• Aucun résultat trouvé

Failure model for heterogeneous structures using structured meshes and accounting for probability aspects

N/A
N/A
Protected

Academic year: 2021

Partager "Failure model for heterogeneous structures using structured meshes and accounting for probability aspects"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-00542668

https://hal.archives-ouvertes.fr/hal-00542668

Submitted on 3 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Failure model for heterogeneous structures using

structured meshes and accounting for probability aspects

Martin Hautefeuille, Sergiy Melnyk, Jean-Baptiste Colliat, Adnan Ibrahimbegovic

To cite this version:

Martin Hautefeuille, Sergiy Melnyk, Jean-Baptiste Colliat, Adnan Ibrahimbegovic. Failure model for

heterogeneous structures using structured meshes and accounting for probability aspects. Engineering

Computations, Emerald, 2009, pp.166 - 184. �10.1108/02644400910924852�. �hal-00542668�

(2)

meshes and a ounting for probability aspe ts

M. Hautefeuille, S.Melnyk, J.B. Colliatand A. Ibrahimbegovi

E ole Normale Superieure de Ca han,

LMT-Ca han, Genie Civilet Environement

61, avenue de president Wilson, 94235 Ca han, Fran e

e-mail: ailmt.ens- a han.fr, fax. +33147402240

Abstra t

Purpose-Inthisworkwedis usstheinelasti behaviorofheterogeneousstru tureswithin

theframeworkof niteelementmodelling,bytakingintotherelatedprobabilisti aspe tsof

heterogeneities.

Design/methodology/approa h- We show how to onstru t the stru tured FE mesh

representationfor the failure modelling forsu h stru tures, by using a building-blo k of a

onstant stress element whi h an ontain two di erent phases and phase interfa e. We

present all the modi ationswhi h are needed to enfor e for su h an element in order to

a ountforinelasti behaviorinea hphaseandthe orrespondinginelasti failuremodesat

thephaseinterfa e.

Findings- Wedemonstratebynumeri alexamplesthat theproposedstru tured FEmesh

approa hismu hmoreeÆ ientfromthenon-stru turedmeshrepresentation. Thisfeatureis

ofspe ialinterestforprobabilisti analysis,wherealargeamountof omputation isneeded

in order to provide the orrespondingstatisti s. Onesu h ase of probabilisti analysis is

onsideredin this work wherethe geometryof thephaseinterfa eisobtainedas theresult

oftheGibbsrandompro ess.

Originality/value- Con rms that one an make the most appropriate interpretation of

theheterogeneousstru turepropertiesbytakingintoa ountthe nedetailsoftheinternal

stru ture,alongwiththerelatedprobabilisti aspe tswiththepropersour eofrandomness,

su h astheoneaddressedhereinin termsofporosity.

Keywords: heterogeneousstru tures,failuremodes, niteelement,stru turedmesh,prob-

abilityaspe ts

Paper type: resear hpaper

1 Introdu tion

Thedomainofnumeri alanalysisforultimateloadbehaviorofCivilEngineeringstru tureleads

to many important issues, hief among them a ounting forheterogeneities of real stru tures.

For example, the stru tures built of ement-based materials, su h as on rete or mortar, an

be modelled at di erent s ales, depending on the obje tives and the physi al me hanisms to

bea ountedfor. Namely, forengineeringappli ationsand omputations atthe stru tures ale

(ma ro-s ale), the material might be onsidered as homogeneous, and its properties obtained

byusingthe key on ept of RVE (see [2 ℄,[13 ℄) to obtainphenomenologi almodelsof inelasti

behavior (e.g. see [28℄, [1 ℄, [7 ℄) The main advantage of those models is their robustness and

small omputational ost,hen e thisapproa h is widely spread. On theother hand, su h phe-

nomenologi almodelsarebasedonasetof "material"parameterswhi houghtto beidenti ed,

mainly from experiments performed with pres ribed load paths. This methodology leads to a

(3)

path, thusleadingto a non-predi tivema ro-model.

In order to over ome thismajordrawba k many authors triedto furnishmi ro-me hani al

bases to thema ros opi modelset of parameters(see [17 ℄, [15 ℄)and provideamore predi tive

model. One wayto a hieve thisgoal isto employhomogenization methodsleadingto a urate

results forlinear problems. In ase of non-linearitiessu h methods arenot providing good es-

timates for the e e tive (ma ros opi ) properties (see [6 ℄). Moreover, su h approa h does not

take intoa ount theinherentun ertaintiesatta hedto heterogeneousmaterialsandstru tures.

Consideringasmalls ale,thisvariabilitymightbeviewedfromthegeometri alpointofview

throughthe sto hasti des ription of the meso-stru ture. In thiswork we propose to ompute

thema ros opi parametersforaporousmediaaswellastheirstatisti sbytakingintoa ount

the variability of the meso-stru ture. The key point is that the material parameters at this

levelare assumed to bedeterministi ,so thatthe variabilityis onlyrelated to thesize and the

positions of the voids. In order to solve this sto hasti problem and ompute the statisti al

moments forthe responsequantities, we employthe Monte-Carlo method withina distributed

softwareenvironment. This sto hasti integration method is basedon manyevaluations of the

meso-stru turesresponsesthusleadingto atime- onsumingpro ess. Moreover,astheerror an

dire tlybeevaluatedintermsofthenumberofrealizations,itisne essaryto hoosearelatively

smalldis reteproblem,eveninthe aseof omplexmeso-stru tures. Toa hieve thiswepropose

amodelbasedonaregularmeshwhi hisnot onstrainedbythephysi alinterfa es. Thismodel

relies on lassi al CSTelements, whose kinemati s des riptionis enri hed bythe use of strain

and displa ementsdis ontinuitiesinorderto represent two phases.

Theoutlineofthispaperisasfollows;inSe tion2,wepresenttheplasti itymodelemployed

at the meso-s alelevel. Being based on regular meshes,thismodel an lead to fast omputing

ofnon-linearresponseeven for omplexmeso-stru turegeometries. InSe tion3wedes ribethe

sto hasti problem,thegeometri aldes riptionpro ess forde ningthemeso-stru tureand the

sto hasti integration method. Finally, in Se tion 4 we show and dis uss the resultsobtained

throughnumeri alsimulations.

2 Plasti ity model for failure of heterogeneous materials

Meshing is one of the major issues in modelling heterogeneous two-phase materials and fre-

quentlyleadsto undesirablyhighnumberof degrees-of-freedomanddistortedmeshes. Forthat

reason, themeshingpro essmightrequirea omplexand time- onsumingalgorithmand, more

importantly, produ ethe set ofdis rete equationswhi his poorly onditioned. In thisse tion,

we present another approa h by using stru tured (regular) meshes whi h are not onstrained

bythephysi alinterfa esbetweendi erentphases. Thekeyingredientforprovidingsu hmod-

els are eld dis ontinuitiesintrodu ed inside the elements in whi h the physi al interfa es are

present. The latter an bedeveloped as thekinemati s enhan ementswhi h belongwithin the

frameworkoftheIn ompatibleModesMethod(see[26 ℄, [11 ℄),andrequiresa dedi atedsolution

algorithm whi his illustratednext.

2.1 Plasti ity model with stru tured meshes

Intwo dimensional ontext, we onsideraheterogeneous materialforwhi hthein lusionsposi-

tionsandshapesareknown,thusleadingto xedpositionsofthedis ontinuitiesinea helement.

Figure1showsa3-nodetriangular niteelement representing twophases. Inorder to takeinto

(4)

a dis ontinuity of the strain eld and a dis ontinuity of the displa ement eld, both of them

lyingatthesame position(pres ribedbythephysi alinterfa ebetweentwophases). Thestrain

dis ontinuitypermitsthe properstrain representation oftwo di erent sets ofelasti properties

orresponding to ea h phase. The displa ement dis ontinuityleads to the possibilityto model

adebonding failureme hanismat theinterfa e. Forthelatter,two failureme hanismsare on-

sidered: one orresponding to theopening of the ra k inthe normal dire tionand the se ond

onetotheslidinginthetangentdire tion(see[22 ℄). Bothofthesedis ontinuitiesareintrodu ed

byusingtheIn ompatible Modes Method(see [26 ℄,[11 ℄ ) leadingto thesame numberof global

degrees-of-freedom.

These kinemati s enhan ements areadded on topof thestandard CSTelement (Figure1).

Thiselementisdividedintotwopartsbyintrodu inganinterfa ewhosepositionisde nedbytwo

parameters: 

1

;

2

2[0;1℄. Theseparameters

i

areobtainedfromtheinterse tionofthe hosen

stru tured mesh with the in lusionspla ed within the stru ture. The orresponding values of



i

at ea h element boundaryare sharedbetween two neighboringelements. The domain e

of

the standard 3-node CST element is thus dividedinto two sub-domains e

1

and e

2

. Di erent

elasti -plasti orelasti -damagebehaviorlawsmightbe hosenforea h ofthesetwoparts, with

di erent elasti properties (see[9 ℄).

Figure1: Twophase3 node triangular element;withstressve tor ontinuity enfor ed a rossthe

interfa e.

Contrary to thedispla ement elddis ontinuity, whi his a tivateda ording to the hosen

failure riterion,thestrain elddis ontinuityisalwayspresent. Introdu ingthosedis ontinuities

requires to enhan ethekinemati s of theelement byusingtwoin ompatible modes. Thus, the

displa ements eld an be writtenasfollows:

u h

(x;t)= 3

X

a=1 N

a (x )d

a

(t)+M

I (x)

I

(t)+M

I (x)

I

(t)+M

II (x)

II

(t) (1)

This expression ontains four terms: the rst one provides onstant strain inside the element

(CST). The se ond term represents a jump in the displa ements eld in the normal dire tion

and the third a jump of displa ements eld in the tangential dire tion. Finally, the last part

provides thestrain eld dis ontinuity.

The shape fun tions M

I

(x ) for the rst in ompatible mode (Figure 2a.) orresponding to

the displa ements eld dis ontinuity for both normal and tangent dire tions (see [8℄) an be

writtenas:

M

I

(x )=H

S (x)

X

a2 e

1 N

a

(x ) (2)

where N

a

represents the normal shape fun tions of a CST element and H

S

the Heaviside

fun tionpla edat theinterfa eposition.

(5)

II

thejumpinthe strain eld (SeeFigure 2b.) an be writtenas:

M

II (x)=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

(x

6 x

1 )(y

4 y

1 ) (x

4 x

1 )(y

6 y

1 )



(y y

1 )



(x

4 x

1 )+(x

6 x

1 )z

4



(x x

1 )



(y

6 y

1 )z

4 +(y

4 y

1 )





; x;y2

e

1

1

(x6 x2)(y3 y2) (x3 x2)(y6 y2)



(y y

2 )(x

3 x

2 ) (y

3 y

2

)(x x

2 )



; x;y2 e

2

(3)

The shapefun tion M

II

(x ) expressionis obtainedbyusingtheequations ofthe two planes

de ned bynodes 2,3 and 6 for one sub-domain and 1, 4 and 6 forthe se ond one (see Figure

1). These geometri onditions are suÆ ient to de ne M

II

(x) for the real displa ement eld.

Thesameshapefun tionalso satis esthepat htest ondition(e.g. see[11 ℄)whi henfor esthe

element apabilityto represent onstantstress eld.

Figure2: In ompatible modes orrespondingto displa ements a)and strain b) dis ontinuitiesof

CST element

With these resultsinhand,thestrain eld an be writtenasfollows:

"

h

(x;t) = 3

X

a=1 B

a (x)d

a

(t)+G

II (x )

II (t)

+ (n T

n)G

Ir (x)

I (t)+

1

2 h

n T

m+m T

n i

G

Ir (x )

I (t)

= Bd+G

II

II +(n

T

n)G

I

r

I +

1

2 h

n T

m+m T

n i

G

I

r

I

(4)

where B(x) are the well known strain-displa ement matrix for CST element, ontaining the

derivatives oftheelement shape fun tions(e.g. see [28 ℄),

B(x )= 2

6

4

N

1

x 0

N

2

x 0

N

3

x 0

0

N

1

y 0

N

2

y 0

N

3

y

N

1

y

N

1

x

N

2

y

N

2

x

N

3

y

N

3

x 3

7

5

(5)

and G

I

r

(x ) ontainsthederivativesof the rst in ompatiblemode

G

Ir (x)=

2

6

4

N

2

x +

N

3

x

0

0

N

2

y +

N

3

y

N

2

y +

N

3

y

N

2

x +

N

3

x 3

7

5

(6)

(6)

G

Ir

= G

Ir +G

Ir Æ

S

=

X

a2 e+

B

a

| {z }

G

Ir

+nÆ

S

|{z}

G

Ir

(7)

In (7) above, Æ

S

is the Dira delta fun tion providing the jump of displa ement eld. It is

important to notethat su h a shape fun tionought to be modi ed into G

Iv

for representation

of thevirtualstrain eld

G

I

v

=G

I

v +G

I

v Æ

S

(8)

This kind of modi ation, needed to enfor e the satisfa tion of the Pat h Test ([28 ℄), an be

obtainedbyfollowingpro edure rstproposedforamodi edversionoftheIn ompatibleModes

Method (see [11 ℄)leadingto:

G

Iv

(x ) = G

Ir (x )

1

A Z

e

G

Ir (x)d

=

X

a2 e+

B

a +

1

A Z

e

X

a2 e+

B

a d

l

S

A n

| {z }

G

I

v

+ nÆ

S

|{z}

G

I

v Æ

S

(9)

Finally, in (4), G

II

is the matrix ontaining the derivatives of the se ond shape fun tion

M

II (x):

M

II (x)

x

= (

1

(x

6 x

1 )(y

4 y

1 ) (x

4 x

1 )(y

6 y

1 )

[ (y

6 y

1 )z

4 +(y

4 y

1

)℄; x;y2 e

1

1

(x

6 x

2 )(y

3 y

2 ) (x

3 x

2 )(y

6 y

2 )

[ y

3 y

2

℄; x;y2

e

2

(10)

M

II (x )

y

= (

1

(x

6 x

1 )(y

4 y

1 ) (x

4 x

1 )(y

6 y

1 )

[(x

4 x

1 )+(x

6 x

1 )z

4

℄; x;y 2 e

1

1

(x

6 x

2 )(y

3 y

2 ) (x

3 x

2 )(y

6 y

2 )

[x

3 x

2

℄; x;y 2

e

2

(11)

2.2 Operator split solution for interfa e failure

The total system onsists of four equilibrium equations, with (12a) as the global equilibrium

equation and(12b) to(12d) are orrespondingto thelo alones. Equations(12b) to(12 ) have

to be solved only in ase of a tivation of the displa ement dis ontinuityin the normal or the

tangentialdire tion.

8

>

>

<

>

>

: A

nel

e=1



f int

f ext

=0



h ;e

I

=0

h ;e

I

=0

h e

II

=0

=) 8

>

>

>

<

>

>

>

: R

e

B T

d R

e

N T

bd=0

R

e

G ;T

Iv

d=0

R

e

G ;T

I

v

d=0

R

e

G T

II

d=0

(12)

Bythe onsistentlinearization(e.g. see[7 ℄)ofthissystemofequationsweobtaininthematrix

form

2

6

6

6

6

4 K

e

F ;e

I

r F

;e

I

r F

e

II

F ;e

T

I

r H

;e

I F

e

H F

;e

S

F ;e

T

I

r F

e T

H H

;e

I F

;e

S

F e;T

II F

;e T

S F

;e T

S H

e

II 3

7

7

7

7

5 (k)

n+1 0

B

B



d



I



I



II 1

C

C

A (k+1)

n+1

= 0

B

B

 r

0

0

0 1

C

C

A (k)

n+1

(13)

(7)

K e

= R

e

B T

:C ep

:Bd

F ;e

I

r

= R

e

B T

:C ep

:(n T

n)G

Ir d

F ;e

I

I

= R

e

B T

:C ep

: 1

2 n

T

m+m T

n



G

I

r d

F e

II

= R

e

B T

:C ep

:G

II d

F ;e

T

I

r

= R

e

G ;T

I

v :C

ep

:Bd

H ;e

I

= R

e

G ;T

I

v :C

ep

:(n T

n)G

Ir d+

R

S G

;T

I

v

t

S



I d

F e

H

= R

e

G ;T

I

v : C

ep

: 1

2 n

T

m+m T

n



G

I

r d

F ;e

S

= R

e

G ;T

Iv :C

ep

:G

II d

F ;e

T

I

r

= R

e

G ;T

I

v :C

ep

:Bd

F e

T

H

= R

e

G ;T

I

v :C

ep

:(n T

n)G

Ir d

H ;e

I

= R

e

G ;T

I

v :C

ep

: 1

2 n

T

m+m T

n



G

I

r d+

R

S G

;T

I

v

t

S



I d

F ;e

S

= R

e

G ;T

Iv :C

ep

:G

II d

F e;T

II

= R

e

G T

II :C

ep

: Bd

F ;e

T

S

= R

e

G T

II :C

ep

:(n T

n)G

Ir d

F ;e

T

S

= R

e

G T

II : C

ep

: 1

2 n

T

m+m T

n



G

Ir d

H e

II

= R

e

G T

II :C

ep

:G

II d

(14)

In order to solve this system, we arry out stati ondensations (e.g see [27 ℄). The last three

equationsaresolvedatlo allevel(numeri alintegrationpoints),thusthetotalnumberofglobal

unknownsremainsthesameaswiththestandardCSTelement. Thesestati ondensationsleads

to thee e tive sti ness matrix(see [23 ℄), whi h an be writtenasfollows:

b

K e;(k)

n+1

=K e;(k)

n+1 h

F ;e

I

r F

;e

I

r F

e

II i

(k)

n+1 2

6

4 H

;e

I F

e

H F

;e

S

F e

T

H H

;e

I F

;e

S

F ;e

T

S F

;e T

S H

e

II 3

7

5 (k)

1

n+1 2

6

4 F

;e T

I

r

F ;e

T

I

r

F e;T

II 3

7

5 (k)

n+1

(15)

Finally, the global system of equations (12) is solved to obtain the updated value of the dis-

pla ement eldd (k+1)

n+1

=d (k)

n+1 +d

(k+1)

n+1

b

K (k)

n+1

d (k+1)

n+1

= r (k)

n+1

(16)

2.3 Model problem of lo alized failure

Inthisse tionwe onsiderthe onstitutivebehaviorattheinterfa einmoredetails. Asalready

mentioned,thepositionsoftheinterfa esarepres ribedinadvan ea ordingtothepositionsof

thein lusionsandwesupposethat ra ks ano uronlyattheinterfa es. Inordertoinvestigate

these interfa es behavior, we shall onsiderthe se ondequation of thesystemin(12).

Z

e

G T

Iv

d+ Z

S G

T

Iv t

S

d =0 (17)

Z

e

G T

Iv

d+G T

Iv t

S l

S

=0 (18)

(8)

lengthof theinterfa eand of thestrain eld

t

S

= 1

l

S Z

e

G T

Iv

d

= 1

l

S ngp

X

l =1 G

T

I

v : C

ep

:

"

Bd+G

II

II +(n

T

n)G

I

r

I

+ 1

2 h

n T

m+m T

n i

G

Ir

I

#

j

l w

l

(19)

wherengpisthetotalnumberofintegrationpointsinea helementandj

l andw

l

arerespe tively

theisoparametri transformation ja obianand thenumeri al integration weight.

Considering onlya nonlinearpart ofstrain at the given interfa e, we an furtherobtainan

in rement of tra tion-ve torsa ording to:

t

S

= 1

l

S npg

X

l =1 G

T

Iv :C

ep

:

"

(n T

n)G

Ir



I +

1

2 h

n T

m+m T

n i

G

Ir



I

#

j

l w

l

= 1

l

S npg

X

l =1 G

T

I

v :C

ep

:(n T

n)G

I

r

j

l w

l

| {z }

K

oef



I

1

l

S npg

X

l =1 G

T

I

v :C

ep

: 1

2 h

n T

m+m T

n i

j

l w

l

| {z }

K

oef



I

= K

oef



I +K

oef



I

(20)

In order to represent thedebonding between the two phases, we hoose a softening law of

exponential form for the ra k both in normal and in tangent dire tions. The orresponding

failure riteriahave been hosen asfollows:

 D;n

n+1

=t

n+1

n (

f q

D

n+1

)0 (21)

where

q D

n+1

=(

1



s )

h

1 e b

n+1 i

(22)

The integration algorithm isbasedon a trialstate whi hlookslike:

 D;n;tr

n+1

=t

n

n (

f q

D

n

) (23)

A ording to this trial state, the in rement of the softening variable depends on the plasti

multipliers



n+1

=

n +

n+1

=

n +

n+1

(24)

In order to obtainthese given parameters

n+1

, we solve the following lo al equation by using

Newton'smethod

 D;n

n+1

= t

S;n+1

n (

f q

D

n+1 )

= t

s

n (

f q

D

n )

| {z }

 D;n;tr

n+1

+q D

n+1 q

D

n +t

n+1

n

=  D;n;tr

n+1 +(

1



s )

h

1 e b

n+1 i

e b

n

+t

S;n+1

n (25)

(9)

softening:

t

S;n+1

=t tr

S;n+1 +t

S;n+1

; q

D

n+1

=q D;tr

n+1 +q

D

n+1

(26)

Finally, the in ompatible mode parameters

I and

I

are omputed in the manner similar to

plasti strainat the interfa e:

I;n+1

= tr

I;n+1 +

I;n+1

;

I;n+1

= tr

I;n+1 +

I;n+1

(27)

Withthelo alin ompatiblemodesparameters

I;n+1 and

I;n+1

we an updatethestrain eld

inea h sub-domainof theelement. Byusingoperator-splitsolutionpro edure(15)wesolve the

globalsystemof equationsin(16).

3 Probability aspe ts of inelasti lo alized failure for heteroge-

nous materials

The mainobje tive ofthis se tionis to illustrate thepossibilitiesprovided by theuseof stru -

tured meshrepresentationand theeÆ ient omputation apabilities of theproposedmodel for

dealingwithrandomheterogeneities. Tothatend,we onsiderhereinaporousmaterial(typi al

ofmany ement-basedmaterial)atameso-s alelevel. Atthiss aleweassumethatsu hmaterial

is hara terized byatwo-phasemi rostru turewithasolidphaseanda uidphase. Theformer

willbereferred asthe "matrix" andthe latteris supposedto represent thevoids orin lusions.

Depending on the number of in lusions, their sizes and positions, the non-linear ma ros opi

response of su h a material will vary. In other words,the ma ros opi hara teristi s, su h as

Young's modulus or the yield stress, willbe in uen ed by the meso-s ale geometry. Our goal

here is to arry out numeri allythe variations of the ma ros opi hara teristi s upon the in-

lusion sizes and positions. The key point for thisstudyis that thevariabilityintrodu edinto

the model is restri ted to the spe imen geometry only, whereas the me hani al hara teristi s

of thetwo phasesareassumed to be deterministi .

To be more pre ise, thematrix phase is supposed to be a urately modelled by an elasti -

perfe tlyplasti model based uponthe Dru ker-Prager riterion (see [5 ℄). The voids arerepre-

sented bya simplelinear isotropi elasti itymodelwith very smallYoung'smodulusvalue. In

thefollowingse tionswe rstbeginto des ribe theGibbspointpro ess,leadingto therealiza-

tions of the meso-stru tures. We also show an example of one typi al mesh obtained and the

orresponding ma ros opi responseto a tension test. Then we turn to the des riptionof the

sto hasti integrationmethod whi hhasbeen hosen tonumeri allysolvethisproblemand the

orresponding Software Engineering aspe ts. Finallywe show and dis ussthe resultsobtained

forthissto hasti problem.

3.1 Meso-s ale geometry des ription

Here we des ribeboththepro ess and thehypothesis leadingto themeshing pro edure within

a re tangular domain (3:61:8 m 2

). The meso-stru ture geometry of su h domain is here

supposedto bea urately modelledbya Gibbspointpro ess. Su h point pro ess is builton a

two steps s heme. The rst one is the determination of the in lusions number a ording to a

Poissonlaw. The se ondstep onsistsinthedetermination ofthe in lusion enters oordinates

as wellas theradius forea h in lusion. While su h a Gibbs pro ess already naturally leads to

a set of non-interse ting in lusions, we applied an even more restri tive riterion, by hoosing

the minimaldistan e between the in lusions (here equal to 2mm). Moreover, in order to be

onsistent withthemeshsizeand themodelfeatures, thein lusionsradiiareboundedbetween

(10)

orrespondingstru turedmesh. We an noti ethatea hin lusionis orre tly modelledbyaset

of dis ontinuitieswithoutanymajordistortion.

Figure 3: Meso-stru ture geometry a)and orresponding meshb)

Sin ethematerialparametersare hosentobedeterministi ,thestatisti softhema ros opi

response depends on the meso-stru ture geometry only, de ned by the in lusions radius and

enterspositions. Thusthema ros opi problemissto hasti andrequiressto hasti integration

method whi his presentedinthenext se tion.

3.2 Sto hasti integration

Sin ethe positionsand thedimensionsofthein lusionsinthematrixaredes ribedbydis rete

random elds de ned by Gibbs point pro esses,we obtaina random ma ros opi behavior for

this me hani al model. A 2D random point pro ess an be de ned as a nite set of random

variables, whi h are indexed by the spatial oordinates ve tors in R 2

. As a result, the geom-

etry of our stru tureis de ned as a random eld,whi h impliesthat every solution omputed

by the me hani al model is also a random eld. For example, the stru ture displa ement at

a xed point is also a random variable. In this study, we are interested in hara terizing the

ma ros opi me hani al properties of our stru ture. To a hieve this goal, we use a global ap-

proa h whi h onsists in identifying the material properties governing the global behavior of

the stru ture. More pre isely, we aim to determine the e e tive global material properties by

the orresponding identi ationof theglobalresponse omputedbytheFiniteElement model.

Therefore, sin e the global responses (displa ement and rea tions) are random variables, the

globalmaterialpropertiesweaim toidentify,su hastheYoungmodulusortheyieldstress,are

also randomvariables.

Probabilisti hara terizationofthema ros opi me hani alproperties an beviewedasde-

s ribingtheprobabilisti lawfollowedbyea hoftheseproperties. Twoapproa hes anbedrawn

to nda probabilisti lawdes ribing a randomphenomena. The rst one, so- alledfrequentist

approa h [14 ℄, is based on statisti al tests, like the  2

test for the Gaussian probability law.

Results of these tests are error margins that evaluate how the out omes of the given random

phenomena twithrespe tto agiven probabilitylaw. The se ond,so- alledBayesianapproa h

[12 ℄,is trying to useall theavailableinformationalong withthemaximumentropy theory(see

[21 ℄, [25 ℄)inorder to providethe mostgeneralprobabilitylawfora given state of information;

thus,tofullydes ribethisprobabilitylaw,thestatisti almomentsofdi erentordershavetobe

omputed. In this work, the se ond approa h is hosen. The ma ros opi material properties

we tend to hara terize are all de nedon thepositive real line. Moreoverwe assumethat they

an be given a mean value and a nitestandard deviation. On the basi of su h information,

(11)

thelog-normal distribution,whi his fullydes ribed by its omputedmean value andstandard

deviation.

Consequently, in order to hara terize the ma ros opi me hani al properties using the

Bayesian approa h, the rst two statisti al moments of ea h of these properties have to be

omputed. The statisti al moment of anyrandomvariable is an integralof a fun tionalof this

random variable over a probabilityspa e. Hen e, an eÆ ient numeri al tool to ompute su h

integral in multi-dimensional spa e is required. Rather than high order quadrature rules like

Smolyakalgorithm[24 ℄,weusehereasimpledire tintegrationalgorithmisMonteCarlosimula-

tion[3℄. Thebasi ideaofMonte Carlosimulationisto approximatetheintegralsofafun tional

of a random variable by a weighted sum of realizations of thisrandom fun tional. Let  be a

randomvariablede nedon some probabilityspa e (;B;P), whereisthespa e ofevents, B

isa-algebrabuiltonandP aprobabilitymeasure. Anyde nedmomentof an bewritten

as R

f((!))dP(!). The simple Monte Carlo algorithm onsist in approximating thisintegral

as a nite weighted sum of realizations f((!

i

)), ea h omputed at a randomly independent

hosen point !

i

in , multipliedby the orrespondingweights 1

N

(withN thegiven numberof

realizations)

Z

f((!))dP(!) 1

N N

X

i=1 f((!

i

)) (28)

For this kindof numeri al integration, the onvergen e rate an be a priori omputed thanks

to the entrallimit theorem [16℄. We an ndthe error estimate whi h is proportional to the

standarddeviation of f() over p

N, N being thenumber ofevaluations off(). Asea h real-

ization of the Gibbs pro ess is sto hasti ally independent from the others, thismethod an be

dire tlyappliedhereandfurthermoreparallelizedusinganappropriatesoftwareenvironmentto

eliminatethemaindrawba kofMonteCarloalgorithm,theslow-rate onvergen e. Inthis ase,

where no orrelation exists in the geometri al spa e, no other tools su h as Karhunen-Loeve

expansionis required(see [16 ℄,[4 ℄).

The software ar hite ture used here is based on the software omponent te hnology and

the middleware CTL [19 ℄, whi h provides the adequate network environment to enable ode

ommuni ationunder apres ribedproto ols and more generally ode oupling. The basi idea

ofsoftware omponent te hnologyis todivideasoftwareframeworkintoseveral tasksand then

to implement software omponents, ea h of them being able to arry out this parti ular task.

Existing software an be turned into a omponent by de ning an interfa e through whi h the

ommuni ationwillbe hannelled. Implementinga omponentfrom fora pre-existingprogram

onsists in oding a set of methodsthat other software an allthrough this interfa e. In the

ase of Monte Carlo simulations,twodi erent tasks an be drawn. One is to generatea Gibbs

pro ess and to transfer thisresult de ning thein lusions geometry ina stru tured mesh. The

otheris to runa omputationwiththisgivengeometry withintheme hani almodel de nedin

the rst se tion. A CTL software omponent has beenpreviouslyobtained [18 ℄ from theFEM

odeFEAP[28 ℄wherealsotheme hani almodelhasbeenimplemented. These ond omponent

in harge of thegeometry generation(the so- alled lient inFig. 4) willask forseveral runs of

theFEAP omponent at thesame timeea h usingadi erent geometry.

Further detailson the useof thisparallel framework and resultsare presented inthe following

subse tion.

(12)

FEAP

FEAP

FEAP

FEAP

FEAP CLIENT

Figure 4: Parallel software ar hite ture for Monte Carlo simulations

4 Results of the probabilisti hara terization of the two phases

material

4.1 Illustrative examples

In order to show the main features of this model, we shall rst present two simple examples.

The rst dealswith aperfe tly-plasti Dru ker-Prager matrix(see [5 ℄) inwhi h are pla ed ir-

ularvoids(Figure5). We showbythisexamplethe apabilityofourmodelto representstrain

eld dis ontinuityby hoosinga small value of Young's modulusfor the voids sub-domain. In

Figure 6a we show the stress-strain diagram omputed for elasti -perfe tly-plasti behavior of

thematrixmaterial.

Figure 5: Tension test on a square spe imen witha ir ular in lusion

In the se ond example we use the same spe imen geometry with a ir ular in lusion (see

Figure 5), but assumingthan thein lusion willhave the same Young's modulusas the matrix

and thatthe ra k an o uronlyat theinterfa ebetweentwo phases.

The post-peak behaviorat theinterfa eisrepresentedbyexponentialsoftening law,leading

to omputedstress-strain responseshown inFigure6b.

4.2 Comparison between stru tured and unstru tured mesh approa h

Inthispartwe onsiderthesamemi rostru tureasinthepreviousse tion. Wewanttoshowthe

di eren ebetween two meshes. The rst ase (Fig. 7a) presents adaptive exa t meshobtained

byusingthesoftwareGMSH,where ea h element ontains onlyone phase. Inthis ase several

(13)

E

1

, MPa 30000 30000

E

2

, MPa 30 30000

 0.2 0.2



y

, MPa 20 -



f

, MPa - 1.5



u

, MPa - 4.0

u, m 0.04 0.001

Table 1: Material parameters fortwo examples

0 0,002 0,004 0,006 0,008 0,01

Strain, %

Stre ss , M Pa

0 10 20 30 40

0 5e-05 0,0001 0,00015 0,0002 0,00025

Strain, % 0

5 10 15 20

Stre ss , M Pa

Figure6: Strain-stressdiagramfora)elasti -perfe tly-plasti matrix andb)exponentialsoftening

law at the interfa e

elementsarestronglydistorted,sin ewedo notoptimizethismeshwithrespe ttotheelement

sizes,the sti nessmatrix ispoorly onditioned. The se ond ase (Fig. 7b)is ourregular mesh

whi h we use in the al ulation. In this ase, the elements an represent two phasesto model

thein lusions.

Figure 7: Adaptive mesha) and regular meshb) within lusions

Moreover, Fig. (8)shows theaxial displa ement ontour plot (with an ampli ation fa tor

of 100)and the orrespondingma ros opi axial rea tionsdispla ement urve.

Weobtainalmostthesameresponseforboth ases,butwithverydi erenttimeof al ulation

for irregularmesh as11774.68 s and forregular meshas 646.41 s. This simpleexample points

outone ofthemajoradvantageof theproposedmodelintermof omputationtimede reasing.

This point is a key point in order to ta kle ma ros opi models of heterogeneous materials

takinga ountforthemeso-stru turegeometry(forexamplethroughnumeri alhomogenization

methods).

(14)

Time = 1.00E+00

4.17E-04 8.33E-04 1.25E-03 1.67E-03 2.08E-03 2.50E-03 2.92E-03 3.33E-03 3.75E-03 4.17E-03 4.58E-03 0.00E+00

5.00E-03 DISPLACEMENT 1

Min = 0.00E+00 Max = 5.00E-03

Time = 1.00E+00 Time = 1.00E+00

4.17E-04 8.34E-04 1.25E-03 1.67E-03 2.08E-03 2.50E-03 2.92E-03 3.33E-03 3.75E-03 4.17E-03 4.58E-03 0.00E+00

5.00E-03 DISPLACEMENT 1

Min = 0.00E+00 Max = 5.00E-03 Time = 1.00E+00

Figure 8: Longitudinal displa ement ontour plot orresponding to max.load for adaptive mesh

a) and regular mesh b)

0 0,001 0,002 0,003 0,004 0,005

Displacement (cm) -20

-15 -10 -5 0

Reactions Sum (kN)

Figure9: Rea tions sumvs. displa ement urve b)

4.3 Numeri al results and dis ussion

By ombining both the deterministi problem presented above and the sto hasti numeri al

integration methoddetailedinthepreviousse tion,we performed Z =9999 integration points,

ea hofthem orrespondingtoasinglemeso-stru turerealization. Theseintegrationpointshave

beendistributed on 9 pro essors leading to a 7-day omputing time and we shall present here

thedi erent results.

The rst point to be mentioned deals with the meso-stru ture geometry, (whi h are the "in-

put" parameters a ording to the sto hasti integration method point of view). Namely, ea h

meso-stru ture realizationis builtby usinga modi ed Gibbs point pro ess with in lusionsra-

diusboundedbetween0:01mmand 0:3mm. Fig. 10 shows thevoids volume fra tion(ratio of

the voids volume versusthe total volume) histogram orresponding to the Z realizations. The

asso iatedmeanvalue is6:26%and thestandarddeviation 3:59%.

The global sto hasti integration pro ess is leading to a set of Z axial rea tion for e-

displa ement diagrams. In Fig. 10we show100 realizationssample forthisma ros opi result.

It is worth to re all again that the variabilityshown by this sample is only due to the meso-

stru ture geometry variability (the material parameters being deterministi and so onstant

along the realizations). Moreover we an note that some meso-stru tures inside this sample

have no in lusions. This behavior is dire tly linked to the Gibbs point pro ess properties, in

parti ular to thedis retePoisson law leadingto thein lusionsnumber.

InFig. 11 weshowbyusingthesetofZ ma ros opi axial rea tions-vs-displa ement urves

the estimated mean ma ros opi stress-strain urve as well as the 99:9% on den e interval.

Withthis on den eintervalbeingquitenarrow,we an on ludethatthenumberofintegration

pointsused inthe sto hasti integration method issuÆ ient to make a urate on lusions and

(15)

0 200 400 600 800 1000 1200

0 0.05 0.1 0.15 0.2 0.25 0.3

Number of realizations

Volume fraction of inclusions ( % ) Histogram of the inclusions volume fraction

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

Reactions Sum ( kN )

Displacement ( cm )

100 realizations of the reactions sum w.r.t the displacement

Figure 10: a) Histogram of the volumefra tion b) 100 realizations sample results

0 10 20 30 40 50 60 70

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Mean Stress ( MPa )

Strain ( % )

Mean stress with 99.9% confidence interval w.r.t the strain

Mean stress Elastic Response 99.9% Error Bars

0 10 20 30 40 50 60 70 80

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Mean Stress ( MPa )

Strain ( % )

Mean stress and standard deviation interval w.r.t the strain

Mean stress standard deviation

Figure 11: Mean stress w.r.t the strain a) withe error bars on the mean b) with standard

deviation interval

to provide good estimates of statisti al moments. The ma ros opi stress  and strain " are

de nedasequivalenthomogeneous quantities,

"= u

L

x

= P

i R

i

L

y

(29)

whereL

x and L

y

arethesizeof thedomainand R

i

theaxialrea tions. Thisma ros opi mean

urve leads to the determination of an estimate for the ma ros opi mean Young's modulus

as well as to an estimate of the maximum stress mean 

f

. In order to provide a mean yield

stress estimate, Fig. 12 shows the evolution of the Young's modulus mean along the ma ro-

s opi strain. We an notethat themodulusis smoothlyde reasingup to a strainlimit before

a mu h more rapidde reasebeyond thispoint. We assume thislimitto be an estimatefor the

ma ros opi yield strainorforthema ros opi yield stress aswell.

Table 2 summarizes all the statisti al ma ros opi estimates obtained from this numeri al

example.

5 Con lusion

When dealing with the FiniteElements modellingof heterogeneous stru tures,meshing is one

of themajorissues leading to distortedand bad onditionedtangent operators aswellastime-

(16)

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Slope of the mean stress / strain curve ( MPa )

Strain ( % )

Evolution of the slope of the mean stress / strain curve w.r.t the strain

Figure12: Slope of the urve mean stress vs. strain w.r.t the strain

Mean Estimator 99:9% on den einterval std-dev interval



u

66:3651 MPa [ 66:3575MPa; 66:3727MPa℄ [58:2215MPa; 74:5087MPa℄



y

23:4998 MPa [ 23:4946MPa; 24:5050MPa℄ [21:5254MPa; 25:4742MPa℄

E 9:9371 GPa [9:7887GPa; 10:0855GPa℄ [ 9:2742GPa; 10:6000GPa℄

Table2: Statisti sof theout omeproperties ofMonte Carlo simulations

onsuming algorithms. In this work we rst proposed a numeri al approa h based on regular

and stru turedmeshes whi h arenot onstrainedbythephysi alinterfa es. Based on lassi al

CSTelementsweshowedhowtoenhan etheelementskinemati susingtheIn ompatibleModes

Method providing two kind of dis ontinuities. The rst one onsists in a strain dis ontinuity

inside the element in order to model the di erent elasti properties of the two phases. The

se onddis ontinuity orrespondstoadispla ementoneandallowstomodeltheinterfa efailure

(e.g. debonding) a ording to two di erent me hanisms (normal and tangential). By using a

2D numeri al omparison on a porous media with a perfe tly plasti matrix, we showed that

the omputation timeisstrongly lowerwithinthe ontext ofsu ha regularmesh.

With su h a modelling tool in hand we also presented how to take into a ount for the

variabilityofthegeometri aldes riptionat themeso-s alelevel. Thesegeometriesaremodelled

byusingmodi edGibbs pointspro esses with ir ularin lusions. Althoughthematerial prop-

erties of the two phases are assumed to be deterministi , this variability leads to a sto hasti

problem to be solved. In this work we employed the lassi al Monte-Carlo method in order

to produ ethe statisti al moments of thedesired quantities. UsingtheComponentsTemplate

Library(CTL)theFiniteElements odeFEAPweprodu ed9999 realizations. Thestatisti sof

the out ome properties exhibit quite narrow on den e intervals. These numeri al results an

thenbeviewed asma ros opi propertiesforthisporousmediawithinthe ontextof a lassi al

phenomenologi almodel.

A knowledgements

This work was supported by the Fren h Ministry of Resear h. The ollaboration with TU

Braun hweigresear hgroupofProf. HermannG.Matthies,espe iallyDr. RainerNiekampand

M. Martin Kros he is also gratefully a knowledged. AI also a knowledges the support of the

Alexandervon Humboldt Foundation.

(17)

[1℄ Bathe,K.J.,Finite Element Pro edures, Prenti e Hall, 1996.

[2℄ M. Bornert,T. Bretheau andP. Gilormini,Homogeneisation enme anique des materiaux,

volumeI, II, Hermes-S ie e, Paris, 2001.

[3℄ C.A.Ca is h,MonteCarloandquasi-MonteCarlo Methods,A taNumeri a,7,1-49,1998.

[4℄ J.B.Colliat,M.Hautefeuille,A.Ibrahimbegovi ,H.MatthiesSto hasti Approa htoquasi-

brittle failureand size e e t, C.R. A ad.S i.Paris,,335, 430-435, 2007.

[5℄ S. Dolarevi , A. Ibrahimbegovi A modi ed three-surfa e elasto-plasti ap model and its

numeri al implementation Computers Stru tures, 85,419-430, 2007.

[6℄ P.Gilormini,Ashort omingofthe lassi alnon-linearextensionoftheself- onsistentmodel,

C.R.A ad. S i.Paris, 320, 115-122, 1995.

[7℄ A.Ibrahimbegovi ,Nonlinear Computational SolidMe hani s,(inFren h),Hermes-S ien e

Publi ation,Paris, 2006.

[8℄ A.Ibrahimbegovi ,D.Bran herie, Combinedhardeningand softening onstitutive model of

plasti ity: pre ursor to shear slip line failure, Comp.Me hani s, 31, 88-100, 2003.

[9℄ A. Ibrahimbegovi , D. Markovi , Strong oupling methods in multiphase and multis ale

modeling of inelasti behaviorof heterogeneous stru tures,Comp.Meth.Appl.Me h.Eng.,

192,3089-3107, 2003.

[10℄ A.Ibrahimbegovi ,S.Melnyk,Embeddeddis ontinuity niteelementmethodformodelingof

lo alizedfailureinheterogeneousmaterialswithstru turedmesh: analternativetoextennded

nite elementmethod, Comp. Me hani s, 40,149-155, 2007.

[11℄ A.Ibrahimbegovi ,E.L.Wilson,Amodi edmethodofin ompatiblemodes,Communi ations

inAppliedNumeri al Methods, vol. 7,187-194, 1991.

[12℄ E.T.Jaynes,Probability Theory: the logi of a s ien e,CambridgeUniversityPress,2003.

[13℄ T.Kanit,S.Forest,I.Galliet,V.MounouryandD.Jeulin,Determination of thesizeof the

representative volume element for random omposites: statisti al and numeri al approa h,

Int. J.SolidStru t.,40,3647-3679, 2003.

[14℄ M. G. Kendall, On The Re on iliation Of Theories Of Probability, Biometrika, vol. 36,

101-116, 1949.

[15℄ P. Ladeveze, O. Loiseau and D. Dureisseix, A mi ro-ma ro and parallel omputational

strategy for higly heterogeneous stru tures, Int.J. Numer. Meth.Eng., 2001.

[16℄ M. Loeve, Probability Theory - Fourth Edition, vol.1, 1977.

[17℄ D.Markovi ,A.Ibrahimbegovi ,Onmi ro-ma ro interfa e onditionsformi ro-s alebased

femforinelasti behaviorofheterogeneousmaterial,Comput.Meth.Appl.Me h.Eng.,193,

5503-5523,2004.

[18℄ D. Markovi , R. Niekamp, A. Ibrahimbegovi , H. G. Matthies, R. L. Taylor, Multi-s ale

ModellingofHeterogeneousstru tureswithinelasti onstitutivebehaviour: PartI-Physi al

andMathemati al Aspe ts, Engineering omputations, vol.22, 664-683, 2005.

(18)

Computer Methods in Applied Me hani s and Engineering, vol. 195(17-18), 2028-2049,

2006.

[20℄ S. Melnyk, J.B. Colliat, A. Ibrahimbegovi , On modeling of lo alized failure in omplex

heterogeneous stru tures, Advan ed Resear h Workshop, ExtremeMan-Made and Natural

HazardsinDynami s ofStru tures (Eds.A.Ibrahimbegovi , I.Kozar), 411-416, 2006.

[21℄ C. E. Shannon,A mathemati al theory of ommuni ation, Bell System Te hni al Journal,

vol. 27,379-423 and 623-656, Julyand O tober, 1948.

[22℄ J.C. Simo, J. Oliver, F. Armero, An analysis of strong dis ontinuity indu ed by strain

softeningsolution in rate independent solids Comp. Me hani s, 12,277-296, 1993.

[23℄ J.C. Simo, R.L. Taylor, Consistent tangent operators for rate-independent elastoplasti ity,

ComputerMethodsinApplied Me hani sand Engineering,vol. 48,101-118, 1985.

[24℄ S.A.Smolyak,Quadratureandinterpolationformulas fortensorprodu tsof ertain lasses

of fun tion,SovietMathemati s Dokl., vol. 4,240-243, 1963.

[25℄ C.Soize, Maximum entropy approa h for modelingrandom un ertainties in transient elas-

todynami s, J.A oust. So .Am., 109(5), 1979-1996, 2001.

[26℄ E.L. Wilson, R.L. Taylor, W.P. Doherty, J. Ghaboussi, In ompatible displa ement models,

Numeri alandComputerMethodsinStru turalMe hani s,p.43-57,A ademi Press,New

York, 1973.

[27℄ E.L.Wilson, The stati ondensation algorithm, Int. J.Num.Meth. Eng., 199-203, 1974.

[28℄ O. C. Zienkiewi z and R. L. Taylor, The Finite Element Method, 6th edition, Volumes 1

and2, Elsevier,Oxford,2005.

Références

Documents relatifs

At the same time, little research has been conducted on alignment of heritage datasets providing, within their interface, support on semantic coordination for domain experts with

In this paper, we focus on the control of the error intro- duced by a reduced basis surrogate model on the computation of the failure probability obtained by a Monte Carlo

(2) Example of response time image obtained after processing a burst of infrared images and surface moisture penetration in wood..

Then, in a second section, we explain how from any strongly consistent discrete approximation of the gradient operator, one can construct what we call semi hybrid gradients,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The four attacks presented here successfully transferred sensitive data in a TrustZone- enabled SoC between an intruder process (secure) and a receiver process (non-secure)

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The simulation of such flat heterogenous systems requires an execution model that is able to delegate the computation of the behavior of different components to their respective