimatetheperformancevaluesfp𝜆,fn𝜆and𝑝𝛼𝜆.

EstimatetheintegralinEq.(6).

Estimatetheunreliabilityinthe‘on-line’ setting,inwhichthecrack propagationissimulatedtogetherwiththeselectedprognosticand detectionalgorithms,andwiththedecisionsbasedontheiroutcomes aswell.

5.1. Algorithms

The prognostic algorithm we rely on is Particle Filtering (PF, [25,26]),whichhasbeen establishedasthede-factostateof theart infailureprognostics[27].Briefly,atanytimeinstantPFestimatesthe pdfofthedegradationstateofthecomponent(i.e.,itscrackdepthin ourcase)withasetofweightedparticles,whichconstituteaprobabil- itymassfunction(pmf).Whenameasureofthecrackdepthisacquired, suchpmfisadjustedinaBayesianperspective,sothattheweightsre- latedtoparticleswhichareneartheacquireddataareaugmented.

ThePFalgorithmchosenforourapplicationisthesameasthatused in [1];itrelies onasimplifiedapproachforpredictingtheevolution ofthecrack,whichdoesnotgivefullaccounttotheuncertaintyinthe particleevolution[1].Certainly,morerefinedversionsofPFcouldbe consideredtoimprovetheprognosticperformance,butthisisoutofthe scopeofthiswork:ouraimistocheckwhetherthemodeldevelopedin Section3providesconservativeestimatesofthecomponentreliability foragivensetof performancevaluesfp𝜆,fn𝜆,and𝑝𝛼𝜆,whicheverthe prognosticalgorithmis.

AsmentionedinSection2,ourmodelmainlyfocusesonprognostics.

Thus,weassumethattheuncertaintyinDTDisalreadyknownandit is describedbyanormaldistribution,which forthesimulationsthat follows,isarbitrarilytakentohavemean5andstandarddeviation1, inarbitraryunits.Then,inthesimulations,thedegradationisdetected toreachthedetectionthresholdatatimeTpr,whichisonaverage5 timeunitslargerthanTdandthevariabilityofthisdelayisgivenbythe standarddeviationof1unit.Finally,withrespecttothemaintenance policysettings,weassume=1,𝛽=40andΔ𝑡=30inarbitraryunits:

largervaluesofhorsmallervaluesof𝛽wouldresultinreliabilityvalues verycloseto1,which donotallowafairvalidationof theproposed modelingframework.

5.2. Performanceestimation

ToestimatethevaluesoftheperformancemetricsFP𝜆,FN𝜆and𝑃𝜆𝛼, weimplementthefollowingMCprocedure:

1. SimulatethecrackpropagationmechanismtofindTf,Td,theN predictioninstantsateveryΔttimeandthecorrespondingcrack lengths.Inparticular,Tpr isobtainedbyaddingasamplefrom

(5,1)toTd,whereas𝑇𝑓=𝑅𝑈𝐿at𝜆=0.Thegatheredvalues ofTfandTdarealsousedtoderive𝑓𝑇𝜙and𝑓𝑇𝑑,respectively,at step3.

2. Ateverypredictioninstantt𝜆,𝜆=𝑇𝑡𝜆𝑇𝑝𝑟

𝑓𝑇𝑝𝑟,runthePFalgorithmto estimatethecurrentcracklengthandthepdf𝑓𝑅𝜆ofthepredicted RULR𝜆.Onthisbasis,useEqs.(1)–(3)tocalculatethevaluesof ΦP𝜆,ΦN𝜆andΠ𝛼𝜆using𝑓𝑅𝜆and𝑅𝑈𝐿𝜆=𝑇𝑓𝑡𝜆.Inthisrespect, Fig.6,showsthehistogramsof 𝑘𝑁and𝑁 over𝜆asderivedfrom thesimulationof 15,000MonteCarlo trialsof crackdegrada- tion:itcanbeseenthatinalmost90%ofthetrials,𝑘

𝑁 ≥0.9and

(7)

M. Compare et al. Reliability Engineering and System Safety 168 (2017) 4–11

Fig. 6. 𝑘𝑁and 𝑁vs 𝜆.

Fig. 7. Example of degradation evolutions and computation of 𝜆related to prediction instants.

𝑁 ≥0.95.ThisimpliesthatwecanavoidcalculatingΦP𝜆,ΦN𝜆, andΠ𝛼𝜆 forall valuesof𝜆;rather,wecan reducetherangeof interestat𝜆 >𝜆,forsomeappropriatevalueof𝜆.

3. Oncesteps1and2aresimulatedalargenumberoftimesandthe correspondingvaluesofΦP𝜆,ΦN𝜆,andΠ𝛼𝜆arecollected,divide [𝜆,1)inIintervalsofthesamelength[𝜆𝑖,𝜆𝑖+1),𝜆0=𝜆,𝜆𝐼=1; Ishouldbesmallenoughthatintervals[𝜆𝑖,𝜆𝑖+1)donotcontain multiplepredictioninstantsofthesameMCtrial.Derivealso𝑓𝑇𝑑 and𝑓𝑇𝜙.

4. Foreachinterval[𝜆𝑖,𝜆𝑖+1),computetheaverage ofthe values ofΦP𝜆,ΦN𝜆,andΠ𝛼𝜆gatheredatthetimeinstant𝜆∈ [𝜆𝑖,𝜆𝑖+1); thisprovidestheestimatesfp𝜆,fn𝜆,and𝑝𝛼𝜆,whicharestep-wise functionsovertheidentifiedIintervals.

Fig.7and8provideanexampleofthedescribedprocedurefor3MC trials,inwhich𝜆=0.1.Thedegradationpathsaresimulatedovertime (Fig.7)andthecorrespondingvaluesofinterestarecollected.Fig.7also reportsforeverydegradationpaththe𝜆valuescorresponding tothe predictioninstants,which dependonthedurationof thecomponent life.Then,Fig.8partitionstheinterval[0.1;1)inintervalsoflength 0.06,whichcontainatmostonepredictioninstantofthesametrial.In thisrespect,asimpleruletoselectthemaximum𝜆intervallengthisto selectthemaximumnumberNmofpredictioninstantsinasingletrial;

then,themaximum𝜆intervallengthis 1

𝑁𝑚.

Fig. 8. Computation of the performance metric values of Fig. 7 .

Fig.9showstheresultsoftheproceduredetailedaboveforthecase studyillustratedinSection4,startingfrom𝜆𝜆=0.45.Inparticular, twodifferentlengthvaluesofthe[𝜆𝑖,𝜆𝑖+1)intervalshavebeenconsid- ered:0.05(Fig.9a)and0.005(Fig.9b).Inbothcases,wecheckedthat everyintervalcontainsatmostonepredictioninstantofthesametrial, although forsomesimulatedtrialsome intervalsdonot containany prediction(seeFig.8).This causesthenoisybehaviorofthemetrics 9

(8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ

metricvalue

pαλ fpλ

fnλ

(a) Interval length 0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ

metricvalue

pαλ

fpλ

fnλ

(b) Interval length 0.005

Fig. 9. Experimental metrics values.

inFig.9b,asthenarrowertheinterval[𝜆𝑖,𝜆𝑖+1),thesmallerthecorre- spondingnumberofgatheredvaluesofΦP𝜆,ΦN𝜆andΠ𝛼𝜆overtheMonte Carlotrials,thelargertheMCerroraffectingtheaveragedvalues.

FromtheanalysisofFig.9,wecannoticethatboththefpandfn valuesincreaseover𝜆,exceptfor𝜆≥0.95.Thisisduetofactthatwhen 𝜆≃1,𝑅𝑈𝐿=𝑁(1−𝜆𝑡≃ 0;hence,ononesidethechancesofhaving 𝜙𝑝=1reduces,whereasontheothersidethereisnopossibilitytohave 𝜙𝑛=0.Thisentailsthatfp𝜆andfn𝜆tendtoconvergeto0and1,respec- tivelyas𝜆→1.Moreover,fpisalwayslargerthanfn,exceptwhen𝜆

≥0.95.Thiscanbeeasilyexplainedrememberingthatwearetracing apercentileoftheRUL,whichfavorsthefalsepositivealarms.Forthe samereason,𝑝𝛼𝜆tendstoconvergeto0inthelastpartofthecomponent lifecycle:whenthecomponentisapproachingitsfailuretime,theRUL estimationsbecomemoreprecise;then,trackingapercentileinsteadof theRULmedianintroduces abiasthatimpactsonthepredictionac- curacy(seeFig.2).Noticethatthisbehaviordoesnot contradictthe presentedmodel:predictionsdoneatfailuretimearenotconsidered,as thecomponentisalwaysassumedtofailatNΔt,whichimpliesthatthe largestpossiblevalueof𝜆=(𝑁−1)

𝑁 <1. 5.3. Componentunreliabilityestimation

ToestimatethecomponentunreliabilitybasedonEqs.(4)–(6),the followingprocedure,derivedfrom[23],hasbeenimplemented:

Divide the time horizon in J time intervals of length Δt, [0,𝑡1),[𝑡1,𝑡2),,[𝑡𝐽−1,𝑡𝐽],andassociateacountertoeveryinterval, whoseinitialvalueissetto0.

Sample𝛿fDTD;thisway,wecanestimatetheKernelinEq.(4), whichisconditionalonDTD.

ComputethefirstaddendumofEq.(4)byMonteCarlo,evaluating theintegralcorrespondingtotheundetectedfailureprobability:for eachfailuretimetj,wesampleTprfrom(𝑡𝑗𝛿,𝑡𝑗),i.e.,auniform distributionbetween𝑡𝑗𝛿andtj(seeforcedsimulationin[23]).

ComputethesecondintegralofEq.(4),similarlytothepreviousone exceptthatTprmustbesampledfrom(0,𝑡𝑗𝛿).Then,k,hand Narecomputed,andthevaluesoftheperformancemetricsobtained areusedtocompleteEq.(4).

Estimatek(tj,Failed)oftheintegralinEq.(5)byapplyingMCmethod [23].

Estimatetheunreliabilityattimetj (Eq.(6)),bysummingallthe failurecontributionsontherightoftj:

𝑢(𝑡𝑗)≃ Δ𝑡

𝑗 𝑖=1

[𝑘(𝑡𝑗,𝐹𝑎𝑖𝑙𝑒𝑑)] 𝑗=1,,𝐽

5.4. Estimationofthe‘on-line’ unreliability

TheonlineunreliabilityisestimatedthroughtheMCprocedurede- velopedin[1].Briefly,thetimehorizonispartitionedintime-channels

0 100 200 300 400 500 600 700 800 900 1000 1100

0 0.04 0.08 0.12 0.16

time

unreliability

offline online

Fig. 10. Comparison between ‘on-line ’ and ‘off-line ’ unreliabilities.

oflengthΔtunitsoftime.Thecrackgrowthprocessissimulatedover timetogether withDTDtocomputeTd. IfTprTf,theunreliability countersassociatedtothechannelsfromTftotheendofthetimewin- dowaresetto1;otherwise,theempiricalpdf𝑓𝑅𝜆isestimatedeveryΔt unitsoftimebymeansoftheParticleFiltering.Then,ateachpredic- tiontimet𝜆,ifthepredicted𝛽thpercentileof𝑓𝑅𝜆isbeforethenexthth inspectiontime,thenthecomponentisremovedfromoperation,other- wiseitcontinuestowork.Thetrialsimulationcontinuesuntileitherthe componentfailsorisremovedfromoperation:intheformercase,the unreliabilitycountersassociatedtothechannelsfromTftotheendof thetimewindowaresetto1;otherwisetheyaresetto0.Finally,the onlineunreliabilityateveryΔtisestimatedastheaverageovermany MCsimulationtrialsoftheaccumulatedcountervalues.Asmentioned before,weexpectthattheofflineunreliabilitycurveisalwaysabovethe onlineone,aswehavebuiltamodelwhichunder-estimatesthesafety benefitofaPHMsystem.

5.5. Results

Fig.10showsthetwounreliabilitycurvesobtainedusingthetwo methodsdescribedabove.ThebarsinFig.10representthe68%two- sidedconfidenceintervaloftheMCsimulationerror,bothintheon-line andoff-linesetting.FromtheanalysisoftheFigure,itseemsfairtosay thattheproposedreliabilitymodelisaccurate,asthetwocurvesare closetoeachother.Noticethatthedifferencebetweenthetwocurves increaseswithtime,meaningthatthere arenopredictioninstantsat whichourmodelover-estimatesthecomponentstoppingprobability.

6. Conclusion

Inthiswork,wehavepresentedanovelgeneralframeworktocom- putethereliabilityofaPHM-equippedcomponent.Themodelingframe- workproposedappliestosafetycriticalcomponentsandrisk-aversecon- texts(e.g.,applicationsofthenuclear,aerospace,oilandgasindustries),

Références

Documents relatifs

Coupez et collez le prochain image qui devrait apparaitre dans la suite.. À

The sixth assumption reflects the aging effects addressed in (Fan et al. more likely lead to extreme damages) when the component is in severe degradation states. However,

Abstract: In orthopedic surgery, the effectiveness of the implants used, such as hip and knee prostheses, depends mainly on their geometries and the type of loading to which they

KEYWORDS— Reliability analysis, critical stress intensity factor, crack length, load, reliability index..

We have proposed a method inspired by the NTFA (Nonlinear Transformation Field Analysis), which allows the model reduction of a complete elastic viscoplastic

It is therefore reasonable to fit the fluorescence intensity versus time data for linear sweep iDEP in terms of a minimum voltage at which trapping appears and the rate at which

The device utilizes dielectrophoresis (DEP) to simultaneously sense and sort individual cells based on their internal lipid content. Microorganisms such as yeast,

The objective of this paper is to highlight through a numerical experiment the impact of the test plan design defined here by the number of the products to be