• Aucun résultat trouvé

The Theory and Practice of a Dual Criteria Assignment Model with a continuously distributed Value-of-Time

N/A
N/A
Protected

Academic year: 2022

Partager "The Theory and Practice of a Dual Criteria Assignment Model with a continuously distributed Value-of-Time"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: hal-00348537

https://hal.archives-ouvertes.fr/hal-00348537

Submitted on 19 Dec 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Model with a continuously distributed Value-of-Time

Fabien Leurent

To cite this version:

Fabien Leurent. The Theory and Practice of a Dual Criteria Assignment Model with a continuously distributed Value-of-Time. ISTTT, Jul 1996, Lyon, France. pp. 455-477. �hal-00348537�

(2)

! " # $ %

!

"

#

$ %

&

'

"

( )

* + (

) ,

) - ./01% 2 ./03!

% ./3. 2

./34 5 ./6. 5 ) $ ./66!

(3)

# %

' 5 ./61!

5 ) ./47! ( " )

! 8 ./67% 2 ./67% 8

9 .//:!

!" !# $ % &' # " " ( & # (

'

"

'

v & ) ) #

T1+P1/v =T2+P2/v v =(P2−P1) / (T1−T2) vi ≤v

' . vi >v

1

;

* [x;x+dx]

* &! < *&= &! * &!! ' H(v )

1−H(v ) '"! & "' '" $ % ! ! "

$ . #

)

( 1 %

& )

& '

$ 7 &

>

& &

# 8 $ 8$ !

8$ ? @& )

?@ ! & )

(4)

& )

2 ./03!

$ A

# '

% '

( 0 #

)

)

*

' > .//7 ! -

. .! . 1!

. 7! . A!

)*)

> vi > ) $ ) > qrs

5 $ Drs(S) 5

) Hrs(v)

5

> ' $ frsk Trsk Prsk (

qrs = kfrsk ) '

Grsk(v):=Trsk +Prsk /v

f =[frsk]rsk

> < ! xa > δrsak:=1

' : $ xa = rskδrsakfrsk

)*+ $$ ! %

> B B '

) .!

( (

m !

vi vi ∈[v rsm−1;v rsm] v rsm

! !=. v rsm =(Prsm+1−Prsm) / (Trsm−Trsm+1)

& ) )

(5)

" . (

Pm

Tm cost

time

! (

qrs ! &

qrs dHrs(v) v rsm−1

v rs m

C

v rsm := + ∞

v rs0:=0

)*, % $ "( $ " - # (

$ #

D! -

$ ta(f) -

E zb(f)≤0 %

zb(f)=0! wb ≥0

wb∂zb

∂frsk ' "

xa(f)−Ca ≤0 %

' )

wa(xa−Ca)

∂frsk =waδrsak

'

Trsk =

(

aδrsakta

)

+ wb ∂z∂fb

rsk b

>

2 -

t1 =5+2x1

t2 =4+x2 % P2 P1 =0

' q=10= x1 +x2

P2 1! (

8 < 3: : 3 (

(6)

" 1 ! !

0 2 4 6 8

0 500 1000 1500

0 500 1000 1500 2000 2500 3000

0 500 1000 1500

P2 =0 % P2

C P2

>

0 P2

)*. ## / 0 $ " # & ( &

@

& - qrs Drs

) Srs# qrs =Drs(Srs) (

) # Srs = {minkGrsk(v)} dHrs(v)

> ' ! )

< 1. * P2 =0 )< .: P2 5

7 1!

" 7

Toll P2 0

2 4 6 8 10

0 500 1000 1500

x2

)

)*1 ((

- #

(

(7)

$ ' 5 ' $

' xar tar

+

*

2 ./03!

5 ./41!

> ? .//A!

-

> .//7 !

& 1 .!% ' F

) &

1 1! " ' & 1 7!

+*) "2 ! # $ ! % 3 $$ 2 3 '!!#2 " # & $" "

#

' +

8@

5 5. 8 @' F ? " 5 $

& & Rrs # kRrsl Prsk =Prsl -

' 8@!

- ' 8@ . m rs - Mrs(k)

' * $ +' kirs # =1 i= Mrs(k) :

> P rsm ! ! T rsm

> qrsm:= kkirsfrsk

! 8@ $ Qrsm:= i≤mqrsi $

& ! (

qrs = iqrsi =Qrsm rs - qrs0 =Qrs0 :=0 '

! ' G rsm(v):=T rsm+P rsm/v

(8)

- Hrs

rs:={v; Hrs(v)∈]0 ; 1[}%

Hrs−1 Hrs(Ωrs) Ωrs

B B dHrs(v)>0

5 1 @ $ 5 $ 8@ !

! #

Ersm:={v∈Ωrs ; G rsm(v) =min G rs(v)}

" ∀rs, Ωrs = mErsm Ersm = ∅ !

Ersm ' v0,v1∈Ersm

v0 G rsm(v0)=minnv0 G rsn(v0) v1G rsm(v1)= minnv1G rsn(v1) ∀α ∈[0; 1]

vα =αv0+(1−α)v1 vα G rsn(vα)=αv0G rsn(v0)+(1−α)v1G rsn(v1)

vα G rsm(vα)≤vα G rsn(vα) vα ∈Ersm

Ersm Ersn n ≠m # Ersm Ersn

' !% ∀u∈Ersm,

G rsm(u)≤G rsn(u) (P rsm−P rsn) /u≤ T rsn−T rsm ∀v∈Ersn , G rsm(v)≥ G rsn(v)

(P rsm−P rsn) /v≥T rsn−T rsm F

∀u∈Ersm, ∀v∈Ersn , (P rsm−P rsn) /u≤T rsn−T rsm ≤(P rsm−P rsn) /v .!

( n >m P rsn > P rsm u≤v supErsm ≤inf Ersn

5 57 8@

! v rsm =sup Ersm Ersm ≠ ∅ : Ersm = ∅ (

Ersm ≠ ∅ !

? ?. 2 8@ !

Ersm ≠ ∅ Ersn ≠ ∅ P rsm < P rsn Ersi = ∅ ∀i∈]m;n[ T rsm > T rsn

v rsm =(P rsn−P rsm) / (T rsm−T rsn) =inf Ersn

5 5A 8@ 5 $

8@ q =[qrsm]m Ersm

qrsm ≥0 mqrsm =qrs

qrsm =qrs E dHrs(v)

rs m

Ersm {(P rsm; T rsm)}mrs 8@

5 8@

8@

) #

∀v∈ Ωrs ! G rsm(v)≤ minnG rsn(v) Ersm

! ' !

qrsm =qrs E dHrs(v)

rs

m F

(9)

8@

# 8@

5

? ?1 ) q =[qrsm]m

qrsm ≥0 mqrsm =qrs Ersm ∀n,

,$ =)$* $ $ !! e(n) 8@ '

&

> ?1 & v rse(n)! qrsm qrs

Hrs!

8@ & C ?1

# 8@

* ?1 + >

v rs0:= infΩrs v rsm:=Hrs−1(Qrsm/ qrs)%

c(i) 8@ '

& ?1 & {v rsn =v rse(n)∀n}

v rsn =(P rsc(n)−P rsn) / (T rsn−T rsc(n)) 8@ '

e = e(m rs) T rsn+(P rsn−P rsc(n)) /v rsn = T rsc(n)%

T rsn+ le(e efficient−1) =n(P rsl −P rsc(l)) /v rsl =T rse (P rsl −P rsc(l)) /v rsl

T rsc(l)−T rsl & !

' T rsn+ lm =nrs−1(P rsl −P rsl+1) /v rsl =T rse +(P rse −P rsm rs) /v rse

m=lc(l) (P rsm−P rsm+1) /v rsl =(P rsl −P rsc(l)) / v rsl e(m)= l v rsm =v rsl (

' &

e F &

& 8@

qrsn >0

5 50 8@ 8@

I rsn(f;w)= T rsn+ lm =nrs−1(P rsl −P rsl+1) /v rsl

? ?7

q =[qrsm]m qrsm ≥0

Ersm ∀n, qrsn >0 I rsn =minmI rsm

?7 - & #

& !

& $ ./6/! *

(10)

+*+ % " " 4 $ &' # " " 5' # 6" '(

5 53 & & (f;w)

$ frsk ≥0 / wb

zb(f)≤0 #

! " #

Trsk(f;w)=

(

aδrsakta(f)

)

+( wb ∂z∂fb(f)

rsk

b )

wb ≥0 zb(f)≤0 wbzb(f)=0

! $ ' #

qrs =Drs

(

{minkGrsk(v)} dHrs(v)

)

! ) 5 $ 8@

! ∀k∈m, frsk >0 Trsk = T rsm 8@

[qrsm]m $ qrsm:= kkmrs frsk

Ersm {(P rsm; T rsm)}m

T rsm:=mink∈mTrsk

" ?1 &

8@ )

5 56 >

Frs(x):= dt

Hrs−1(t) 0

x

' Irsk(f;w)=

Trsk + P rs

i P rsi+1 Hrs

1(Q rs i /qrs) i=Mrs(k)

m rs−1

− +

+

+

=

+

.

. . ,

.

. !

!

*

! ,

! "

?

?

! .

"

?

!

5 $ $

!

$

$

$

$

$

$

$ $

$

$

! $

$

$

$ , )

) , )

) ,

(f;w) Trsk

Qrsi

5 Mrs(k) ! Irsk =I rsm+Trsk−T rsm−Brs Brs 8@

' # Brs = ′ I rs+Drs−1− ′ S rs

S rs′ = T rsn qrs

n

qrs +P rsn[Frs(Qrs

n

qrs)−Frs(Qrs

n−1 qrs )]

n

= G rsn(v)dHrs(v) v rsn−1

v rsn

n &

Srs:= {minnG rsn(v)} dHrs(v) ∀v∈[v rsn−1;v rsn]

G rsn(v)=minmG rsm(v)

I rs =( T rsn qrs

n qrs

n )+ (P rs

l P rsl+1) v rsl

Qrsl qrs l=1

m rs−1

&

Irs:=minnI rsn = qrs

n qrs I rsn n

(11)

. ) & (f;w)

& #

!

Trsk(f;w)=

(

aδrsakta(f)

)

+( wb ∂z∂fb(f)

rs

b k ) wb ≥0 zb(f)≤0 wbzb(f)=0

! ∀r−s−k, frsk >0 Irsk =minlIrsl

! ∀r−s, qrs >0 qrs =Drs

(

{minkGrsk(v)} dHrs(v)

)

? # ( 53 ! & . ! 53 !

' 8@ !

Trsk =T rsm qrsm >0 I rsm = minn(I rsn )#

Irsk =I rsm−Brs = minn(I rsn )−Brs = minn(I rsn −Brs) ≤minlIrsl .

!

? # > !

qrsm >0 ! '

frsk >0

I rsm−Brs =Irsk =minl(Trsl −T rsMrs(l)+I rsMrs(l)−Brs) I rsm ≤minnI rsn

" Irsk =minlIlrs ≤minl∈mIrsl

Trsk =T rsm

> # (+)N → ℜN C $

/! (f;w) V(f;w)=([Irsk(f;w)]rsk;[−zb(f)]b)

1 &

(f;w) & B" (f;w) ≥0

V(f;w) ≥0 V(f;w)⋅(f;w)= 0B

# ! Irsk ≥0 ! zb ≤0 ! frsk Irsk =0 !

wbzb =0

. ! ⇔ 1 ! ! wb≥0 53 1 . !

Brs =Irs+Drs−1−Srs minkIrsk =0 .

! F 1 ! ! frsk >0 Irsk =0≤minlIrsl .

! !

7 & & ( ˜ f ; ˜ w ) ≥0

& & (?!#

B ∀(f;w)≥0, V( ˜ f ; ˜ w )⋅(f−f ˜ ;w−w ˜ ) ≥0B (? (+)N 7 & 1

>

Jbic(f):= qrs[ P rsi (Frs(Qrs

i

qrs)−Frs(Qrs

i−1 qrs )) i=1

m rs

rs ]# > .//7 !

∂frsk Jbic(f)=Irsk −Trsk +Drs−1(qrs)

(12)

A ) & (

ta(f) Jt(f)

f ≥0 & )

minf≥0 J(f)=Jt(f)+Jbic(f)− rs 0qrsDrs−1(u) du E

zb(f)≤0 ( ta(f)=ta(xa)

Jt(f) = a 0xata(u) du

? J(f)=£ (f;0) > G

£ (f;w) =J(f)+ bzb.wb#

(? 7 &

+*, & ' 5' " '#

0 ' ( ta zb

Hrs−1

Drs Drs−1 f0 ≥0

zb(f0)≤0 ∀b ' &

? H

# (? 7

3 & H A 0

ta Drs−1 &

( ˜ f ; ˜ w ) #

! ta xa(˜ f ) &

! Drs−1 5 qrs(˜ f ) &

! 8@ qrsm /qrs &

? H 3 9 ' ( ta 9

' xa ( Drs−1 9 '

qrs 3 ! ' Jbic >

.//7 !

2

# & 8@

&

,

*

- &

7 & !

7 .! >

7 1!

) " $ ./41! ' 5

./4:!#

(13)

,*) % 2(( " 7 ' " &

> .//7 ! 8 $ 8$ ! &

8$

> .//7 ! " - 8

I .//A! ' > .//0 !

? @& ) ?@ !

?@ # 5

& ) E

&

! & 5

- 8$ ?@ % ?@

8$ " -

?F .1: 8*) ?

?

1 :::

.A. ) 5

q= q0(S/ S0)−0.6

8 < 60 "", : 3

J 8 $& @ #

K J8$@#

Rel(stepn):= a 1 a(xa(n) −x a(n))2 a

xa(n)

x a(n) = 1n nk=0−1xa(k)

K J8$@#

Abs(stepn):= a 1 a(xa(n)−xa)2 xa

&

" A J ! !

" - 8$ ?@ ? !

?@ %

! ?@ -

?@

8$ " -

(14)

" A

! @ J !

0,1 100

1 101 201 301

iteration n MSA

PET

F−W

! @ !

0,1 100

1 101 201 301

iteration n PET

MSA F−W

" 0 J ! !

8$ 8$

?@ " ! ?@

J8$@ ! $

J 8$

8$

" 0

! @ J !

0,1 100

1 101 201 301

iteration n PET

( )

MSAs indiscernible

! @ !

0,1 100

1 101 201 301

PET

( )

iteration n

MSAs indiscernible

.

& -

(15)

?@

. J

$ 5

J ( ! J ( !

" - : 0 8$ 1 4

8$ : 7 8$ : A

?@ 7 1 ?@ A .

) '

" -

,*+ '0( & 0" 0 ( % & & # / % % 2(( " 7 " &

>

> A! >

)

wb! ! %

! '

( xa(f)−Ca ≤0 >

LA(f;w;τ):=J (f)+1 a(max {0 ;wa+τ(xa(f)−Ca)}2 −wa2) τ >0 5

t[n]a (u):= ta(u)+max {0 ;wa[n]+τ(u−Ca) }

minf J[n](f) E f ≥0

J[n](f):=LA(f;w[n];τ)

=

(

a 0xata[n](u) du

)

+Jbic(f) rs 0qrsDrs−1(u) du

2 f[n]

wa[n+1]:= max {0 ;wa[n] +ρ(xa(f[n])−Ca) } ρ>0

C(n) = w[n+1]−w[n] ≤ε

- 7 .

τ =ρ=. 05 ε =5 ,

F 10

( w[0] =0 F .! < 70 6% F 0!

< .7 4% F .:! < / 1% F 1:! < 0 4 @ !

?@ #

' ?@ 0

(16)

.

* -

) -

'

' A .!

'

!

A 1! '

A 7!

.*) ( ('( # 8 # % & ( " $ %

'

'

> .//0 !

) '

Gk(i)=

{

bri,b.Xb,k

}

+viTk =Pk+viTk

' Xb,k '

' !

ri,b vi Tk '

b +d #

b ri,b d

) µ σ

d =2!

- 5 '

fk '

L(θ)= ln

iπki(θ)= kfkln(πk(θ))

θ =

{ }

θn n =

{ }

rb b

{

µ;σ

}

πk(θ) ' ki

(

πk(θ)=Hµ,σ(Uk)−Hµ,σ(Lk)

Uk Lk ' '=. '

. '

8 ' L(θ) #

> θn

πk θn ' ! " * >

'

(17)

1 J ? # 5

" .//7

Tk Pk

µ ˆ < A 14A ˆ σ < : 7A4 σ ˆ µ ˆ < : ::A0 σ ˆ σ ˆ < : :. Cov(µ ˆ ; ˆ σ ) / ˆ µ σ ˆ = −7e−6

66 . "",

1 8 C 5

Pk ""! Tk ! , ,

C " C17 30 A : /36 .0:: .011

.. 43 6 : 3.6 70:: 7A66

C " C17 10 A : A: 13:: 131.

.. 77 / : 7: .7:: .16/

" C17 A: . : 036 0:: A03

.. 0: 4 : A.6 A0: A/A

.*+ " !# $ "" " !" ! 0

L '

εX M ( '

L < " M! " εX

εY =(∇X F)εX εY

εX

( F(X, Y )=0 ∇Y F

εY =[∇Y F]−1[−∇X F]εX ./43! ( "

' 9 F= ∇X J

εY =[∇YY J]−1[−∇XY J ]εX

Y J 9 L YY J * 9

L XY J ' Y J M

( M Drs

Hrs! ta

zb

.*, / # 8 (!#

- A 1 "

' > .//A!

> #

"!

! > #

K TF TT

N (T FTF )

N (T TTT )

(18)

K q

N (q ;σq)

K M σ

N (M ;σM) N (σ ;σσ) K p

∆T =TF−TT >0

v = pT

fT =q

(

1−H

( )

v

)

R= pq

(

1−H

( )

v

)

- X={∆T,q,M,σ}

' # ' '

'

> ∆T =0. 2145 h p=15FF q =3000 veh/h

M =60 FF/h σ =0. 6 '

σq q = σσ

σ = σM

M =10%

σ∆T

∆T =15% ' 0N

! 7!

7 C

@ fT '

' '

εT . /6 : 0/ : 37

εq . :: : /A : 63

εM . /6 : 0/ : 37

εσ : :76 : :.3 : ::7

σfT

f T = σR

R 76N .1N .:N

- '

'

'

(

(19)

1

* (

# ) !

! "

1*) " 0 " # " & $$ $'

$ )

Grsk(v)=Trsk+Prsk /v

Grsk(v)=G(Trsk; Prsk;v) '

Grsk(v)=Trsk+Prsk τrs(v)

τrs )

Hrs(v)

. #

K Grsk(v) Trsk +Prsk τrs(v)

Srs = {minkGrsk (v)}dHrs(v)

K v rsm τ rsm τrs(v rsm) τrs

K I rsm Irsk &

1/Hrs−1 τrs Hrs−1 K Frs(u)

0urs Hrs−1)(t)dt τrs τrs

0urs Hrs−1)(1−t)dt ( τrs F5" τ

F5"

1*+ % 6 % - "

Grsk(v)=Trsk+Prsk τrs(v)+εrsk(ω)

εrsk(ω)

E vrs εrsk rsk }k

(20)

vrs εrsk 8 C vrs

{

rsk }k;lnvrs

}

8 C

*

% 8$

1*, % $ / $# / & ! & " "

(

' 8

% &

#

K '

K

K I rsm Irsk '

K (? %

0 I rsm Irsk

' &

2 '

1*. $ % " & $' '" " " %

' > .//0 !

. A > .//0 !

8$

8 & # &

!

#

"

)

$

%

(21)

'

> .//0 !

F ./3.! > O O -. . / $

$ . / ! $ ? 9

F 9 5 2 ./67! > P ' / 0 1

?

2 8 F 2 8 ; F 2 - ./03! / $ 2 ! $ %

$3 L H ? C * F

2 9 @ ./34! 3 $$ 4 ! / $ 33 1 3 5 $ A

( $ " Q

5 $ F ./61! ? 8 H

C $3 9 67 46

5 $ F ./4:! @& ( & $3

). A1 0A

5 $ F ./41! ; 8 8 C @& ? @

5 6 '$ )+ 06 61

5 ) F " L $ ./66! $ 8

$3 )) 107 16A

5 ) F " ./47! $ C @& 8

( > F 9 $3 ): 141 7::

5 J 2 ./6.! ? 8 8 ?

@ $3 $ 2 1 47 ...

" 8 * $ ./41! )

& $3 $ 2 7 )9 A66 A4A

> 8 ? .//A! > $ F

? ( $ 74 .37 .// (CJ@ $

> " .//7 ! F @& C % 83 $ :)

1:0 11.

> " .//7 ! / 4 $ 9 $ 44 4 9 ! / ( ? "

8 @ - ; H

H 8 8

> " .//A! 5$ / $ $ . /0 /0 ! /: $ / 0 %% 3 &

!3$ - /A . (CJ@ $ "

> " .//0 ! ; 7 < = 8 $ 3 3. / $ $ %% $ $ ) $ / %

(CJ@ $ J J ./4 (CJ@ $ "

(22)

> " .//0 !

> / 3 $3 ! ? / 4$ % !

..6 .14 ? JF >

> " .//0 ! 1 !3 $ / / & 3 3 $ /0 %% / % (CJ@ $

(CJ@ $ "

8 J ./67! @ % ! 2 5 $ ?

$ @ $

8 ? 5 I .//A!

? 3 $ % 2 > / 1 3 ! 1 4/. 4/6 F 9

8 * 9 .//:! ! /: .4 . ! /

3 4 ! / % / % (CJ@ $ J J .1/ (CJ@ $ "

$ 8 9 ./6/! @' $ H & @&

$3 $ 2 7 ), 1/0 7:A

J > ./43! $ 5 5$ $ % @ ) $ 9

.; ./. 1:A

- 9 ; ./01! $ J J ? $ 1

4 $ ? (( 710 764

< * < =

> θm

πk #

L

∂θm =q Pk πk

∂πk

∂θm k

2L

∂θm∂θn = q Pk πk

2πk

∂θm∂θn1 πk

∂πk

∂θm

∂πk

∂θn k

2 πm(

{ }

ra ;µ;σ) µ σ

Hµ,σ ra Um Lm

v mm+n:= P

m+n−Pm Tm−Tm+n 2

∂µπm = ∂µHµ,σ(Um)−∂µHµ(Lm)

∀D ∈ ∂µ ;∂σ ;∂µ ∂σ2 ; 2

∂µ2; 2

∂σ2

m =DHµ,σ(Um)−DHµ,σ(Lm)

ra

' Xa,k = Xa,m(k)

(23)

∂rav mm+n = Xa,m+n− Xa,m

Tm−Tm+n

2

∂ra∂rbv mm+n =0

*

∂πm

∂ra = ∂Hµ,σ(Um)

∂x

∂Um

∂ra −∂Hµ(Lm)

∂x

∂Lm

∂ra

2πm

∂ra∂rb = ∂2Hµ(Um)

∂x2

∂Um

∂ra

∂Um

∂rb −∂2Hµ,σ(Lm)

∂x2

∂Lm

∂ra

∂Lm

∂rb

2πm

∂ra∂µ =

2Hµ(Um)

∂µ∂x

∂Um

∂ra −∂2Hµ(Lm)

∂µ∂x

∂Lm

∂ra

2πm

∂ra∂σ =

2Hµ(Um)

∂σ∂x

∂Um

∂ra −∂2Hµ(Lm)

∂σ∂x

∂Lm

∂ra

< *

&%

µ σ

H(x)= Φ(ln(x)−µσ ) Φ

F5" : . > φ

φ(t)=exp(−t2/ 2) / 2π 5

ln(x)−µ

σ tx

#

H−1(y)=exp

(

µ+σΦ−1(y)

)

F(x)= 1

H−1(u)du 0

x

=exp(σ2

2 −µ)Φ Φ

(

−1(x)−σ

)

∂ /∂x /∂µ /∂σ

H(x)= φ(tx) σ

1 /x

−1

−tx

2

/∂x2 /∂x∂µ /∂x∂σ

× /∂µ2 /∂µ∂σ

× × /∂σ2

H(x)= φ(tx) σ2

−(σ+tx) /x2 tx/ x −(1−tx2) /x

× −tx 1−tx2

× × tx.(2−tx2)

(24)

< *

)

7

+

7

,

? ?.# " .! ∃u∈Ersm (P rsn−P rsm) /u>0 0<T rsm−T rsn >

v0:=(P rsn−P rsm) / (T rsm−T rsn)# .! v0 ∈[supErsm; inf Ersn ] (

supErsm = inf Ersn v∈]sup Ersm; inf Ersn [ Ersi

B B Ersm Ersn $

v rsm =sup Ersm =inf Ersn =(P rsn−P rsm) / (T rsm−T rsn)

? ?1# - 8@

Qrsn = mefficient ≤nqrsm

= qrs E dHrs(v)

rs

mefficient ≤n m = qrsHrs(v rsn)

e(n)=n (

Qrsn =Qrse(n) Qrsn =qrsHrs(v rse(n))

!

? # qrsm ≥0 Hrs

& n v rse(n) % mqrsm =qrs

Qrsm rs =qrsHrs(v rse(m rs)) = qrsHrs(Hrs−1(1)) =qrs ( e(n)= e(n−1)

Qrsn−1=Qrsn qrsn =Qrsn −Qrsn−1 =0 (

qrs E dHrs(v)

rs

m =

qrsHrs(v rsn)−qrsHrs(v rse(n−1)) =Qrsn −Qrsn−1 = qrsn

? ?7# ?1

& >

) & #

F A#

! !

Qj =Qm v rsm =v rsm v rsm ∈Ersm

G rsm(v rsm) =minnG rsn(v rsm) ≤G rsj (v rsm)= T rsj+P rsj /v rsj

Qj =Qm I rsm ≤ I rsj

(P rsi −P rsi+1) / v rsi m<i< j P rsm < P rsj j <i<m P rsm > P rsj

? # -

[qrsm]mrs > v∈ Ωrs#

rsm[v rsm−1;v rsm] ' 8@ ! v∈[v rsm−1;v rsm]

v rsm−1<v rsm > ! )

n ≤m I rsn −I rsm =T rsn−T rsm+ i=nm−1(P rsi −P rsi+1) /v rsi % n ≤i<m

v rsi ≤v rsm−1≤v (P rsi −P rsi+1) /v rsi ≤(P rsi −P rsi+1) /v 2

i=nm−1(P rsi −P rsi+1) / v rsii=m−1n (P rsi −P rsi+1) /v =(P rsn −P rsm) /v

qrsm >0 0≤I rsn −I rsm 0≤T rsn−T rsm+(P rsn −P rsm) /v

G rsm(v)≤ G rsn(v) ( n ≥m v rsi ≥v rsm−1≥v

(25)

n ≥i≥m −(P rsi −P rsi+1) /v rsi ≤ −(P rsi −P rsi+1) /v ! .

i=m−1n (P rsi −P rsi+1) /v rsi ≤ − i=nm−1(P rsi −P rsi+1) /v =(P rsn −P rsm) /v "

I rsn −I rsm =T rsn−T rsmi=mn−1(P rsi −P rsi+1) /v rsi

0≤I rsn −I rsm G rsm(v)≤ G rsn(v)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to