• Aucun résultat trouvé

DETERMINATION OF THE DAMPING CHARACTERISTICS OF STRUCTURES BY TRANSIENT TESTING USING ZOOM-FFT

N/A
N/A
Protected

Academic year: 2021

Partager "DETERMINATION OF THE DAMPING CHARACTERISTICS OF STRUCTURES BY TRANSIENT TESTING USING ZOOM-FFT"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00223403

https://hal.archives-ouvertes.fr/jpa-00223403

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DETERMINATION OF THE DAMPING CHARACTERISTICS OF STRUCTURES BY

TRANSIENT TESTING USING ZOOM-FFT

R. Adams, D. Lin

To cite this version:

R. Adams, D. Lin. DETERMINATION OF THE DAMPING CHARACTERISTICS OF STRUC-

TURES BY TRANSIENT TESTING USING ZOOM-FFT. Journal de Physique Colloques, 1983, 44

(C9), pp.C9-363-C9-369. �10.1051/jphyscol:1983953�. �jpa-00223403�

(2)

JOURNAL DE PHYSIQUE

Colloque C9, supplgment au n012, Tome 44, dgcernbre 1983 page C9-363

DETERMINATION OF THE DAMPING CHARACTERISTICS OF STRUCTURES BY TRANSIENT TESTING USING ZOOM-FFT

R . D . Adams and D . X . Linr

Reader i n Mechanical Engineering, University of B r i s t o l , B r i s t o l , BS8 ITR,

U . K .

haad ad Mechanical Engineering I n s t i t u t e , Sian, China, and a t Department o f Mechanical Engineering, University of B r i s t o l , B r i s t o l , BS8

I

TR,

U . K.

Re'sum6 - Nous d i s c u t o n s une n o u v e l l e t e c h n i q u e pour d e t e r m i n e r l ' a m o r t i s s e m e n t des s t r u c t u r e s . C e t t e t e c h n i q u e e s t fonder s u r l ' e s s a i t r a n s i t o i r e 'Zoom-FFT'.

Nous de'crivons l e p r i n c i p e de c e t t e e s s a i e t nous donnons l e s r e s u l t a t s e x p e r i m e n t a l s pour quelques mate'riaux.

A b s t r a c t

-

A new t e c h n i q u e of determining t h e damping p r o p e r t i e s of s t r u c t u r e s i s d i s c u s s e d . The t e c h n i q u e i s based on t h e t r a n s i e n t t e s t t e c h n i q u e u s i n g 'Zoom1-FFT. The p r i n c i p l e o f t h i s t e c h n i q u e is d e s c r i b e d and t h e e x p e r i m e n t a l r e s u l t s a r e given f o r s e v e r a l m a t e r i a l s .

I . INTRODUCTION

For many y e a r s , e x p e r i m e n t a l d e t e r m i n a t i o n of t h e dynamic c h a r a c t e r i s t i c s of s t r u c - t u r e s has been based on s t e a d y - s t a t e d i s c r e t e frequency methods, i n which t h e n a t u r a l f r e q u e n c i e s and damping r a t i o s a r e d e r i v e d from v e c t o r diagrams /I/. This method, l i k e a l l s t e a d y - s t a t e methods, i s t e d i o u s and time-consuming and cannot be r e a d i l y a p p l i e d o u t s i d e t h e l a b o r a t o r y ; a l s o , c o n s i d e r a b l e expense may be i n c u r r e d i f a l e n g t h y t e s t programme is r e q u i r e d i n o r d e r t o i n v e s t i g a t e t h e c h a r a c t e r i s t i c s of a b u i l t - u p s t r u c t u r e . The q u a s i - s t e a d y - s t a t e t e s t method may reduce some t e s t t i m e ; h e r e , t h e e x c i t a t i o n frequency i s c o n t i n u o u s l y v a r i e d through t h e frequency r a n g e of i n t e r e s t . However, e x c e p t w i t h very slow sweep r a t e s , t h e measured v a l u e s of n a t u r a l f r e q u e n c i e s and damping r a t i o s d e r i v e d from such a t e s t a r e i n a c c u r a t e because t h e assumption t h a t t h e system response a t t a i n s t r u e s t e a d y - s t a t e l e v e l s i s n o t u s u a l l y v a l i d .

I t i s w e l l known t h a t t h e frequency r e s p o n s e of a s t r u c t u r e may b e d e r i v e d from t h e response t o a u n i t impulse. Even though t h e u n i t impulse i s u n a t t a i n a b l e i n p r a c t i c e , t h e concept o f impulsive e x c i t a t i o n l o g i c a l l y l e a d s toward e x c i t a t i o n by a s i n g l e p u l s e o f simple geometric shape and s h o r t d u r a t i o n . I n t h i s way, t h e p u l s e c l o s e l y approximates t o an impulse. White i n d i c a t e d t h a t i f t h e p u l s e i s of s h o r t d u r a t i o n i n comparison t o t h e s h o r t e s t p e r i o d of t h e system under t e s t , t h e n only t h e response of t h e system need by a n a l y s e d / 2 / . I n view of t h i s , t h e method of s i n g l e p u l s e e x c i t a t i o n o r t h e s o - c a l l e d "Hammer t e s t t ' i s a u s e f u l technique.

However, t h e r e a r e some r e s t r i c t i o n s when u s i n g t h e hammer t e s t , s i n c e l i t t l e con- t r o l can b e e x e r c i s e d over t h e range o f f r e q u e n c i e s e x c i t e d . On t h e o t h e r hand, when t h e energy l e v e l of t h e hammer i s r e l a t i v e l y low, o t h e r e x c i t a t i o n methods

/3,4/ may b e used.

The advent o f a c c u r a t e and f a s t a n a l o g u e - t o - d i g i t a l c o n v e r t e r s h a s p e r m i t t e d t h e use of t r a n s i e n t t e s t methods i n which t h e time-domain r e s p o n s e t o a n impulse i s con- v e r t e d t o t h e frequency domain by u s i n g t h e F a s t F o u r i e r Transform t e c h n i q u e . During t h e l a s t twenty y e a r s , t r a n s i e n t t e s t i n g t e c h n i q u e s have been d e v e l o p e d ' i n a wide v a r i e t y of methods f o r handling r e s p o n s e d a t a (2-6/. Most of t h e s e r e q u i r e a g r e a t d e a l o f mathematical p r o c e s s i n g and s t i l l i n c u r g r e a t expense i n computing, w h i l e t h e r e s u l t s may n o t b e o b t a i n e d o u t s i d e a l a b o r a t o r y . However, t h e advent of Zoom-FFT p r o v i d e s a method by which i n c r e a s e d r e s o l u t i o n can be o b t a i n e d w i t h i n a s m a l l e r p a r t of t h e frequency range. The Zoom s p e c t r a , a s shown i n F i g . 1, a r e of h i g h r e s o l u t i o n s o t h a t t h e r e s o n a n t f r e q u e n c i e s and damping r a t i o s may b e o b t a i n e d d i r e c t l y and c l e a r l y w i t h o u t t h e need f o r a c c e s s t o l a r g e computers. T h e r e f o r e , Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983953

(3)

JOURNAL

DE

PHYSIQUE

LIN X 9.18E-2

F i g . I The Zoom spectrum of an off-axis laminated beam of E-Glass

(e -

45')

t h e method p r e s e n t e d i n t h i s paper i s p r a c t i c a b l e f o r wide a p p l i c a t i o n , such a s i n monitoring and diagnosing machine f a u l t s / 7 / and i n n o n - d e s t r u c t i v e t e s t i n g /8/.

I n t h i s p a p e r , t h e a p p l i c a t i o n of t h e Zoom-FFT method and t h e hammer t e s t t o d e t e r - mine t h e damping c h a r a c t e r i s t i c s o f s t r u c t u r e s i s d i s c u s s e d , and some r e s u l t s a r e

given f o r Glass F i b r e Reinforced P l a s t i c s (GFRP) p l a t e s and beams. F i n a l l y , a comparison i s made w i t h r e s u l t s o b t a i n e d by more c o n v e n t i o n a l methods.

11.1 L i n e a r , lightly-damped m u l t i degree-of-freedom system

Considar t h e c a s e of a l i n e a r , lightly-damped s i n g l e degree-of-freedom system e x c i t e d by a s i n g l e p u l s e

Y ( t ) = H(w) F ( t ) where

The F o u r i e r Transform of Eqn ( 1 ) i s Y(w)

=

H(w) F ( o )

where Y(w) and F(w) a r e t h e spectrum of t h e system and o f t h e f o r c e r e s p e c t i v e l y . I n t h e c a s e o f an impulse, F(w) may be c o n s i d e r e d t o b e e s s e n t i a l l y c o n s t a n t o v e r a broad frequency range.

Now i f

I F ( w ) ~

=

C

(4)

t h e n

IY(u)

1 =

C I H ( W ) I

Owing t o t h e low damping, t h e frequency r e s p o n s e f u n c t i o n may b e made up of i n d i v i - d u a l modes which a r e w e l l s e p a r a t e d i n frequency, s o t h a t each mode can b e analyzed s e p a r a t e l y . Hence, i n t h e c a s e of m u l t i degree-of-freedom s y s t e m s , t h e spectrum of each mode would b e a s f o l l o w s :

Yi(w)

=

Hi(w) Fi(w) s o t h a t

Iyi(w)I

=

cIHi(w)I

where I -1

and

me,

is t h e ith e q u i v a l e n t mass which r e l a t e s t o t h e system parameters and i s dependent on t h e n a t u r a l frequency w ni.

ci

is t h e modal v i s c o u s damping r a t i o . For t h e a c c e l e r a t i o n r e s p o n s e , we have

where

I f t h e curve of (ai(w)

I

i n t h e r e s o n a n t r a n g e were determined e x p e r i m e n t a l l y , t h e modal v i s c o u s damping r a t i o S i and n a t u r a l frequency f n i would b e o b t a i n e d e i t h e r by u s i n g curve f i t t i n g o r by applying t h e " h a l f power p o i n t " t e c h n i q u e . Thus, t h e damping r a t i o s of each mode would be:

s p e c i f i c damping c a p a c i t y (SDC) Jli

=

4 a Si

l o g a r i t h m i c decrement 6 i

=

2 a Si

I

( 1 0 )

l o s s f a c t o r q i

=

2 Si

The r e s u l t o f a normal FFT a n a l y s i s shows a d i s t r i b u t i o n of frequency from z e r o up t o t h e Nyquist frequency f N , while t h e frequency r e s o l u t i o n i s determined by t h e number of frequency l i n e s up t o f~ (normally h a l f t h e number o f t h e o r i g i n a l d a t a sample /9/.

The d e f i n i t i o n of t h e D i s c r e t e F o u r i e r Transform (DFT) i s

and

where

fk

=

k A f , and tn

= n

~t

I f t h e r e c o r d i n g time i s T

=

N A t and t h e sampling number is N , t h e n t h e sampling

(5)

C9-366 JOURNAL

DE

PHYSIQUE

frequency i s f s = N/T. Because of t h e u n c e r t a i n t y p r i n c i p l e /9/, t h e sampling r a t e should be g r e a t e r t h a n twice ( u s u a l l y 2.56 t i m e s ) f n . So, f N

=

fs/2.56 and t h e r e s o l u t i o n is B

=

fs/N. For example, when equipment with a 1 K t r a n s f o r m i s used ( i . e . N

=

1024 p o i n t s ) , i f f N

=

400 Hz, t h e r e c o r d i n g time w i l l be 1 s e c and t h e r e s o l u t i o n B

=

1 Hz. This IS i n s u f f i c i e n t f o r determining t h e resonance c u r v e , because t h e Af of t h e h a l f power p o i n t s i s about 1 Hz f o r a system having 5% SDC and f n

=

125 Hz. For t h i s r e a s o n , it i s d e s i r a b l e t o o b t a i n a c o n s i d e r a b l y f i n e r r e s o l u t i o n over a l i m i t e d p o r t i o n o f t h e spectrum. But by t h e u s e of t h e "Zoom-FFT"

procedure, t h i s c o n d i t i o n can now b e d e a l t w i t h adequately.

The frequency range used i n t h e Zoom-FFT method depends on t h e damping o f t h e specimen o r s t r u c t u r e and t h e c o r r e c t range can only b e found by e x p e r i e n c e . For g l a s s f i b r e r e i n f o r c e d p l a s t i c s , a frequency range of 1 3 1 t o 1 5 1 Hz was used f o r one mode ( s e e Fig. 1 ) w h i l e , f o r a carbon s t e e l beam, it was n e c e s s a r y t o reduce t h e frequency range t o 113.5 t o 114.5 Hz.

11.4 T e s t i n g arrangement

The t e s t i n g arrangements a r e a s i l l u s t r a t e d i n Fig. 2. I n Fig. 2 ( a ) t h e specimen i s suspended v e r t i c a l l y by two f l e x i b l e s t r i n g s t h a t e n a b l e s t h e specimen t o be c o n s i - dered a s b e i n g " f r e e - f r e e " . I n t h i s way, t h e n a t u r a l f r e q u e n c i e s and damping r a t i o s can b e measured mode by mode without a l t e r i n g t h e arrangement. However, owing t o t h e u s e of an a c c e l e r o m e t e r a t t a c h e d t o t h e specimen a s a pick-up, t h e e f f e c t of added mass has t o be t a k e n i n t o account. I f t h e r a t i o of attachment mass/specimen mass is l e s s t h a n 0.1%, t h i s e f f e c t can b e n e g l e c t e d . I n F i g . 2 ( b ) , t h e specimen is shown p l a c e d on sponge s u p p o r t s s o t h a t a non-contacting pick-up, such a s a capaci- t a n c e t r a n s d u c e r , i s used. I n o r d e r t o reduce e x t e r n a l e f f e c t s from t h e s u p p o r t s , t h e n o d a l l y s u p p o r t e d arrangement ( F i g . 2 ( b ) ) i s recommended. However, i n u s i n g t h i s arrangement, t h e n o d a l l i n e o f t h e specimen must be determined f i r s t , and t h e s u p p o r t s have t o b e moved f o r measuring any o t h e r mode.

Accelerometer

Charge

L

Amplifier

Fl'T Andlyser

microcomputer

Microphone

Ampltfior co FPT Analyaer

Sponge nodal supports

F i g . 2 Apparatus

Having s e t up t h e specimen a s i n F i g . 2 ( a ) o r ( b ) , t h e t e s t i n g procedure i s a s f o l l o w s :

(6)

The specimen i s tapped by t h e hammer, and t h e t r a n s i e n t response i s processed by t h e Zoom-FFT a n a l y s e r , s o producing t h e zoom spectrum. The microcomputer (HP-85) which is i n t e r f a c e d t o t h e FFT a n a l y z e r r e c o r d s t h e c a l c u l a t e s t h e spectrum t o o b t a i n t h e n a t u r a l frequency and damping r a t i o immediately.

111. DISCUSSION

To v e r i f y t h e t r a n s i e n t t e s t a n a l y s e d by Zoom-FFT, u n i d i r e c t i o n a l and o f f - a x i s lami- n a t e d E-glass p l a t e s and beams have been t e s t e d . The r e s u l t s a r e shown i n Fig. 3 and Table 1.

9

0 10 20 30 LO SO 60 70 80 90 pi< angle (eO)

Fig. 3 Comparison t o t h e r e s u l t s o f o f f - a x i s laminated beams of E-Glass

- - - , -

T h e o r e t i c a l v a l u e s of E and SDC r e s p e c t i v e l y .

8 O E and SDC experimental d a t a o b t a i n e d by t e c h n i q u e a s Ref. 11.

x A E and SDC e x p e r i m e n t a l d a t a o b t a i n e d by t r a n s i e n t (zoom) method Good agreement i s shown i n F i g . 3 f o r t h e r e s u l t s o f o f f - a x i s l a m i n a t e s i n E-glass beams a t a s e r i e s of a n g l e s u s i n g Zoom-FFT from t h e t r a n s i e n t t e s t and from t h e technique i l l u s t r a t e d i n Ref. 11. The o t h e r e x p e r i m e n t a l r e s u l t s (method of r e f e r e n c e 1 1 ) were obtained by s t e a d y - s t a t e methods and t h e continuous l i n e i s a t h e o r e t i c a l p r e d i c t i o n .

T e s t s were t h e n made on p l a t e s u s i n g both accelerometer and c a p a c i t a n c e t r a n s d u c e r s (Table 1 ) . I t i s seen t h a t t h e damping r e s u l t s o b t a i n e d u s i n g t h e accelerometer a r e h i g h e r t h a n t h o s e o b t a i n e d u s i n g t h e c a p a c i t a n c e t r a n s d u c e r , owing t o t h e s l i g h t a d d i t i o n a l damping of t h e accelerometer l e a d . The h i g h e r t h e mode, t h e more s i g - n i f i c a n t i s t h e e f f e c t of t h e attachment of t h e a c c e l e r o m e t e r . Also, t h e l i g h t e r t h e specimen, t h e g r e a t e r i s t h e e f f e c t of t h e attachment, which e v e n t u a l l y l e a d s t o very s e r i o u s e r r o r s . When l i g h t , beam specimens a r e t e s t e d , it i s suggested t h a t t h e a c c e l e r o m e t e r should not be used. But t h i s d i f f e r e n c e i n damping i s n o t due t o any e r r o r i n t h e Zoom-FFT method b u t simply t o t h e use of an i n a p p r o p r i a t e t r a n s - d u c e r , t h e a c c e l e r o m e t e r . When a f r e e decay method was used f o r t h e same p l a t e and

(7)

C9-368 JOURNAL

DE

PHYSIQUE

modes of v i b r a t i o n , t h e damping v a l u e s o b t a i n e d were e x a c t l y t h e same a s when u s i n g t h e same t r a n s d u c e r and t h e Zoom-FFT method.

Furthermore, i f t h e Young's Modulus o f t h e p l a t e i s r e q u i r e d , t h i s can be obtained from t h e v a l u e s o f t h e n a t u r a l frequency p a r a m e t e r , X , which is g i v e n i n Ref. 1 0 ,

f a 2

where X

= - 6

( a

=

p l a t e s i d e l e n g t h , t

=

p l a t e t h i c k n e s s , 0

=

d e n s i t y , t

ET

=

t r a n s v e r s e Young's modulus). The modulus E can be determined from f n . T

Table 1 The comparison of average SDC values JI and n a t u r a l f r e q u e n c i e s f n o b t a i n e d by u s i n g a c c e l e r o m e t e r and c a p a c i t a n c e t r a n s d u c e r s . Specimen is u n i d i r e c t i o n a l E-glass l a m i n a t e .

o: pick-up s i t e .

The c a s e i n which t h e t r a n s i e n t response i s l o n g e r t h a n t h e r e c o r d i n g time h a s a l s o been i n v e s t i g a t e d . Using Zoom-FFT t h e s p e c i f i c damping c a p a c i t i e s of carbon s t e e l beams are about 0.07%

-

0.14% which i s i n agreement with t h e r e s u l t s shown i n Ref.

I V . CONCLUSIONS

error of SDC

E=U

x l O O X

$c

9 . 3

1 8 . 9 6

2 0 . 5 6 Mode Shape

I Fl

f i b r e d i r e c t i o n

r]

I '

I n t h i s paper a method i s d e s c r i b e d of d e t e r m i n i n g t h e dynamic c h a r a c t e r i s t i c s of s t r u c t u r e s and specimens u s i n g t r a n s i e n t t e s t i n g t e c h n i q u e s and a p p l y i n g Zoom-FFT a n a l y s i s . Although i n t h i s p a p e r we have o n l y d i s c u s s e d r e s u l t s from specimens of a q u i t e s i m p l e s h a p e , such as p l a t e s and beams, t h i s method can a l s o b e a p p l i e d t o more complex s t r u c t u r e s .

REFERENCES

1. KENEDY

,

C. C. and PANCU, C. D. P

. ,

J o u r n a l o f A e r o n a u t i c a l S c i e n c e ,

E,

( 1947 )

,

603.

Using a c c e l e r o m e t e r

2. WHITE, R. G., J , Roy. Aero. Soc., (19691,

73,

1047.

3. KANDIANIS, F., J o u r n a l o f Sound and V i b r a t i o n

2,

(1971), 203.

Using c a p a c i t a n c e transducer f n c

(hz)

5 6 . 8

8 9 . 9 6

1 4 8 . 2 5 a c c . mass

p l a t e Inass

-

500 1

-

500 1

1

500

fna (hz)

5 6 . 1

8 9 . 6

1 4 7 . 3

$c

( X )

8 . 0 3

5 . 5 9

5 . 5 1 (%)

8 . 7 8

6 . 6 5

6 . 6 4 7

(8)

WHITE, R. 5

.,

J. Sound a n d V i b r a t i o n ,

15,

( 1 9 7 1 ) , 1 4 7 .

CLARKSON,

';.

L. a n d MERCER, C . A . , AIAA J o u r n a l ,

3,

( 1 9 6 5 ) , 2287.

CAWLEY, P. a n d ADAMS, R. D . , J . Sound a n d V i b r a t i o n ,

2,

( 1 9 7 9 ) , 1 2 3 .

HERLUFSEN, H., "Order a n a l y s i s u s i n g Zoom FFT", B. & K A p p l i c a t i o n Notes 012-81.

AL-AGHA, H. a n d ADAMS, R. D . , " D e t e r m i n a t i o n o f m u l t i p l e damage s i t e s b y m e a s u r e m e n t s o f s t r u c t u r a l n a t u r a l f r e q u e n c i e s " . l o t h World Conf. on NDT, Moscow, 1 9 8 2 .

PAPOULIS, A . , " S i g n a l a n a l y s i s " . McGraw-Hill Book Company, 1 9 7 7 , 273-276.

CAWLEY, P . a n d ADAMS, R.D., J . Composite M a t e r i a l s , 1 2 , ( 1 9 7 8 ) , 336. - ADAMS, R.D. and BACON, D . G . C . , J. P h y s . D : Appl. P h y s . ,

5,

( 1 9 7 3 ) , 27.

ADAMS, R.D., J . Sound a n d V i b r a t i o n , 2 3 , ( 1 9 7 2 ) , 1 9 9 .

-

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to