• Aucun résultat trouvé

MICROSCOPIC CALCULATIONS OF THE BACKGROUND BELOW GIANT RESONANCES

N/A
N/A
Protected

Academic year: 2021

Partager "MICROSCOPIC CALCULATIONS OF THE BACKGROUND BELOW GIANT RESONANCES"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00224067

https://hal.archives-ouvertes.fr/jpa-00224067

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MICROSCOPIC CALCULATIONS OF THE BACKGROUND BELOW GIANT RESONANCES

F. Osterfeld, A. Schulte

To cite this version:

F. Osterfeld, A. Schulte. MICROSCOPIC CALCULATIONS OF THE BACKGROUND BE- LOW GIANT RESONANCES. Journal de Physique Colloques, 1984, 45 (C4), pp.C4-13-C4-24.

�10.1051/jphyscol:1984402�. �jpa-00224067�

(2)

30URNAL DE PHYSIQUE

Colloque C4, supplément au n°3, Tome 45, mars 1984 page C4-13

MICROSCOPIC CALCULATIONS OF THE BACKGROUND BELOW GIANT RESONANCES F. O s t e r f e l d and A. S c h u l t e

Institut fuv Kernphysik, Kevnforschungsa.n~la.ge Juliah, D-5170 JUlieh, F.R.G.

Résumé - En appliquant un modèle microscopique à 1 p a r t i c u l e - 1 t r o u "doorway"

pour des é t a t s nucléaires e x c i t é s , nous montrons que les spectres d ' é n e r g i e continue des réactions d'énergie i n t e r m é d i a i r e (p,n) en d i r e c t i o n avant sont essentiellement un r é s u l t a t des processus à un pas. Le modèle est appliqué aux réactions H OCa(p,n) à une énergie i n c i d e n t e de 160 MeV et ^ V r ( p , n ) à 200 MeV. Dans l e cas du Zr nous trouvons qu'une p a r t i e importante de la f o r c e Gamow-Teller est l o c a l i s é e dans l a région de haute énergie d ' e x c i t a t i o n , 15«E <50 MeV. I l y a des i n d i c a t i o n s que l a force de t r a n s i t i o n du d i p o l e géant résonnant " s p i n - f l i p " ( A L = 1 , A S = 1 , A T = 1 ) est r é d u i t e d ' e n v i r o n 50 %.

Abstract - Using a microscopic 1 p a r t i c l e - 1 hole doorway model f o r nuclear e x c i t e d states we show t h a t the continuous forward angle energy spectra of medium energy ( p . n ) - r e a c t i o n s are mainly a r e s u l t of d i r e c t one-step proces- ses. The model i s a p p l i e d t o the reactions 4 8Ca(p,n) at 160 MeV and t o

9 0Z r ( p , n ) at 200 MeV i n c i d e n t energy. In case of 9 0Z r ( p , n ) we f i n d t h a t a large f r a c t i o n of Gamow-Teller strength i s located i n the high e x c i t a t i o n energy region 15<E <50 MeV. There are i n d i c a t i o n s t h a t the t r a n s i t i o n strength of the s p i n - f l i p giant d i p o l e (AL=1, A S = 1 , A T = 1 ) resonance i s quenched by roughly 50 %.

I - INTRODUCTION

One of the most serious problems i n the analysis of giant resonance states which ap- pear e n e r g e t i c a l l y i n the continuum region of the nuclear e x c i t a t i o n spectrum i s the decomposition of the spectra i n t o resonance and the u n d e r l y i n g physical background.

This i s p a r t i c u l a r l y t r u e f o r the e x c i t a t i o n of giant resonances by i n e l a s t i c hadron s c a t t e r i n g / l / where the resonances are located on top of a large continuum (back- ground) whose shape and magnitude is not known and whose nature depends on the probe used. U n c e r t a i n t i e s i n the decomposition of the spectra i n t o resonance and back- ground s e r i o u s l y l i m i t the accuracy w i t h which the amount of sum r u l e strength ex- hausted by the giant resonance states can be determined.

The nature of the background i s e s p e c i a l l y complicated i n reactions induced by p r o - j e c t i l e s ( p r o t o n s , deuterons, a - p a r t i c l e s ) w i t h r e l a t i v e l y low i n c i d e n t energy

(energy/nucleon < 100 MeV). In t h i s case m u l t i s t e p processes produce the dominant c o n t r i b u t i o n (75 %) t o the background cross section as has been reported by various authors / 2 - 5 / . For composite p a r t i c l e s c a t t e r i n g a d d i t i o n a l d i f f i c u l t i e s a r i s e be- cause of the p o s s i b i l i t y of the p r o j e c t i l e breakup combined w i t h other reaction mechanisms / 6 / . The s i t u a t i o n should be much s i m p l e r , however, f o r proton s c a t t e r i n g at high i n c i d e n t energy (E > 100 MeV) where the energy dependent p r o j e c t i l e - t a r g e t nucleon coupling p o t e n t i a l becomes weak / 7 / and the r e a c t i o n mechanism t h e r e f o r e dominantly d i r e c t . That t h i s supposition i s , indeed, c o r r e c t was r e c e n t l y shown by

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984402

(3)

C4-14 J O U R N A L DE PHYSIQUE

Chiang and Hufner /8/, by B e r t s c h and Scholten /9/, and a l s o by one o f t h e p r e s e n t a u t h o r s

/lo/.

I n t h e l a t t e r p u b l i c a t i o n

/ l o /

a m i c r o s c o p i c background model was de- veloped which a l l o w e d t o c a l c u l a t e t h e c o n t i n u o u s spectrum o f h i g h energy (p,n)- s p e c t r a w i t h an accuracy o f 30 %. The model i s o n l y a p p l i c a b l e f o r f o r w a r d a n g l e s p e c t r a and f o r e x c i t a t i o n e n e r g i e s which a r e s m a l l e r t h a n h a l f t h e i n c i d e n t p r o j e c - t i l e energy. To d e s c r i b e h i g h e r Q-value r e a c t i o n s ( I Q I a Eiuc/2) and l a r g e a n g l e s c a t t e r i n g one has t o come back t o t h e models and methods d i s c u s s e d i n Machnerls c o n t r i b u t i o n /11/ t o t h i s conference.

I n t h e r e s e n t paper we extend o u r s t u d i e s o f t h e background below g i a n t resonances t o t h e "Zr(p,n) r e a c t i o n a t Einc = 200 MeV /12/. The m o t i v a t i o n f o r t h i s i n v e s t i g a - t i o n was t o determine as a c c u r a t e as p o s s i b l e t h e sum r u l e s t r e n g t h exhausted by t h e famous g i a n t Gamow-Teller (GT) resonance which was r e c e n t l y d i s c o v e r e d i n h i g h e n e r - gy (p,n)-experiments /13-16/ a t t h e I n d i a n a U n i v e r s i t y C y c l o t r o n F a c i 1 it y . The GT- resonance i s t h e s p i n - i s o s p i n (AS=l, AT=l, AL=O) c o l l e c t i v e mode, which was a1 ready p r e d i c t e d by Ikeda, F u j i i and F u j i t a as e a r l y as 1963 /17/. The e x c i t i n g t h i n g about t h e GT-resonances i s t h a t o n l y r o u g h l y 65+5 % of t h e t h e o r e t i c a l l y /17/ expected t o - t a l GT-strength i s found i n t h e s e experiments /18,19/ ( w i t h t h e background s u b t r a c - t i o n as suggested i n r e f . 10). Several a u t h o r s /20,21/ have suggested t h a t t h i s so- c a l l e d quenching p f t h e t o t a l GT-strength i s due t o t h e a d m i x t u r e o f ~ ( 1 2 3 2 ) i s o b a r - nucleon h o l e (AN- ) e x c i t a t i o n s i n t o t h e p r o t o n p a r t i c l e - n e u t r o n h o l e (PN- 1 ) GT- s t a t e . F o r a q u a n t i t a t i v e u n d e r s t a n d i n g o f t h i s A i s o b a r e f f e c t , however, i t i s o f utmost importance t o c a l c u l a t e t h e background i n a most r e l i a b l e way.

R e c e n t l y B e r t s c h and Hamarnoto /22/ have p o i n t e d o u t t h a t a l a r g e f r a c t i o n o f GT- s t r e n g t h (more t h a n 50 % o f t h e m i s s i n g s t r e n g t h ) c o u l d be s h i f t e d i n t o t h e energy r e g i o n above t h e GT-resonance (10 t o 45 MeV e x c i t a t i o n energy r e g i o n ) due t o t h e m i x i n g o f t h e l p l h GT-state w i t h e n e r g e t i c a l l y h i g h - l y i n g two p a r t i c l e - t w o h o l e

(2p-2h) c o n f i g u r a t i o n s and t h a t t h i s s h i f t e d s t r e n g t h would produce a s u b s t a n t i a l p a r t o f t h e continuum background seen i n t h e 200 MeV z e r o degree 9 0 ~ r ( p , n ) - s p e c t r a a t h i g h n e g a t i v e Q-values. I n t h i s paper we t e s t t h i s c o n j e c t u r e o f B e r t s c h and Ha- mamoto /22/ i n very d e t a i l by p e r f o r m i n g a d e t a i l e d a n a l y s i s o f t h e 9 0 ~ r ( p , n ) - s p e c - t r a u s i n g o u r m i c r o s c o p i c background model. I n a d d i t i o n , we a l s o t r y t o determine t h e background below t h e s p i n i s o s p i n g i a n t d i p o l e resonance (hS=l, aT=l, a L = l ) i n o r d e r t o make a statement about t h e s p i n dependence o f t h e quenching /21,23/. The s p i n d i p o l e resonance appears e n e r g e t i c a l l y r o u g h l y 10 MeV above t h e GTR and has a w i d t h o f about 10 MeV /12,16,18/. It has been i n t e r p r e t e d as t h e envelope o f 3 c o l - l e c t i v e s t a t e s w i t h s p i n p a r i t y 0-, 1- and 2- /12,23/. B e f o r e we d i s c u s s t h e r e - s u l t s , however, we s h o r t l y d e s c r i b e t h e background model used i n t h e c a l c u l a t i o n s .

I 1

-

THE BACKGROUND MODEL

Our background model

/ l o /

i s chosen such t h a t i t d e s c r i b e s t h e d i s c r e t e and t h e con- t i n u o u s p a r t s o f t h e spectrum as c o n s i s t e n t l y as p o s s i b l e , and t h a t i t a l s o i n c l u d e s s p e c i f i c p r o p e r t i e s o f t h e t a r g e t nucleus l i k e i t s s h e l l s t r u c t u r e , n e u t r o n excess, c o l l e c t i v i t y , etc., i n d e t a i l . The model assumptions a r e as f o l l o w s :

(1) F o r (p,pl ) and (p,n) r e a c t i o n s a t h i g h i n c i d e n t e n e r g i e s ( E a 100 MeV) t h e c r o s s s e c t i o n a t f o r w a r d angles i s dominated by d i r e c t processes as l o n g as t h e e x c i t a t i o n energy i s l e s s t h a n h a l f t h e beam energy. T h i s assumption i s s u p p o r t e d by both ex- periment and t h e o r y . The 0'-cross s e c t i o n s o f t h e 200 MeV (p,n)-data o f Gaarde e t a l . /12/, f o r i n s t a n c e , show a c h a r a c t e r i s t i c f a l l i n g o f f w i t h i n c r e a s i n g e x c i t a t i o n energy. Large c o n t r i b u t i o n s o f m u l t i s t e p processes, however, s h o u l d i n s t e a d l e a d t o a

rise

i n c r o s s s e c t i o n w i t h i n c r e a s i n g e x c i t a t i o n energy due t o t h e g r e a t e r number

(4)

o f i n t e r m e d i a t e s t a t e s p o s s i b l e f o r h i g h e r energy losses. C a l c u l a t i o n s o f m u l t i s t e p r e a c t i o n c r o s s s e c t i o n s by Chiang and Hiifner /8/ show t h a t t h e f o r w a r d a n g l e c r o s s s e c t i o n s i n h i g h energy ( p , p l ) r e a c t i o n s a r e l a r g e l y due t o 1 s t e p processes. L a s t b u t not l e a s t , a l s o o u r own model c a l c u l a t i o n s s h o u l d prove o r d i s p r o v e t h i s assump- t i o n .

( 2 ) The e f f e c t i v e p r o j e c t i l e - t a r g e t nucleon i n t e r a c t i o n can be approximated by t h e f r e e N-N t - m a t r i x , i.e. by t h e G 3 Y - i n t e r a c t i o n o f Love and Franey /7/.

( 3 ) The o n l y n u c l e a r s t a t e s c o n t r i b u t i n g t o t h e (p,n)-background a t E a 100 MeV a r e s p i n f l i p (AS-1, a T = l ) s t a t e s . T h i s argument i s based on t h e f a c t t h a t t h e son-part o f t h e G3Y-i n t e r a c t i o n which e x c i t e s s p i n f l i p s t a t e s i s n e a r l y energy independent w h i l e t h e T T - p a r t which e x c i t e s t h e n o n - s p i n - f l i p s t a t e s g e t s s t r o n g l y reduced a t

E a 100 MeV / 7 / .

g e

# e cont

&

nuum

pro tons neutrons

Fig. 1

-

Schematic r e p r e s e n t a t i o n o f t h e m i c r o s c o p i c model used f o r t h e background c a l c u l a t i o n s . I n t h e f i g u r e E denotes t h e Fermi energy, Es t h e nucleon s e p a r a t i o n

F .

energy, and Ep t h e i n c i d e n t p r o j e c t i l e energy. F o r t h e e f f e c t i v e p r o j e c t i l e t a r g e t nucleon i n t e r a c t i o n V e f f t h e G3Y-i n t e r a c t i o n o f Love and Franey /7/ i s used.

( 4 ) The f i n a l n u c l e a r s t a t e s a r e assumed t o be o f s i m p l e p r o t o n p a r t i c l e - n e u t r o n h o l e doorway n a t u r e i n c l u d i n g bound, quasibound and continuum s t a t e s (see F i g . 1).

The s i n g l e p a r t i c l e wave f u n c t i o n s o f t h e bound and continuum s t a t e s a r a generated f r o m a Woods-Saxon p o t e n t i a l which i s chosen t o reproduce t h e known e x p e r i m e n t a l s i n g l e p a r t i c l e energies. The p r o t o n p a r t i c l e and n e u t r o n h o l e a r e coupled t o s t a t e s o f s p i n p a r i t y J*. T h i s i s advantageous s i n c e t o 0' cross s e c t i o n s o n l y s t a t e s w i t h low m u l t i p o l a r i t y can c o n t r i b u t e . Furthermore, by t h i s procedure we o b t a i n t h e con- t r i b u t i o n s t o t h e background due t o d i f f e r e n t f i n a l nucleus s p i n s J* s e p a r a t e l y . T h i s g i v e s us t h e p o s s i b i l i t y t o t r e a t t h e n u c l e a r s t r u c t u r e o f s t a t e s w i t h d i f f e r -

(5)

C4-16 JOURNAL DE PHYSIQUE

ent J' i n n u c l e a r models o f v a r y i n g s o p h i s t i c a t i o n . F o r example, we may i n c l u d e /22/

n u c l e a r c o l l e c t i v i t y and ~ ( 1 2 3 2 ) - i s o b a r e f f e c t s i n t o t h e n u c l e a r s t r u c t u r e c a l c u l a - t i o n s f o r t h e Gamow-Teller (1')-states w h i l e we use a s i m p l e p a r t i c l e - h o l e model f o r t h e r e s t o f t h e s t a t e s . The l a t t e r form t h e n t h e "background" f o r t h e GT-states. I n a d d i t i o n , we can d i s e n t a n g l e t h e spectrum i n t o t h e v a r i o u s m u l t i p o l a r i t i e s and d i s - cuss t h e s t r e n g t h d i s t r i b u t i o n f o r each J'.

( 5 ) The whole background i s assumed t o be a s i m p l e s u p e r p o s i t i o n o f c r o s s s e c t i o n s o f i n e l a s t i c e x c i t a t i o n s t o bound, quasibound and continuum s t a t e s .

( 6 ) The c r o s s s e c t i o n s a r e c a l c u l a t e d i n t h e DWIA-approximation u s i n g t h e f a s t speed DWBA-code FROST-MARS /24/ which i n c l u d e s knock-out exchange a m p l i t u d e s e x a c t l y . The p a r t i c l e - h o l e doorway model discussed i n c l u d e s t h e n u c l e a r continuum e x a c t l y b u t t r e a t s n u c l e a r c o l l e c t i v i t y e x p l i c i t l y o n l y f o r c e r t a i n s e l e c t e d s t a t e s l i k e t h e GTR o r t h e i s o b a r i c analogue 0'-state (IAS). We argue t h a t f o r o u r purpose such a l i m i t - ed i n c l u s i o n o f n u c l e a r c o l l e c t i v i t y i s s u f f i c i e n t . Our argument i s based on t h e work o f Speth e t a l . /25/ who have shown t h a t f o r aS=l, AT=l t r a n s i t i o n s c o l l e c t i v - i t y p l a y s o n l y a r o l e f o r low m u l t i p o l a r i t i e s , i.e. f o r 0-, I+, 1- (AS-1) and, may- be, 2- s t a t e s . T h i s i s s i m p l y an e f f e c t o f t h e f i n i t e range r e s i d u a l p a r t i c l e - h o l e

( p h ) - i n t e r a c t i o n i n t h e aS=l, AT=l channel /25/ which i s s t r o n g l y r e p u l s i v e f o r low s g i n s t a t e s and weak f o r h i g h s p i n s t a t e s (J" > 2-). Therefore s t a t e s w i t h l a r g e J a r e n e a r l y u n a f f e c t e d by t h e r e s i d u a l p h - i n t e r a c t i o n (see a l s o r e f . 23 f o r a de- t a i l e d d i s c u s s i o n ) .

I 1 1

-

RESULTS AND DISCUSSION

I n t h e m i c r o s c o p i c 1 p a r t i c l e - 1 h o l e doorway mod 1 we have c a l c u l a t e d t h e background a t v a r i o u s sca t e r i n g angles f o r t h e r e a c t i o n s 4'Ca(p,n) a t 150 MeV i n c i d e n t energy

/ l o /

and f o r 9'Zr(p,n) a t 200 MeV. F i r s t we shal.1 d i s c u s s t h e background below t h e GT-resonance i n t h e 0'-spectra and a f t e r w a r d s t h e background below t h e g i a n t d i p o l e s p i n - f l i p (aS=l, AT=^, a L = l ) resonance t h e c r o s s s e c t i o n o f which peaks a t 4.5'.

111.1

-

C a l c u l a t i o n s o f t h e Background Below t h e GT-Resonance

I n Fig. 2 we show t h e ~ ~ - s ~ e c t r u m f o r t h e r e a c t i o n 4 8 ~ a ( p , n ) . The e x p e r i m e n t a l data ( t h i c k f u l l l i n e ) have been t a k e n f r o m Anderson e t a l . The c a l c u l a t i o n s f o r t h e con- t i n u o u s spectrum (dot-dashed c u r v e ) reproduce t h e data a t h i g h n e g a t i v e Q-values r e - markably w e l l i n b o t h shape and magnitude. The c a l c u l a t e d spectrum i s t h e i n c o h e r e n t sum o f a l l cross s e c t i o n s w i t h m u l t i p o l a r i t i e s AL=O t h r o u g h AL=3 (J" = 0-,l+,lV, 2+,2-,3+,3-,4-). The c a l c u l a t e d continuum f a l l s o f f s h a r p l y a t Q

-

-20 MeV. T h i s f a l l i n g o f f i s a combined e f f e c t o f t h e Coulomb and t h e c e n t r i f u g a l b a r r i e r which make t h e continuum wave f u n c t i o n o f t h e e x c i t e d p r o t o n I E , t j

>

s m a l l i n t h e n u c l e - a r s u r f a c e r e g i o n , e s p e c i a l l y f o r s m a l l e r e n e r g i e s (E <

PO

B e t ) and a n g u l a r momen- t a t

+

0. As a consequence t h e n u c l e a r t r a n s i t i o n d e R s i t i e s a r e small f o r t h e s e e n e r g i e s and t h e r e f o r e a l s o t h e c r o s s s e c t i o n s . The background j u s t below t h e GT- resonance has t h e n t o be produced f r o m a l l t h e t r a n s i t i o n s which promote a n e u t r o n from t h e 2 s - l d - s h e l l and s h e l l v i a charge exchange i n t o t h e p r o t o n 2 p - l f - s h e l l (see Fig. 1). The c r o s s s e c t i o n s produced by t h e s e s t a t e s a r e shown i n Fig. 2 as d i s c r e t e l i n e s . (Note t h a t t h e c r o s s s e c t i o n s t o t h e GTR and IAS have n o t been p l o t - ted.) Most o f t h i s background c r o s s s e c t i o n i s due t o h L = l (0-,1-,2-) and nL=2 (3') e x c i t a t i o n s . The sum o f a l l c r o s s s e c t i o n s i n t h e Q - i n t e r v a l from 2 t o 15 MeV amounts t o 5.4 mb f r o m which 2.5 mb a r e due t o 0-, 1.4 mb due t o 2-, and 1.0 mb due

(6)

E=160 MeV 1'. T=3

ec.m.=0'

talc. background

---. exp. background

l+,~=&

subtracted AL=1

\

_._.-' -.-.-.

___.-.

/

A '.

E=160 MeV

~ , . m = O O

AL,=l

Fig. 2

-

Zero degree s p e c t r a f o r t h e r e a c t i o n s 4 8 ~ a ( p , n ) and 4 0 ~ a ( p , n ) , The d a t a ( t h i c k f u l l l i n e ) a r e t a k e n f r o m r e f s . 26 and 12 (see t e x t ) . The d i s c r e t e l i n e s a r e c a l c u l a t e d c r o s s s e c t i o n s due t o bound and quasibound s t a t e s . The arrow l a b e l l e d w i t h a L = l i n d i c a t e s t h e l o c a t i o n where t h e a L = l resonance (0-,1-,2-) would occur i f n u c l e a r c o l l e c t i v i t y were i n c l u d e d f o r t h e s e s t a t e s . The t h e o r e t i c a l c r o s s s e c t i o n s due t o t h e GTR and IAS a r e p l o t t e d . The o p t i c a l parameters f o r t h e c r o s s s e c t i o n c a l c u l a t i o n s have been t a k e n from r e f . 39.

t o 3' e x c i t a t i o n s . Note t h a t most o f t h e A i = l (0-,1-,2-) s t r e n g t h i s s h i f t e d i n t o t h e energy r e g i o n around Q = -22 MeV (as i n d i c a t e d i n t h e f i g u r e ) when t h e r e s i d u a l p h - i n t e r a c t i o n i s s w i t c h e d on. We emphasize t h a t t h e r e e x i s t s a sum r u l e f o r AL=l charge exchange modes /14/. T h i s sum r u l e t e l l s us t h a t when we c o n s i d e r a r e s i d u a l p h - i n t e r a c t i o n t h e s t r e n g t h i s o n l y r e d i s t r i b u t e d , i .e. t h e s t r e n g t h i s moved from t h e low t o t h e h i g h e x c i t a t i o n energy region. T h e r e f o r e t h e 5 mb c a l c u l a t e d i n our u n p e r t u r b e d ph-doorway model r e p r e s e n t an upper l i m i t f o r t h e background below t h e GTR i n 4 8 ~ a . I n t h e e x p e r i m e n t a l a n a l y s i s , however, a background o f r o u g h l y 17 mb i s s u b t r a c t e d (see F i g . 2a). Our c a l c u l a t i o n s show t h a t a t l e a s t 12 mb o f t h i s back- ground a r e a c t u a l l y GT-strength. By a d d i n g t h i s c r o s s s e c t i o n o f 12 mb t o t h a t o f t h e

I+,

T=3, 11 MeV s t a t e t h e GT-cross s e c t i o n a t 0' i s changed f r o m 48 t o 60 mb which makes an e f f e c t o f 25 %.

The r e s u l t s p r e s e n t e d above have been c o n f i r m e d i n t h e meantime by Rapaport /19/ and by Anderson e t a l . 1291. Both groups /19,29/ a r e u s i n g q u i t e d i f f e r e n t methods t h a n o u r s t o determine t h e background. Anderson e t a l . /29/, f o r i n s t a n c e , f i r s t s u b t r a c t a quasi f r e e s c a t t e r i n g c r o s s s e c t i o n f r o m t h e ~ ~ - ( ~ , n ) - s ~ e c t r u m . Then t h e y p e r f o r m a m u l t i p o l e decomposition o f t h e r e m a i n i n g background and f i n d t h a t most o f t h i s cross s e c t i o n has an AL=O a n g u l a r d i s t r i b u t i o n l i k e t h e GTR. They a l s o conclude t h a t 13 mb of t h e e x p e r i m e n t a l l y s u b t r a c t e d background below t h e GTR i n 4 8 ~ a (p,n) i s a c t u a l l y GT-st rength.

(7)

C4-18 J O U R N A L DE PHYSIQUE

l l l ~ l l l ~ l l l ~ l l l ~ l l l ~

- -

- 90

Z r ( p n ) 9 0 ~ b -

- -

E=200 MeV

-

- 0 = 0

0

- -

-

- -

- -

- -

- - -

- -

I \

- f

I , I . ~ ~ ~ ~ I ~ ~ ~ I ~ ~ , ~

i '.--A / \

.

/

--

-

/ '---cz-

I 1

I

I

-

Fig. 3

-

Zero degree spectrum f o r t h e r e a c t i o n " ~ r ( ~ , n ) . The data ( t h i c k f u l l l i n e ) a r e t a k e n f r o m r e f . 12. The d i s c r e t e l i n e s a r e c a l c u l a t e d c r o s s s e c t i o n s due t o bound and quasibound s t a t e s . The t h e o r e t i c a l c r o s s s e c t i o n s due t o t h e GTR and IAS a r e

not

p l o t t e d . The o p t i c a l parameters f o r t h e c r o s s s e c t i o n c a l c u l a t i o n s have been t a k e n f r o m r e f . 39.

I n F i g . 3 we show t h e 0'-spectrum of t h e r e a c t i o n "zr(p,n). The e x p e r i m e n t a l d a t a ( f u l l c u r v e ) have been t a k e n f r o m r e f . 12. The dashed c u r v e r e p r e s e n t s t h e c a l c u - l a t e d continuous background. Again we sum a1 1 c r o s s s e c t i o n s w i t h m u l t i p o l a r i t i e s aL=O t h r o u g h AL=3 (J* = 0-,1-,lt,2-,2+,3-,3+,4-) and i n c l u d e t h e r e f o r e a t l e a s t a1 1 3 o - l p l h - e x c i t a t i o n s i n t h e c a l c u l a t i o n s . There e x i s t s one d i f f e r e n c e between t h e c a l c u l a t i o n s f o r 4 8 ~ a ( p , n ) and ' O ~ r ( ~ , n ) , namely t h e l a t t e r i n c l u d e s a l s o a s p i n o r b i t p o t e n t i a l f o r t h e continuum wave f u n c t i o n o f t h e e x c i t e d p r o t o n w h i l e t h e s p i n - o r b i t p o t e n t i a l was n e g l e c t e d i n 4 8 ~ a ( p , n )

/lo/.

It i s a c t u a l l y t h e s p i n - o r b i t p o t e n t i a l which i s r e s p o n s i b l e f o r t h e resonance t y p e s t r u c t u r e s i n t h e c a l c u l a t e d continuous background around Q-values Q = -25 and Q = -31 MeV. Both bumps a r e essen- t i a l l y due t o (aL=2) J* = lf,2+,3' e x c i t a t i o n s and f o r m t h e b u i l d i n g " b l o c k s " f o r t h e A L = 2 resonance. The s p i n - o r b i t p o t e n t i a l VSO s p l i t s t h e s t r e n g t h which i s essen- t i a l l y degenerate when VSO = 0. It s h o u l d be mentioned t h a t t h e bumps would be ap- p r e c i a b l y smeared out i f we would a l s o i n c l u d e a s p r e a d i n g w i d t h i n t h e c a l c u l a - t i o n s .

Ther i s a n o t h e r @ p o r t a n t d i f f e r e n c e between t h e r e s u l t s f o r t h e c o n t i n u o u s s p e c t r a i n 4'Ca(p,n) and Zr(p,n). While t h e back round c a l c u l a t i o n s reproduce t h e e x p e r i - mental d a t a a t h i g h n e g a t i v e Q-values f o r j8Cajp,n) t h e y f a i 1 t o do so f o r 9 0 ~ r ( p , n ) and u n d e r e s t i m a t e h e r e t h e data by a f a c t o r o f about 2. The " m i s s i n g " c r o s s s e c t i o n i n t h e c a l c u l a t e d spectrum around Q = -28 MeV i s n o t r e a l l y m i s s i n g s i n c e most o f t h e c r o s s s e c t i o n due t o 0-, 1-, and 2- s t a t e s which appear i n our model a t lower

(8)

F i g . 4

-

S t r e n g t h d i s t r i b u t i o n o f t h e a L = l (0-,1-,2-) charge exchange resonance i n 9 0 ~ r as d e t e r m i n e d by an R P A - c a l c u l a t i o n o f B e r t s c h , Cha and Toki /30/.

Zr A L = l STRENGTH 1 -

e x c i t a t i o n e n e r g i e s ( t h e d i s c r e t e l i n e s i n F i g . 3) would be s h i f t e d t o t h i s energy r e g i o n i f we would i n c l u d e n u c l e a r c o l l e c t i v i t y i n o u r c a l c u l a t i o n s . To d e m o n s t r a t e t h i s we show i n F i g . 4 t h e s t r e n g t h d i s t r i b u t i o n f o r t h e 0-, 1- and 2- s t a t e s i n 'Ozr o b t a i n e d i n an RPA c a l c u l a t i o n by B e r t s c h , Cha and Toki /30/. I n t h e s e RPA c a l - c u l a t i o n s a l l t h e 0- and most o f t h e l- s t r e n g t h i s moved t o t h e energy r e g i o n around Q = -28 MeV w h i l e t h e 2- s t r e n g t h i s d i s t r i b u t e d o v e r a somewhat w i d e r energy range. The sum o f 0-, 1-, and 2- cross s e c t i o n s i n F i g . 3 amounts roughly t o

-

14 mb, f r o m w h i c h 6.6 mb a r e due t o 0-, 1.4 mb due t o 1-, and

-

6 mb due t o 2- t r a n s i t i o n s (see T a b l e 1). U s i n g t h e r e s u l t s o f B e r t s c h e t a l . /30/ d i s p l a y e d i n F i g . 4 we f i n d a maximum o f about 7.4 mb A L = l c r o s s s e c t i o n d i r e c t l y below t h e GT- resonance. T h i s means t h a t a l s o i n ' O ~ r ( ~ , n ) we have p r a c t i c a l l y no background below t h e GT-resonance, i.e., a l l t h e c r o s s s e c t i o n i n t h e Q - v a l u e range -12>0>-20 i s GT- s t r e n g t h . A r e a l problem, however, i s t h a t t h e c a l c u l a t e d c o n t i n u o u s spectrum under- e s t i m a t e s t h e e x p e r i m e n t a l d a t a i n t h e Q - v a l u e range -32>Q>-50. One c o u l d argue t h a t t h i s " m i s s i n g " c r o s s s e c t i o n m i g h t be produced by nL=4 e x c i t a t i o n s n o t i n c l u d e d i n o u r c a l c u l a t i o n s . We have checked t h i s p o i n t by c a l c u l a t i n g c r o s s s e c t i o n s f o r t r a n - s i t i o n s w i t h t h e l a r g e s t B(M4)-values. These t r a n s i t i o n s have e i t h e r s p i n p a r i t y J' = 4' o r 5'. We found t h a t t h e s e s t a t e s make a n e g l i g i b l e c o n t r i b u t i o n t o t h e c r o s s s e c t i o n a t f o r w a r d a n g l e s as one w o u l d e x p e c t f r o m t h e nL=4 shape of t h e i r an- g u l a r d i s t r i b u t i o n s . Furthermore, i f t h e m i s s i n g c r o s s s e c t i o n would be due t o nL=4 t r a n s i t i o n s t h e d i s c r e p a n c y between e x p e r i m e n t a l and c a l c u l a t e d c r o s s s e c t i o n s h o u l d i n c r e a s e w i t h a n g l e s i n c e c r o s s s e c t i o n s o f aL=4 shape g i v e t h e b i g g e s t c o n t r i b u t i o n a t l a r g e r s c a t t e r i n g angles. T h i s b e h a v i o u r , however, i s n o t seen i n t h e s p e c t r a . There i s a c t u a l l y j u s t t h e o p p o s i t e tendency i n t h a t t h e d i f f e r e n c e between measured and c a l c u l a t e d c r o s s s e c t i o n becomes s m a l l e r w i t h i n c r e a s i n g s c a t t e r i n g a n g l e , as can be seen f r o m Figs. 5 and 6. We t h e r e f o r e conclude t h a t t h i s " m i s s i n g " c r o s s sec- t i o n a t l a r g e Q-values and f o r w a r d a n g l e s can o n l y be produced by a n o t h e r mechanism.

b

- I

An e x p l a n a t i o n c o n s i s t e n t w i t h t h e s u g g e s t i o n s o f B e r t s c h and Hamamoto /22/ (see

- -

a l s o r e f s . 31,32,33) i s t h a t t h i s c r o s s s e c t i o n n o t d e s c r i b e d by t h e background c a l -

+ 2-

-5 w

m 2-

I-

2- 0- -

-

V)

2- -

I- 1- 1-

I I I I 1 I

(9)

C4-20 JOURNAL DE PHYSIQUE

Table 1

-

Sum o f cross s e c t i o n s o f a l l l f i w n L = l t r a n s i t i o n s w i t h s p i n - p a r i t i e s 'J = 0-, I-, and 2- o b t a i n e d f o r d i f f e r e n t s c a t t e r i n g angles o. Column 4 shows t h e sum o f 0-, 1- and 2- c r o s s s e c t i o n s w h i l e column 5 shows t h e cross s e c t i o n o b t a i n e d by sub- t r a c t i n g t h e c a l c u l a t e d continuous cross s e c t i o n from t h e e x p e r i m e n t a l one i n t h e Q- value range -20>Q>-50 MeV.

E=200 MeV

r+2- 0-+I-+ 2-

Fig. 5

-

Same as Fig. 3 b u t f o r oc.,,. = 4.5'.

1

ai (0-,1-,2-) [mb/sr]

i

16.2 6 3 48 21

1

a i (2-) i

[ mbl 6 28 21 12

c u l a t i o n s i s a c t u a l l y GT-strength which was s h i f t e d t o t h i s h i g h e x c i t a t i o n energy r e g i o n due t o t h e m i x i n g o f t h e " l o w - l y i n g " l p - l h GT-state w i t h h i g h - l y i n g 2p-2h c o n f i g u r a t i o n s . Corresponding t o o u r c a l c u l a t i o n s t h e amount o f GT-strength l o c a t e d i n t h e energy range -2O<Q<-50 c o u l d be as l a r g e as 25 mb. T h i s c o n c l u s i o n i s a l s o i n agreement w i t h e s t i m a t e s o f Scholten, B e r t s c h and Toki /34/ who used a more phenome- n o l o g i c a l model f o r t h e c a l c u l a t i o n o f t h e background i n t h e spectrum-

- oeXP-aCalC [mb/sr]

-20>Q(p ,n)> -50 MeV 40

52 38 20 a ( 1 )

i [mbl 1.4 23 17 6.3 o

o0

4.5O 9.5O 12.8'

1

0 ( 0 i

[mbl 8.8 12 10 2.7

(10)

Fig. 6

-

Same as Fig. 3 b u t f o r Ocam. = 9.5'.

One m i g h t ask why t h e 2p-2h p o l a r i z a t i o n e f f e c t seems t o be more i m p o r t a n t f o r ' O Z ~ t h a n f o r 4 8 ~ a . T h i s i s p r o b a b l y due t o a s i m p l e s h e l l s t r u c t u r e e f f e c t . F o r example, t h e g i a n t MI-resonance observed i n i n e l a s t i c e l e c t r o n 1351 and i n e l a s t i c p r o t o n 1361 s c a t t e r i n g experiments i s v e r y sharp i n 4 8 ~ a b u t r a t h e r broad i n 9 0 ~ r 1 3 6 1 i n d i c a t - i n g a d i f f e r e n t degree o f c o u p l i n g o f t h e M1-states w i t h 2p-2h s t a t e s i n b o t h nu- c l e i . The damping mechanism o f t h e GT-state due t o 2p-2h s t a t e s i s much more e f f i - c i e n t i n heavy t h a n i n l i g h t n u c l e i due t o t h e l a r g e r d e n s i t y o f 2p-2h s t a t e s i n heavy n u c l e i .

111.2

-

C a l c u l a t i o n o f t h e Background Below t h e G i a n t D i p o l e ( A L = ~ ) Resonance I n Figs. 5 and 6 we show ' ' ~ r ( ~ , n ) s p e c t r a f o r a n g l e s o f 4.5' and 9.5', r e s p e c t i v e - l y . The d a t a ( f u l l l i n e ) have been t a k e n from r e f . 12 and t h e d o t t e d l i n e s r e p r e s e n t t h e c a l c u l a t e d c o n t i n u o u s spectrum. The peaks a t Q-values of Q = -24 and Q = -32 MeV a r e a g a i n due t o t h e (aL=2) J' = 1+,2+,3+ resonance. As i s seen froin t h e f i g u r e s t h e ( A L = ~ ) J' = 0-,1-,2- resonance g i v e s a l a r g e c o n t r i b u t i o n t o t h e c r o s s s e c t i o n

( d i s c r e t e l i n e s i n t h e f i g u r e s ) . The summed c r o s s s e c t i o n o f a l l l4w Om, I-, and 2- e x c i t a t i o n s amounts t o 63 mb a t t h e s c a t t e r i n g a n g l e o f 4.5' and t o 48 mb a t 9.5'

(see Table 1). Most o f t h e A L = ~ s t r e n g t h w i l l be s h i f t e d i n t o t h e energy r e g i o n around Q = -26 MeV when t h e r e s i d u a l p h - i n t e r a c t i o n i s s w i t c h e d on (see Fig. 4). As one can see f r o m Figs. 5 and 6 we have now, however, a b i g p r o b l e m s i n c e we have much more ( A L = ~ ) c r o s s s e c t i o n t o d i s t r i b u t e t h a n t h e e x p e r i m e n t a l d a t a p e r m i t . T h i s

i s e s p e c i a l l y s t r i k i n g f o r t h e 9.S0 spectrum. I f we s u b t r a c t i n t h e Q - v a l u e range

(11)

C4-22 JOURNAL DE PHYSIQUE

f r o m 20 t o 50 MeV t h e c a l c u l a t e d c o n t i n u o u s c r o s s s e c t i o n from t h e e x p e r i m e n t a l one we o b t a i n r o u g h l y

-

31 mb. The c a l c u l a t e d AL=l cross s e c t i o n , on t h e o t h e r hand, amounts t o 48 mb which i s by a f a c t o r o f

-

1.5 l a r g e r t h a n t h e e s t i m a t e d cross sec- t i o n above. T h i s happens a l t h o u g h we have i m p l i c i t l y assumed a l r e a d y t h a t t h e a L = l s t r e n g t h i s d i s t r i b u t e d over t h e whole Q-value range f r o m -20 t o -50 MeV. The l a t t e r amounts t o t h e assumption t h a t h i g h - l y i n g 2p-2h c o n f i g u r a t i o n s /22/ c o u p l e t o t h e AL=l resonance i n a s i m i l a r way as t o t h e GT-resonance and spread o u t t h e a L = l s t r e n g t h o v e r a wide energy range. I n s p i t e o f t h i s assumption we s t i l l need a quenching o f about 50 % i n o r d e r t o r e c o n c i l e t h e t h e o r e t i c a l and e x p e r i m e n t a l c r o s s s e c t i o n s . P a r t o f t h i s quenching i s c e r t a i n l y due t o ground s t a t e c o r r e l a t i o n s n o t i n c l u d e d i n our c a l c u l a t i o n s . Ground s t a t e c o r r e l a t i o n s w i l l reduce b o t h t h e A L = ~ cross s e c t i o n and * t h e c a l c u l a t e d c o n t i n u o u s c r o s s s e c t i o n b e i n g t h e r e f o r e an e f f e c t i v e agent t o d i m i n i s h t h e s u r p l u s c r o s s s e c t i o n mentioned above. I f we assume a r e d u c t i o n o f

-

25 % f o r b o t h t h e background and t h e A L = l c r o s s s e c t i o n s t h e n t h e e x p e r i m e n t a l and c a l c u l a t e d c r o s s s e c t i o n s would j u s t agree. It may, however, a l s o w e l l be t h a t t h i s i s an o v e r e s t i m a t e and t h a t an a d d i t i o n a l quenching due t o admix- t u r e s o f ~ ( 1 2 3 2 ) i sobar-nucleon h o l e c o n f i g u r a t i o n s i n t o t h e AL=l resonance i s need- ed t o d e s c r i b e t h e d a t a as has been r e p e a t e d l y p o i n t e d o u t i n t h e a n a l y s i s o f 2- s t a t e s measured i n i n e l a s t i c e l e c t r o n s c a t t e r i n g experiments /37/.

SUMMARY

We have p r e s e n t e d m i c r o s c o p i c backgro d c a l c u l a t i o n s f o r ( p , n ) - r e a c t i o n s a t i n t e r - mediate e n e r g i e s which reproduce t h e "Ca (p,n) continuum a t

oO,

b u t which u n d e r e s t i

-

mate t h e z e r o degree 9 0 ~ r ( p , n ) continuum a t h i g h v a l u e s by a f a c t o r o f about 2. We show t h a t t h i s m i s s i n g c r o s s s e c t i o n i n case o f "ir(p,n) i s most p r o b a b l y due t o Gamow-Teller s t r e n g t h which has been s h i f t e d t o t h e h i g h e x c i t a t i o n energy r e g i o n by m i x i n g o f t h e " l o w - l y i n g " l p - l h Gamow-Teller s t a t e w i t h h i g h - l y i n g 2p-2h c o n f i g u r a - t i o n s . The amount o f GT-strength s h i f t e d t o t h e energy r e g i o n -22>Q>-50 MeV i n 9 0 ~ r ( p , n ) c o u l d be as much as

-

25 mb. Then

-

80 % o f GT-strength i s seen i n t h e

(p,n) experiments. We a l s o show t h a t t h e r e i s e s s e n t i a l l y no background j u s t below t h e GT-resonance. T h i s statement h o l d s f o r b o t h r e a c t i o n s , 4 8 ~ a (p ,n) and ' O ~ r ( ~ , n ) . We have a l s o c a l c u l a t e d t h e background below t h e g i a n t d i p o l e (AL=l, a S = l ) r e s o - nance. We f i n d t h a t a l s o t h e A L = l s t r e n g t h s u f f e r s from t h e c o u p l i n g t o 2p-2h s t a t e s and has t o be spreadout over a wide energy range up t o 50 MeV e x c i t a t i o n energy.

Even t h e n t h e t h e o r e t i c a l A L = l c r o s s s e c t i o n a t angles o f 4.5' and 9.5' i s much l a r g e r t h a n t h e c r o s s s e c t i o n which i s o b t a i n e d by s u b t r a c t i n g t h e c a l c u l a t e d m i c r o - s c o p i c background f r o m t h e e x p e r i m e n t a l c r o s s s e c t i o n . We have t o i n t r o d u c e a quenching o f t h e n L = l s t r e n g t h by about 50 % w h i c h may be p a r t l y due t o ground s t a t e c o r r e l a t i o n s n o t c o n s i d e r e d i n o u r c a l c u l a t i o n s and p a r t l y due t o t h e a d m i x t u r e o f A i s o b a r - n u c l e o n h o l e s t a t e s i n t o t h e A L = l g i a n t d i p o l e s t a t e .

REFERENCES

1. F o r r e v i e w s on t h e e x p e r i m e n t a l and t h e o r e t i c a l s i t u a t i o n o f g i a n t resonances see f o r example:

F.E. Bertrand, Ann. Rev. Nucl. Sci. 26 (1976) 457;

G.R. S a t c h l e r , Proc. I n t . School o f Physics E n r i c o Fermi, LXIX Corso, Varenna (1976) ;

3. Speth and A. van der Woude, Rep. Prog. Phys. 44 (1981) 719.

2. G.F. B e r t s c h and S.F. Tsai, Phys. Rep. 18C (1975) 125;

S.F. Tsai and G.F. Bertsch, Phys. Rev. C11 (1975) 1634; Phys. L e t t . 73B (1978) 248.

(12)

3. T. Tamura, T. Udagawa, D.H. Feng and K.K. Kan, Phys. L e t t . 66B (1977) 109.

4. T. Tamura and T. Udagawa, Phys. L e t t . 788 (1978) 189; Proc. 1980 RCNP I n t . Symp.

on " H i g h l y E x c i t e d S t a t e s i n Nuclear Reactions", Osaka U n i v e r s i t y (1980) p. 33.

5. H. Feshbach, A.K. Kerman, S. Koonin, Ann. Phys. 125 (1980) 429; Proc. 1980 RCNP I n t . Symp. on " H i g h l y E x c i t e d S t a t e s i n Nuclear Reactions", Osaka U n i v e r s i t y (1980) p. 5.

6. H.R. Schmidt, P. Grabmayr, K.T. K n o p f l e , H. Riedesel, G.J. Wagner, c o n t r i b u t e d paper t o t h i s conference.

7. W.G. Love and M.A. Franey, Phys. Rev. C24 (1981) 1073.

8. H.C. Chiang and J. Hiifner, Nucl. Phys. A349 (1980) 466.

9. G. B e r t s c h and 0. Scholten, Phys. Rev. C25 (1982) 804.

10. F. O s t e r f e l d , Phys. Rev. C26 (1982) 762; c o n t r i b u t i o n t o t h e 1982 T e l l u r i d e Conference, t o be p u b l i s h e d .

11. H. Machner, i n v i t e d c o n t r i b u t i o n t o t h i s conference.

12. C. Gaarde, J. Rapaport, T.N. Taddeucci, G.D. Goodman, C.C. F o s t e r , D.E. Bainum, C.A. Goulding, M.B. G r e e n f i e l d , D.J. Horen and E. Sugarbaker, Nucl. Phys. A369 (1981) 258.

13. R.R. Doering, A. Galonsky, D. P a t t e r s o n , G.F. B e r t s c h , Phys. Rev. L e t t . 35 (1975) 1961.

14. D.E. Bainum, J. Rapaport, C.D. Goodman, D.J. Horen, C.C. F o s t e r , M.B. G r e e n f i e l d and C.A. Goulding, Phys. Rev. L e t t . 44 (1980) 1751.

15. C.D. Goodman, C.A. Goulding, M.B. G r e e n f i e l d , J. Rapaport, D.E. Bainum, C.C.

F o s t e r , W.G. Love and F. P e t r o v i c h , Phys. Rev. L e t t . 44 (1980) 1755.

16. D.J. Horen, C.D. Goodman, C.C. F o s t e r , C.A. Goulding, M.B. G r e e n f i e l d , J. Ra- p a p o r t , E. Sugarbaker, T.G. Masterson, F. P e t r o v i c h and W.G. Love, Phys. L e t t . 958 (1980) 27;

D.J. Horen, C.D. Goodman, D.E. Bainum, C.C. F o s t e r , C. Gaarde, C.A. Goulding, M.B. G r e e n f i e l d , J. Rapaport, T.N. Taddeucci, E. Sugarbaker, T. Masterson, S.M.

A u s t i n , A. Galonsky, W. Sterrenburg, Phys. L e t t . 99B (1981) 383.

17. K.I. Ikeda, S. F u j i i and J.I. F u j i t a , Phys. L e t t . 3 (1963) 271.

18. C. Gaarde, Nucl. Phys. A396 (1983) 127c.

19. J. Rapaport, AIP Conf. Proc. No. 97, "The I n t e r a c t i o n between Medium Energy Nucleons i n N u c l e i

-

1982", ed. by H.O. Meyer (American I n s t . o f Physics, New York 1983).

20. M. Rho, Nucl. Phys. A231 (1974) 493;

K. Ohta and M. Wakamatsu, Nucl. Phys. A234 (1974) 445;

J. Delorme, M. Ericson, A. Figureau and C. The'venet, Ann. Phys. 102 (1976) 273;

E. Oset and M. Rho, Phys. Rev. L e t t . 42 (1979) 42;

I.S. Towner and F.C. Khanna, Phys. Rev. L e t t . 42 (1979) 51;

W. Knupfer, M. D i l l i g and A. R i c h t e r , Phys. L e t t . 958 (1980) 349;

A. H a r t i n g , W. Weise, H. Toki and A. R i c h t e r , Phys. L e t t . 104B (1981) 261;

H.Toki and W. Weise, Phys. L e t t . 978 (1980) 12;

S. Krewald, F. O s t e r f e l d , J. Speth and G.E. Brown, Phys. Rev. L e t t . 46 (1981) 103;

A. Bohr and B.R. M o t t e l s o n , Phys. L e t t . lOOB (1981) 10;

G.E.Brown and M. Rho, Nucl. Phys. ( i n p r e s s ) ;

T. Suzuki, S. Krewald, J. Speth, Phys. L e t t . 107B (1981) 9;

H. Sagawa and Nguyen van G i a i , Phys. L e t t . 1188 (1982) 167.

21. F. O s t e r f e l d , S. Krewald, J. Speth and T. Suzuki, Phys. Rev. L e t t . 49 (1982) 11.

22. G.F. B e r t s c h and I. Hamamoto, Phys. Rev. C26 (1982) 1323.

23. F. O s t e r f e l d , S. Krewald, H. Dermawan and J. Speth, Phys. L e t t . 105B (1981) 257.

24. F. O s t e r f e l d , FROST-MARS-Code, unpublished.

25. J. Speth, V. Klemt, J. Wambach and G.E. Brown, Nucl. Phys. A343 (1980) 282.

26. B.D. Anderson, J.N. Knudson, P.C. Tandy, J.W. Watson and R. Madey, Phys. Rev.

L e t t . 45 (1980) 699.

(13)

C4-24 JOURNAL DE PHYSIQUE

27. C. Gaarde, C.D. Goodman, p r i v a t e communication.

28. B.D. Anderson, J.W. Watson, R. Madey, p r i v a t e communication.

29. B.D. Anderson, T. Chittrakam, A.R. Baldwin, C. Lebo, R. Madey, P. Tandy, J.W.

Watson, C.C. Foster, Phys. Rev. C, t o be published.

30. G. Bertsch, D. Cha and H. Toki, Phys. Rev. C24 (1981) 533.

31. J. Wambach, c o n t r i b u t i o n t o t h i s conference.

32. V.G. Solovigv, c o n t r i b u t i o n t o t h i s conference.

33. W. Knupfer, c o n t & i b u t i o n t o t h i s conference.

34. G. Bertsch, 0. Scholten and H. Toki, Phys. Rev. C27 (1983) 2975.

35. W. S t e f f e n , H.D. Graf, W. Gross, D. Meuer, A. R i c h t e r , E. Spamer, 0. T i t z e , W.

Knii~,fer, Phys. L e t t . 958 (1980) 23.

36. Y. f u j i t a e t al., Phys. Rev. C25 (1982) 678;

G.P.A. Berg e t al., Phys. Rev. C25 (1982) 2100;

,t?.E. Rehm e t al., Phys.Lett. 114B (1982) 15;

C.M. Crawley e t al., Phys. L e t t . 1278 (1983) 322.

37. N. Anantaraman e t al., Phys. Rev. L e t t . 46 (1981) 1318;

C.M. Crawley e t al., Phys. Rev. C26 (1982) 87;

C. D j a l a l i e t al., Nucl. Phys. A388 (1982) 1.

38. W. Knupfer, M. D i l l i g , A. R i c h t e r , Phys. L e t t . 958 (1980) 349.

39. A. Nadasen e t al., Phys. Rev. C23 (1981) 1023.

,

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to