• Aucun résultat trouvé

ANALYSIS AND ORIGIN OF POINT DEFECTS IN SILICON AFTER LIQUID PHASE TRANSIENT ANNEALING

N/A
N/A
Protected

Academic year: 2021

Partager "ANALYSIS AND ORIGIN OF POINT DEFECTS IN SILICON AFTER LIQUID PHASE TRANSIENT ANNEALING"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: jpa-00223129

https://hal.archives-ouvertes.fr/jpa-00223129

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ANALYSIS AND ORIGIN OF POINT DEFECTS IN

SILICON AFTER LIQUID PHASE TRANSIENT

ANNEALING

A. Mesli, J. Muller, P. Siffert

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6ment au nO1O, Tome 44, octobre 1983 page C5-281

ANALYSIS AND ORIGIN OF POINT DEFECTS I N S I L I C O N AFTER L I Q U I D PHASE TRANSIENT ANNEALING

A. Mesli, J.C. Muller and P. Siffert

Centre de Recherches NucZe'aires, Laboratoire PHASE, 67037 Strasbourg Cedes, France

Resume

-

Nous presentons une revue des travaux consacres ti l l @ t u d e des defauts ponctuels observes p a r des mesures e l e c t r i q u e s s u r du s i l i c i u m i r r a d i e par l a - s e r pulse. Dans l e cas du s i l i c i u m amorphise p a r i m p l a n t a t i o n , il e s t montre que l e s e f f e t s de queue de d i s t r i b u t i o n sont responsables de l a m a j o r i t e des defauts r @ s i d u e l s observes. Par contre, des analyses e f f e c t u e e s s u r du s i l i - cium legerement endommage, o n t montre qu

'

il e s t d i ff i c i l e de r e c u i r e c e r t a i n s d @ f a u t s ponctuels quand l a dur@e d ' i m p u l s i o n diminue. E n f i n , l ' e t u d e des de- f a u t s ponctuels crees p a r l e processus l a s e r dans l e s i l i c i u m v i e r g e met en evidence, essentiellement, des e t a t s donneurs. Ces d e r n i e r s i n t r o d u i s e n t un e f f e t de compensation des materiaux de type

P.

A b s t r a c t

-

Works devoted t o the study of p o i n t d e f e c t s i n pulsed l a s e r annealed s i l i c o n a r e reviewed by means o f e l e c t r i c a l c h a r a c t e r i z a t i o n . T a i l i n g e f f e c t s of the implanted d i s t r i b u t i o n a r e r e s p o n s i b l e f o r the observed r e s i d u a l d e f e c t s i n the case o f a l a y e r amorphized by i o n i m p l a n t a t i o n . However, d i f f i c u l t y i n annealing some kinds of p o i n t d e f e c t s by reducing t h e d u r a t i o n o f l a s e r p u l s e have been shown u s i n g s l i g h t l y disordered s i l i c o n . F i n a l l y , i n t h e case o f i r - r a d i a t e d v i r g i n s i l i c o n , a h i g h l e v e l of p o i n t d e f e c t s a r e created, which a r e e s s e n t i a l l y donor l e v e l s t h a t i n t r o d u c e a compensating e f f e c t i n P-type s i l i c o n

INTRODUCTION

The use o f h i g h power l a s e r annealing has been considered w i t h much i n t e r e s t over t h e p a s t few years since i t o f f e r s c e r t a i n advantages compared t o t h e furnace an- n e a l i n g o r t h e continuous l a s e r process. The t h r e e major p r o p e r t i e s of t h e pulsed l a s e r annealing can be summarized as f o l l o w :

F i r s t , s p a t i a l l y l o c a l i z e d annealing o f f e r s advantages i n m i c r o e l e c t r o n i c s techno- logy. For example, i t can be used t o anneal the implanted m i c r o s t r u c t u r e s w i t h o u t degrading m i n o r i t y c a r r i e r 1 if e t i m e i n t h e bulk.

Secondly, t h e process o f f e r s a h i g h e f f i c i e n c y f o r t h e i n t r o d u c t i o n o f the i m p l a n t dopant i n t o s u b s t i t u t i o n a l p o s i t i o n s /1,

3/

except f o r t h e implanted i m p u r i t y t h a t e x h i b i t s a l o w - e q u i l i b r i u m s o l u b i l i t y i n t h e l a t t i c e t h a t p r e c i p i t a t e s upon annea- l i n g /4/.

Thi rdl3vpu'fsed annealing seems t o produce good qua1 i t y r e c r y s t a l 1 i z a t i o n o f t h e im- plan,&d region. This t o p i c has been l a r g e l y analyzed u s i n g techniques l i k e RBS and TEW /5/. However, more s e n s i t i v e methods i n c l u d i n g photo1 uminescence IR absorption, E P , ~ a n a l y s i s , and e l e c t r i c a l measurements such as DLTS have shown t h a t d e f e c t s Sub- d i s t s i n t h e annealed l a y e r o r a r e created by t h e l a s e r process. The e l e c t r i c a l j o l e o f these d e f e c t s i s c r i t i c a l and can p a r t i a l l y reduce t h e p o t e n t i a l advantages

brought t o semiconductor technology by l o c a l i z e d surface m e l t i n g .

I n t h i s paper we w i l l review t h e e l e c t r i c a l p r o p e r t i e s o f pulsed l a s e r i r r a d i a t i o n o f s i l i c o n :

(3)

JOURNAL DE PHYSIQUE

-

For P-N j u n c t i o n prepared by i o n i m p l a n t a t i o n a t a doping l e v e l assuming t h e amor- p h i z a t i o n o f t h e f r o n t l a y e r .

- F o r s l i g h t l y disordered l a y e r s by means o f low dose l i g h t i o n i m p l a n t a t i o n o r

l i g h t p a r t i c l e i r r a d i a t i o n (e-, n, y,

.

.

. ) .

-

For Schottky s t r u c t u r e s r e a l i z e d on v i r g i n m a t e r i a l processed by pulsed l a s e r .

I

-

LASER PULSE ANNEALING OF AMORPHIZED LAYERS BY ION BOMBARDMENT

1.1

-

EXISTENCE OF A LASER POWER THRESHOLD FOR MINIMUM DEFECTS

Processing by pulse annealing o f i o n implanted l a y e r s must ensure a h i g h e l e c t r i c a l a c t i v a t i o n o f t h e introduced dopant and as w e l l as a minimum r e s i d u a l d z f e c t l e v e l . The l a s e r power which s a t i s f i e s b o t h o f these c o n d i t i o n s i s c a l l e d t h e t h r e s h o l d energy t o have a minimum d e f e c t d e n s i t y " lower power leaves a h i g h c o n c e n t r a t i o n of p o i n t d e f e c t s near t h e j u n c t i o n , w h i l e h i g h e r power may i n t r o d u c e l a s e r process r e - 1 a t e d defects.

K i m e r l i n g and a l . /6/ have shown ( F i g u r e 1 ) t h a t the l a s e r power t h r e s h o l d f o r m i n i - mum defects i s independent on t h e type o f pulsed>er used. I n t h e case of LAG-

(1.06 pm) t h e y have shown a decreasing minimum p o i n t d e f e c t w i t h i n c r e a s i n g dopant implanted dose due t o t h e enhanced f r e e c a r r i e r s c o u p l i n g

.

EI (om HI o f t h e l i g h t . On the o t h e r hand f o r the doubled .- - -

E~ ( o n u ) frequency Nd-YAG i n which band t o band absorption

C E~ 10 4 5 H) occurs, t h e l i m i t i s lower and independent o f

a" dose.

l o i 4 ~ si-0-LZ

These r e s u l t s a r e s i m i l a r t o those obtained f o r a ruby l a s e r (Figure 2)

-

7'

lPb a8 F i g . 2

- T o t e l defect s t a t e c o n c e n t r a t i o n o f t h e

LASER R ~ W E R ( J / ~ & I t h r e e e l e c t r o n t r a p s a f t e r various ruby l a s e r

p u l s e energies ../7/. p.!015crn-3

IMPLANT: 5 0 kevAs F i g . 1 - T o t a l d e f e c t s t a t e

PULSE WIDTH: i 5 o n s e c c o n c e n t r a t i o n observed by

I

capacitance t r a n s i e n t spec-

-

z troscopy i n a r s e n i c i m p h n - ted, l a s e r processed n'p Z j u n c t i o n s . Low defect w o t h r e s h o l d c o n d i t i o n s a r e

8

\ 1 ~ 1 4 denoted as (a) A = 0.53 pm 1E15 l i g h t f o r a l l i m p l a n t doses: ( b ) A = 1.06 pm l i g h t . 1E 16 W As (50 keV) = 1016 Y o ( c ) A = 1.06 pm. AS (50 (a) (b) ( c ) keV) = 1014 cm-'. /6/ I I 1 .

(4)

1.2

-

ORIGIN OF THE DEFECT ANNEALING LIMIT

I f t h e r e i s general agreement / 6 - 1 3 / t h a t f o r device p r e p a r a t i o n t h e l a s e r proces- s i n g must m e l t b o t h t h e implanted dopant d i s t r i b u t i o n as w e l l as any d e f e c t b u r i e d beyond the f r o n t amorphized l a y e r i n a r e g i o n c a l l e d the " I m p l a n t a t i o n t a i l " , i t remains i m p o r t a n t t o determine i f l a s e r annealing c o n d i t i o n s can be found t o assure o r 'not the c o n d i t i o n "depth o f m e l t i n g equals t h e depth o f i m p l a n t a t i o n damage>> 16, 8 1 -

Two concepts can be p o s t u l a t e d . F i r s t : a) m e l t depth never equals the i m p l a n t da- mage depth and second : b) the molten l a y e r covers the damage zone and a t higher l a - s e r power t h e l a s e r r e l a t e d d e f e c t s are dominant.

a) Concept o f i m p l a n t r e s i d u a l d e f e c t s 0 0 . 2 0.4 0 . 6 0.8 D e ~ t h microns of silicon According t o t h i s concept, t h e d e f e c t annealing l i m i t i s c o r r e l a t e d w i t h r e - s i d u a l d e f e c t s b u r i e d too deeply t o be touched by t h e m e l t depth, so t h a t h i g h e r l a s e r energies, b u t s t i l l lower than t h e l i m i t o f v i s i b l e degradation o f t h e sur- face, can n o t guarantee the c o n d i t i o n "depth o f m e l t i n g equals t h e depth o f imp1 a n t a t i o n damage".

Blood and a l . /14/ have shown t h a t the t a i l i n g e f f e c t i s i m p o r t a n t even more if

t h e i m p l a n t a t i o n i s performed a t room temperature and o f f - a x i s as i l l u s t r a t e d on F i g u r e 3. The t a i l has an exponential slope which r e s u l t s i n a g r e a t penetra- t i o n (over 1 pm) f o r c o n c e n t r a t i o n four

o r f i v e orders o f magnitude lower than t h e maximum.

F i g . 3

-

The dose dependence o f p r o f i l e s 32

o f 40 keV p i o n s implanted i n t o m i s a l i - gned <110> c r y s t a l s a t room temperature 1141.

The t a i l i n g e f f e c t i s due t o a pure d i f f u s i o n mechanism /15/ which can be enhanced by the presence o f p o i n t defects, by t h e c r y s t a l temperature o r by channeling pheno- mena i f t h e i m p l a n t a t i o n i s performed on-axis.

I n t h e l a t t e r case the r e c r y s t a l l i z a t i o n w i l l be i n i t i a t e d i n a r e g i o n c o n t a i n i n g defects and the q u a l i t y o f regrowth w i l l be i n f l u e n c e d by the number o f r e s i d u a l t r a p s a t the p o i n t o f regrowth.

(5)

C5-284 JOURNAL DE PHYSIQUE

I n t h e same way Brower and Peercy /13/ nave found by EPR measurements and ruby l a s e r annealing o f phosphorus implanted i n s i l i c o n simultaneously amorphized by s i l i c o n ions t h a t the e f f i c i e n c y o f t h e l a s e r annealing increases when the energy of the i n c i d e n t i o n s i s reduced.

X COORDINATE

(mm)

S k o l n i c k e t a l .

/12/

have s t u d i e d by photolumi- nescence the d e f e c t s i n s i l i c o n amorphized by s i l i c o n i o n s . A f t e r ruby l a s e r annealing, they found a photoluminescent l i n e n o t removed even a t an energy o f 2.5 J/cmZ. They conclude t h a t t h i s d e f e c t i s produced d u r i n g t h e i m p l a n t a t i o n i n the r e g i o n o f lower damage beyond t h e amor- phous r e g i o n i n t h e channeling t a i l o f the i m - p l a n t even i f t h e i m p l a n t a t i o n i s performed o f f - a x i s .

F i g . 4

-

Depth p r o f i l e o f the t h r e e d e f e c t s a f -

2

t e r 1 J/cm ruby l a s e r annealing. The l i m i t o f measurements a t zero b i a s voltage i s given by l1 the dashed l i n e . /7/. loU

-

", '

?

.a12 E ;,lon 0

."

SAMPLE 630 (I001 - -

toa

r e

x

10" "A; a-' ..-

AT 170 KeV

-

-

O E a 2 . 3 J c i '

-

-

la'_

A E - 2 . 7 0 E.3.2 J J cm" cma -

- ' 0 6

P

- -

-

! 16'

I l

i l

b

i l

s

lb

1'1

II ~i

I, *

X

COORDINATE

(nn)

DEPTH l~vrnl 5, P R 4 1 7 , 1-5 nm

1

V ~ = o V lrrpl 3 1 ~ * 15 kcv 1 0 ~ ~ ~ ~ - ~ 1 Rub, loser onrrolorq

I\

.

El ( 0 30 ev1 v E~ I 0 3 7 eV1 r E~ ( 0 4 5 .VI - I I I 01 as 12

F i g . 5 ( a )

-

Diode leakage c u r r e n t d e n s i t y F i g . 5 ( b )

-

Diode leakage c u r r e n t den- f o r samples implanted a t 90 keV w i t h an As s i t y f o r samples implanted a t 170 keV.

fluence of 8 1015 ,,-2. ~h~ laser annea- Other parameters are t h e same as those Tin9 energy d e n s i t y was 2.3 J-cm-2 (O), i n ( a ) . /ll/.

(6)

This i s also confirmed by the diode leakage current measurements performed by Wang e t a l .

/11/

(Fig. 5 a and b ) . Complementary c a r r i e r collection efficiency (coming from EBIC data) suggest t h a t the defects d i s t r i b u t i o n has a long t a i l w i t h a signi- f i c a n t defect concentration.

By double X-ray diffractometry Servidori e t a l . /17/ have shown t h a t the observed disorder which decreases the l a t t i c e parameters of s i l i c o n extend t o depths much grea t h e r than the amorphi zed region.

To confirm t h a t the observed defects a r e due to some "long t a i l " . Mesli e t a l . /7/ have removed the defects in the l i g h t l y damaged region by a low temperature annea- ling (400" C ) not s u f f i c i e n t t o change, the absorption condition in the surface amor- phized layer so t h a t the melt depth will not be changed.

In t h i s case DLTS spectra have shown t h a t defects are no longer present (Fig. 6 ) af- t e r l a s e r i r r a d i a t i o n i n the space harge region of the junction. I t i s a l s o t o be

5

noted t h a t the l a s e r energy (1 J/cm ) i s too low t o c r e a t e l a s e r related defects i n t h i s deep region.

S i p FZ ~ 1 1 1 5 I - 5 n c m 1mpl.l' P+ 15 keV 1cq6 ims /on2 en,

.

143 5-I C2V,+O.5V)

E3 (0.45 cV1 (1) Loser onneoling 1 ~ / c r n ~

Fig. 6

-

DLTS signal when

a

conventional thermal annea- ling i s performed before the

1 aser treatment. / 7/.

(2) thermol treatment !.mar

'

20 min)

15[ M o r e Loser onnealirg 1 ~ c m 2

b) Laser introduced defects a f t e r high l a s e r power exposure

This concept i s i l l u s t r a t e d i n Figure

1

by the f a c t t h a t an increase of the concentra- tion of point defects i s observed f o r l a s e r energies over the minimum defect thres- hold. Several possible sources of defect introduction during l a s e r treatment can be enumerated : surface contamination, ambiant processing i n a i r , crystal regrowth velocity, high temperature gradients, quenching, e t c

.

.

.

The most important question i s t o determine the importance of l a s e r related defects present deep in the crystal in the charge space region of the junction.

(7)

JOURNAL DE PHYSIQUE

1.3

-

ROLE OF THE FRONT AL4ORPHIZED LAYER

The question here i s i f a f r o n t amorphized l a y e r can a c t as a mash f o r good annea- l i n g o f deep defects, o r i n c o n t r a r y , can be b e t t e r as t h e absorption o f l i g h t and m e l t depth i s greather.

a) The amorphized l a y e r as a mash

Brower /13/ has shown by EPR a n a l y s i s o f the paramagnetic l a t t i c e damage recovery t h a t the r e c r y s t a l l i z a t i o n o f low dose phosphorus i m p l a n t a t i o n i s b e t t e r i f t h e f r o n t l a y e r i s n o t amorphized.

Moreover t h e argument t h a t t h e amorphized l a y e r can p l a y a r o l e o f b a r r i e r has been used by Sasaki e t a l . /18/ i n t h e discussion o f the two k i n e t i c models "melting" o r "plasma" annealing. This group has performed double i m p l a n t a t i o n o f 3 1 ~ , low dose t o dope and h i g h dose t o forman amorphized f r o n t l a y e r . I n agreement w i t h precedent works /6,

7 1 ,

they found t r a p s underneath the amorphized l a y e r .

I n c l a s s i c a l thermal model c a r r i e r recovery may have occured e a s i e r i n t h e sample which have t h e surface amorphized l a y e r , i n t h i s case m e l t depth i s l a r g e r than i n c r y s t a l l i n e s i l i c o n f o r the same energy as p r e d i c t e d by t h e models /19/. As t h i s assumption c o n t r a d i c t e s t h e previous r e s u l t s , t h e authors conclude t h a t t h e process o f c a r r i e r recovery i n t h e deep r e g i o n i s n o t mel.ting and r e c r y s t a l l i z a t i o n b u t i s r e l a t e d t o the deep p e n e t r a t i o n o f l i g h t i n t h e c r y s t a l so t h a t i t i s t h e plasma mechanism t h a t occurs.

18:

By u s i n g double l a s e r i r r a d i a t i o n (Figure 7 )

However, i t must be remembered t h a t annealing of some p o i n t defects can occur by s o l i d phase e p i t a x y i n t h e h o t r e g i o n adjacent t o the m e l t as w i l l seen i n the sec- t i o n 11.

b ) The p o s i t i v e r o l e of t h e amorphized l a y e r

Nakashima e t a1

.

/20/ r e p o r t e d by photoluminescence o f l a s e r annealing of p h o s p h o r ~ s implanted l a y e r s t h a t the regrowth i s b e t t e r f o r h i g h doses o f 3 1 ~ + than f o r low do- ses, due t o a h i g h e r absorption r e g i o n which enhances t h e temperature r i s e .

h e r e t h e f i r s t removes t h e amorphized l a y e r and t h e second anneals t h e deep defects, they have a b e t t e r annealing t h a t using a

- .

I t has been a l s o shown by Young /21/ t h a t t h e r e c r y s t a l l i z a t i o n v e l o c i t y V can p l a y a r o l e . The decrease o f V has been c o r r e l a t e d t o b e t t e r e l e c t r i c a l c h a r a c t e r i s t i c s of t h e j u n c t i o n ( b y measurements o f s o l a r c e l l parameters under i l l u m i n a t i o n ) . Expe-

.

P'

mo

K ~ V 1 = 10'~ cvi2

.

2s ~~y 5.101~ cm-2 LSS;?,

1

0 - s w Ruby # ,

..

I # I'

::

I I s s i n g l e l a s e r shoot through the amorphized

I

::

I $ 1 ayer.

These authors suggest t h a t a f t e r the f i r s t l a s e r p u l s e t h e absorption l e n g t h o f s u r f a - ce r e g i o n becomes l a r g e r so t h a t t h e second l a s e r beam can be t r a n s m i t t e d deeper i n t o t h e c r y s t a l and can anneal the deep l y i n g defects. I a .

.-

L

2

1 L -

u10

10 u) 3.0

Distance from Junction X(pm)

(8)

r i m e n t a l l y t h e regrowth v e l o c i t y has been diminished by i n c r e a s i n g t h e temperature of t h e s u b s t r a t e d u r i n g t h e l a s e r annealing, b u t the suggest t h a t the q u a l i t y of the regrowth l a y e r i s dependent on V cannot be confirmed by t h i s experiment w h i l e t h e melt-depth increases so t h a t the c o n c e n t r a t i o n sprawl o u t and the j u n c t i o n i s deeper. For t h e f i r s t concept, i n which the r e c r y s t a l l i z a t i o n i s i n i t i a t e d i n the exponential t a i l o f the implanted damage, the q u a l i t y o f regrowth w i l l be b e t t e r i f we s t a r t i n a more deeper r e g i o n / 7 / .

1.4

- ASSIGNMENT AND ANNEALING OF POINT DEFECTS

The f i r s t t e n t a t i v e assignment o f t h e l e v e l s was made by K i m e r l i n g e t a l . /6/ and Wang e t a l . /11/. They tended t o separate those observed i n i o n i m p l a n t a t i o n from those present i n i r r a d i a t e d bare s i l i c o n . Some o f them are c l e a r l y r e l a t e d t o r e s i - dual i o n damage l i k e E (0.18 eV) which i s observed a l s o a f t e r 1 MeV e l e c t r o n bombard- ment, t h i s can then be assigned t o

I V

- 01 d e f e c t s a l s o r e p o r t e d by /7/ w i t h an an- n e a l i n g temperature o f 400' C . This i s d i f f e r e n t from E (0.19 eV) r e p o r t e d by K i m e r l i n g /6/ on bare l i q u i d phase processed s i l i c o n t h a t disappears o n l y a t 550°C. I n t h e range o f 0.27

-

0.37 eV, e l e c t r o n t r a p s a r e found c o r r e l a t e d t o defects which increase i n c o n c e n t r a t i o n by i n c r e a s i n g t h e mass p a r t i c u l e s . They are assigned t o multicomplex defects E (0.27 eV) o r multivacancies centers.

A s i m i l a r assignment i s given f o r t h e photoluminescent l i n e and f o r d e f e c t s observed by X-ray d i f f r a c t o m e t r y /17/.

The H (0.36 eV) has been assigned t o carbon r e l a t e d d e f e c t s /8/ I V

-

Ci

- 0

I

which disappears a t 400

-

500° C.

Deeper d e f e c t s E (0.45 eV

-

0.53 eV) have been associated w i t h divacancy and penta- vacancy /7/ w i t h a h i g h e r annealing temperature.

The most i m p o r t a n t p o i n t i s t h a t a l l these defects disappear a t l e a s t f o r t h e most complex d e f e c t s ( ~ 5 ) , a t a temperature around 600" C so t h a t a p o s t l a s e r treatment performed a t t h i s temperature i s necessary and s u f f i c i e n t t o a t t a i n good j u n c t i o n c h a r a c t e r i s t i c s as r e p o r t e d by /22, 23/.

I1

-

PULSED LASER ANNEALING I N SLIGHTLY DISORDERED SILICON

The p r i n c i p a l conclusion o f the f o r e g o i n g s e c t i o n i s t h a t pulsed l a s e r annealing o f h i g h l y doped l a y e r s by i o n i m p l a n t a t i o n i s much more e f f i c i e n t i n t h e amorphized r e - gion than i n the s l i g h t l y disordered adjacent t a i l region.

I n t h i s s e c t i o n we w i l l discuss more p r e c i s e l y t h e annealing o f s l i g h t l y disordered c r y s t a l l i n e s i l i c o n by means o f low dose i o n i m p l a n t a t i o n o r l i g h t p a r t i c u l e s i r r a - d i a t i o n (em, n, y . . . ) .

Much l e s s a t t e n t i o n has been devoted t o t h i s s i t u a t i o n i n which t h e mechanism of an- n e a l i n g o f each i n d i v i d u a l p o i n t d e f e c t can be s t u d i e d as opposed t o the o v e r a l l an- n e a l i n g described i n t h e f i r s t s e c t i o n i n which amorphization takes place.

(9)

C5-288 JOURNAL DE PHYSIQUE

the case o f thermal annealing (700" C, 15 mn, dashed curve) we n o t i c e t h e w e l l know d e c l i n e i n the u t i l i z a t i o n c o e f f i c i e n t w i t h i m p l a n t a t i o n dose due t o t h e dopant pre- c i p i t a t i o n process.

However, f o r pulsed l a s e r annealing, the c o e f f i c i e n t decreases w i t h de-

-

----

+-- creasing dose, and t h e e f f i c i e n c y

o f the doping increases w i t h l a s e r energy. This shows t h a t a t low dose i m p l a n t a t i o n , i t i s d i f f i c u l t t o have a t o t a l a c t i v i t y o f the dopant even i f the s i l i c o n i s o n l y s l i g h t l y disordered.

*

\

- I 10"

1

10

"

10 l3 10 \ l4

'

\ 0 ' I 1) 1.6; 2) 2.5. Thermal annealing

F i g . 8

-

Dependence o f t h e i m p u r i -

9

phosphorus i o n dose a f t e r l a s e r t y u t i l i z a t i o n c o e f f i c i e n t on t h e

(1, 2) and thermal ( 3 ) annealing. 2 Laser p u l s e energy (J/cm ) :

D,

cm-' a t 700" C f o r 15 min. /25/.

I t seems t h a t i t i s more d i f f i c u l t t o anneal completly t h e r e s i d u a l damage even w i t h h i g h l a s e r power.

These observations a r e i n c o n t r a s t t o c l a s s i c a l annealing k i n e t i c s when most r e s i d u - a l d e f e c t s l i k e P

-

V complex ( E c e n t e r ) o r V

-

0 ( A c e n t e r ) and vacancy complexes anneal o u t i n t h e range o f 150

-

500" C.

I n o r d e r t o understand the pulsed l a s e r annealing k i n e t i c s o f p o i n t d e f e c t s , a u n i - form f o r m a t i o n o f damage by bombardment w i t h l i g h t p a r t i c u l e s associated w i t h ana- l y s i s techniques such as DLTS o r I R absorption would appear t o be u s e f u l l . These kinds o f methods o f f e r t h e p o s s i b i l i t y o f c o n t r o l l i n g the n a t u r e o f p o i n t d e f e c t s and o f f o l l o w i n g t h e i r c o n c e n t r a t i o n and p r o f i l e s i n t h e b u l k w i t h t h e parameters o f t h e annealing process.

Using these techniques, Kachurin e t a l . /26/ and K i m e r l i n g e t a l . /6/ have shown t h a t , a f t e r f a s t e l e c t r o n i r r a d i a t i o n o f s i l i c o n and Q switched ruby o r Nd YAG l a s e r annealing,the various types o f p o i n t d e f e c t s created a r e n o t a l l removed a t t h e same time. C e r t a i n s d e f e c t s need h i g h e r power as i l l u s t r a t e d i n Figures 9 and 10.

F i g . 9

-

Peak amplitude v a r i a - t i o n s i n DLTS spectra of r a d i a - t i o n d e f e c t s formed by e l e c t r o n i r r a d i a t i o n , a f t e r t h e a c t i o n o f l a s e r pulses w i t h various

energies. Laser pulse energy

, ,

(10)

F i g . 10

-

Defect s t a t e spectrum o f 1-MeV e l e c t r o n i r r a d i a t e d , phosphorus doped, f l o a t - z o n e d s i l i c o n . @ = bombardment dose. s i - P - F Z T = d e f e c t s t a t e emission time

+

= SX(O'' e-/cme constant a t temperature o f peak

n = z ~ i o ~ % m - ~ maximum. S o l i d l i n e : as-bom-

r = 6mS barded and Q-switch l a s e r anneal:

dashed curves : I s . 10s. 30s cw I l a s e r anneal, consecutively. E(O.44) A ( l a s e r ) = 1.06 pm. / 6 / .

_----

I 5 0 200 250 TEMPERATURE ( O K )

I n F i g . 9, i t i s seen t h a t t h e E c e n t e r and l e v e l a t Ec

- 0.30 eV disappear when t h e

2

p u l s e energy i s E 5 1 J/cm f o r t h e ruby l a s e r . However, the A c e n t e r and t h e diva-

2

cancy needs h i g h e r energies ( E 1.5 J/cm ) . The same authors have measured t h e r a - 2 d i a t i o n d e f e c t c o n c e n t r a t i o n as f u n c t i o n s o f depth f o r a pulse energy o f 2.5 J/cm

.

The r e s u l t s r e p o r t e d i n F i g . 11 show t h a t , f o r a s u f f i c i e n t l y l a r g e pulse energy, t h e r a d i a t i o n d e f e c t s disappear o n l y from a t h i n n e r l a y e r (0.2

-

0.3

urn)

where the tem- p e r a t u r e exceeds t h a t needed t o m e l t t h e surface.

I

11

I n excess o f t h i s depth, t h e annealing

L >

T,

OC k i n e t i c s i s s p e c i f i c t o each d e f e c t . These observations, agree w i t h what

I

was s a i d above about the d i f f i c u l t i e s i n annealing t h e t a i l p a r t o f t h e p o i n t d e f e c t d i s t r i b u t i o n since they are s i -

3000 t u a t e d i n a r e g i o n adjacent t o t h e m e l t

depth.

m To e x p l a i n t h i s r e s u l t we must consider

8 t h e d u r a t i o n o f annealing which plays

E

-

2000

an i m p o r t a n t r o l e . U

*-

F i g . 11

-

Dependence o f t h e r a d i a t i o n

1000

d e f e c t c o n c e n t r a t i o n on t h e depth f o r 2

1 aser p u l s e energy 2.5 J/cm

.

Chain curves : c a l c u l a t e d maximum temperature p r o f i l e .

I )

M e l t i n g region. 11) SU- perheated region. / 2 6 / .

0

0.5

7.0

x,

P

I n the c l a s s i c a l model o f t h e thermal annealing k i n e t i c s , t h e temperature T and the annealing time t are r e l a t e d by t h e f o l l o w i n g expressions :

(11)

C5-290 JOURNAL DE PHYSIQUE

where NTT i s t h e c o n c e n t r a t i o n o f p o i n t defects remaining a f t e r the l a s e r process, NTo i s t h e i r i n i t i a l c o n c e n t r a t i o n and T t h e r a t e o f d e f e c t annealing. This l a t e r

parameter depends on t h e temperature and a c t i v a t i o n energy U o f the process.

4

Elsewhere f o r p u l s e times used (20

-

50 ns), a l l c l a s s i c a l thermal models i n d i c a t e t h a t the m e l t i n g time i s a few hundred nanoseconds and t h e t o t a l h e a t i n g time i s one o t two orders o f magnitude g r e a t e r . This ensure the annealing o f V

-

P and V

-

V centers i n the molten r e g i o n o f course, b u t a l s o i n t h e heated r e g i o n adjacent t o t h e melted zone where the temperature i s s u f f i c i e n t l y h i g h t o anneal w i t h i n the dura- t i o n o f t h e process. Whereas t h i s time i s too s h o r t f o r any recovery o f the V

-

0 a s s o c i a t i o n i n a r e g i o n deeper than t h e m e l t , t h i s e x p l a i n s the abrupt v a r i a t i o n seen by Kachurin /26/ f o r t h i s l e v e l a t the boundary o f the m e l t f r o n t .

-

v

-

P

2000

".

0 x o m CI

:

0 C

The p o s s i b i l i t y o f annealing some k i n d s o f p o i n t defects, l i k e t h e P

-

V and V - V a s s o c i a t i o n s , i n t h e h o t r e g i o n near the molten l a y e r can e x p l a i n ( i n terms o f the thermal model) t h e r e s u l t s o f Sasaki /18/. The use o f a double l a s e r i r r a d i a t i o n m u l t i p l i e s by two t h e t o t a l d u r a t i o n o f t h e annealing. U 1 - exp

- -

( 2 ) (- i s cons- To KT N,-N,fxp I-t/r) 0 t a n t )

-

\

\ ik-i/%exp (-u/~T) Using f i r s t o r d e r k i n e t i c s and t h e

\

\ data published /27, 29/, and pro-

% \ '\ v i d e d t h a t e x t r a p o l a t i o n t o s h o r t

i \ time i s j u s t i f i e d , t h e removal

?ti

?

temperature o f V

-

P , V

-

V and

t \ Fusion V

-

0 centers are given i n F i g . 12

S t e i n /30/ has s t u d i e d t h e divacancy annealing i n boron implanted s i l i c o n a t a dose

C 0 0 L) I n t h i s model, we assume t h a t l a -

g

1000, s e r i r r a d i a t i o n does n o t i t s e l f u L c r e a t e p o i n t d e f e c t s i n a concen-

X

t r a t i o n comparable t o t h a t produ-

5

I- ced by bombardment o r i m p l a n t a t i o n

500- laser and e a t low doses, and t h a t the annea- pulse anneal.

-

-

l e d d e f e c t s do n o t reform t o pro-

duce new centers.

CW laser.

o 1 I I I F i g . 12

- Annealing k i n e t i c s ex-

10-8 10-3 . 100 103 t r a p o l a t e d t o t h e s h o r t times.

Time o f annealing Is)

F i g . 12 shows t h a t i n t h e c l a s s i c a l annealing ;=ion the temperature needed t o anneal p o i n t s defects i s s l i g h t l y g r e a t h e r than t h a t given i n the l i t e r a t u r e /27, 29/. This i s due t o t h e r a t i o NTo

/

NTT = 10 considered i n our c a l c u l a t i o n . The temperature needed t o anneal 90% o f the p o i n t d e f e c t s increases when t h e h e a t i n g time i s reduced, so t h a t a temperature above t h e m e l t i n g c o n d i t i o n seems t o be necessary t o remove t h e

V

-

0 a s s o c i a t i o n f o r annealing times l e s s than 10-3 sec. This i s i n agreement w i t h t h e r e s u l t s r e p o r t e d by Kachurin e t a l . i n F i g . 9, since t h i s a s s o c i a t i o n i s o n l y r e - moved i n the l i q u i d phase extension.

o f

1014

~ m - ~ . He f i n d s a l s o t h a t the V

-

V annealing begins a t l a s e r energies l o - wer,that those expected f o r m e l t i n g i n c r y s t a l l i n e s i l i c o n as r e p o r t e d i n F i g . 13. However,for t h e i m p l a n t a t i o n dose used, t h e damage can enhance photon absorption i n the implanted l a y e r and induce a decrease o f t h e thermal c o n d u c t i v i t y so t h a t the m e l t temperature i s achieved a t a lower l a s e r energy t h a t i s s i t u a t e d between l i m i - t i n g c o n d i t i o n s d e f i n e d f o r amorphous and undamaged s i l i c o n .

(12)

However, t h e p u l s e h e a t i n g has a serious drawback i n t h e annealing o f p o i n t defects i n r e g i o n deeper than t h a t reach by t h e m e l t i n g . Then from t h e p r a c t i c a l p o i n t o f view, nanosecond 1 aser annealing o f s l i g h t l y disordered s i l i c o n o r the r e g i o n beyond t h e amorphized l a y e r should be used i n c o n ~ b i n a t i o n w i t h m i l l i s e c o n d o r continuous low temperature treatment as shown i n F i g . 10.

2

The f a c t t h a t Kachurin /26/ f i n d s o n l y 0.2 pm o f m e l t i n g a t 2.5 J/cm i s s u r p r i s s i n g i f we compare t h i s r e s u l t t o t h a t expected i n t h e c l a s s i c a l thermal model i n which a m e l t depth g r e a t e r than 0.5 i s g e n e r a l l y expected. This may mean t h a t t h e m e l t i n g t h r e s h o l d and temperature p r o f i l e i s c r y s t a l l i n e s i l i c o n can be d i f f e r e n t from those expected /33/. Recently some authors /34, 351 have i n c l u d e d i n t h e i r t h e r - mal model the c r y s t a l l i n e q u a l i t y represented by t h e p r o b a b i l i t y o f d i f f u s i o n o f t h e

photogenerated c a r r i e r s before t h e i r t h e r m a l i z a t i o n . So t h a t due t o the increase of the d i f f u s i o n l e n g t h as a f u n c t i o n o f $he r e s i s t i v i t y o f t h e m a t e r i a l , the m e l t i n g

.

t h r e s h o l d can be h i g h e r t h a t those r e p o r t e d by

I 1 1

-

PULSED LASER EFFECT I N CRYSTALLINE SILICON

I I I I 1 1.0

-

LASER ANNEALING OF OIVACANCIES -

=

0 8 -

-

0 o f 0.6- F - f

2

0.4 -

-

-

o 0.2 -

-

t.5 0.6 0.7

h

,

The f i r s t observations o f damaged r o l e o f t h e pulsed l a s e r have been made on photo- diode, p h o t o t r a n s i s t o r and s o l a r c e l l s /36, 38/.

the c l a s s i c a l thermal model. However t h i s va- r i a t i o n of t h e m e l t i n g t h r e s h o l d i s n o t s u f f i - c i e n t l y i m p o r t a n t t o e x p l a i n the v e r y t h i n me1 t r e g i o n found by Kachurin /26/.

As a conclusion t o these f i r s t two sections, we can say t h a t the s h o r t d u r a t i o n of h e a t i n g i s h i g h l y advantageous t o t h e e l e c t r i c a l a c t i - v a t i o n o f t h e implanted dopant, o f f e r i n g a t t h e same time a complete absence o f macroscopic defects such as d i s l o c a t i o n s o r s t a c k i n g f a u l t s . F i g . 13

-

Unannealed divacancy f r a c t i o n s versus

25

ruby l a s e r energies. Each p o i n t was

I n order t o analyse t h e d e f e c t s created by t h e l a s e r process alone, we consider i n t h i s s e c t i o n t h e v i r g i n c r y s t a l l i n e s i l i c o n .

ENERGY l ~ / c r n ~ ) taken on a separate sample. /30/.

I n such m a t e r i a l , the primary e f f e c t d i r e c t l y observed i s the degradation o f I

-

V

c h a r a c t e r i s t i c s /39, 40/ as shown i n F i g . 14 a) and b ) .

These r e s u l t s obtained w i t h ruby l a s e r (20 ns) on N-type s i l i c o n demonstrate the r e s p o n s a b i l i t y o f t h e l a s e r i n t h e c r e a t i o n o f t r a p p i n g and recombination l e v e l s near t h e surface. These recombination centers determine t h e reverse c u r r e n t o f the s c h o t t k y diode /41, 42/. The experiment o f f i g u r e 14 ( b ) shows moreover t h a t t h e m a j o r i t y o f d e f e c t s are l o c a t e d w i t h i n t h e molten region, so t h a t we can c o n f i r m t h a t i n t h e case o f a P - N j u n c t i o n ( i n which t h e space charge r e g i o n begins near t h e m e l t i n g l i m i t ) t h e observed d e f e c t s are m o s t l y c o r r e l a t e d t o r e s i d u a l implanted damage. Many d e f e c t s a n a l y s i s r e s u l t s have been given i n the l i t e r a t u r e . The e l e c - t r i c a l parameters o f these defects, determined e s s e n t i a l l y by t h e DLTS method, a r e summarized i n Table I f o r N-type s i l i c o n i r r a d i a t e d w i t h ruby and Nd : YAG l a s e r . Concerning t h e energy l e v e l s o f t h e t r a p s detected, the r e s u l t s are q u i t e d i f f e r e n t from author t o author. However,all references agree about t h e thermal annealing temperature. The h i g h values obtained i n d i c a t e the s t a b i l i t y o f the p o i n t defects created by t h e l a s e r process.

(13)

JOURNAL DE PHYSIQUE ld

,-

LASER ENERGY 0.9 ~ . a n - ~ t

-

0 0.1 0.2 0.3 ETCHING DEPTH(pml

F i g . 14 a )

-

I n f l u e n c e o f l a s e r energy F i g . 14 b )

-

Change o f t h e average l e a - on t h e I - V c h a r a c t e r i s t i c s o f Au-Si kage c u r r e n t o f Schottky diodes on a S i diodes r e a l i z e d on i r r a d i a t e d surfaces sample i r r a d i a t e d w i t h a s i n g l e pulsed

/39/. l a s e r w i t h e t c h i n g depth. The damaged

l a y e r has a depth comparable t o t h e m e l t i n g depth o f about 0.2 pm. /40/. t h e n a t u r e o f the d e f e c t s depends s t r o n g l y on t h e i n i t i a l i m p u r i t y c o n t e n t /45/ such as oxygen, carbon, dopant

...,

on t h e degree o f s t r u c t u r a l i m p e r f e c t i o n o f the mate- r i a l t h a t determines the t h r e s h o l d m e l t i n g as we have seen i n t h e previous s e c t i o n . This p r o b a b l y e x p l a i n s t h e d i s p e r s i o n observed i n the energies l e v e l s o f t r a p s o f Table

I .

Laser t y p e 1rrad.Energy Energies l e v e l s Capture c r o s s sect. Thermal anneal. REF.

(14)

Other mechanisms should be taken i n t o account i n t h e formation o f l a t t i c e defects. The h i g h s t r e s s g r a d i e n t (10 BOc/cm) and t h e presence o f shock waves has been shown by some authors /46, 471 t o be a c t i v e .

I n P-type s i l i c o n , fewer p o i n t d e f e c t analyses have been made. OLTS analyses p e r f o r - med by Mooney e t a l . 1481 has shown a l e v e l s i t u a t e d a t Ev

+

0.24 eV. Besides K i m e r l i n g e t a l . /6/ has shown t h a t t h e i r r a d i a t i o n o f P-type s i l i c o n creates an exponential d i s t r i b u t i o n o f t h e f r e e c a r r i e r s near t h e surface as shown i n F i g . 15.

l a r g e capture cross s e c t i o n s ( F i g . 16). One o f them (Er = 0.30 eV) i s probably a

F

5

10" L

8

1 0 ~ a I I

s

10'6-

.,

vacancy-oxygen complex i n view o f t h e v a r i a t i o n o f t h e i r c o n c e n t r a t i o n i n CZ and FZ m a t e r i a l . However the deep l e v e l (Ec

-

0.41 eV) i s absent i n t h e CZ s u b s t r a t e . This suggests a c o m p e t i t i o n between Ec

-

0.41 eV and Ec

-

0.30 eV r e l a t e d t o oxygen den- s i t y .

F i g . 15

-

Spreading r e s i s t a n c e p r o f i l e

.- a-B-co of bare, P-type substrates processed i n

X=l.Wr t h e l i q u i d phase regime (pulse w i d t h =

150 ns). The exponential d i s t r i b u t i o n

-pimZ

suggests a d i f f u s i o n process. / 6 / .

87 MWIC~' T h i s i l l u s t r a t e s t h e compensating e f f e c t

9s nwicm2 created by the presence o f m i n o r i t y c a r -

I

,

I r i e r t r a p s . Using sup-band gap l i g h t

-

F i g . 16

-

M i n o r i t y d e f e c t s s t a t e s

LL

8 E ( . ~ o ~ v ) Ruby si P laser[20ns) iJ/cm2 type i-5flom spectrum i n P-type Schottky diode. The capture cross-sections are res-

-

Fz I fph) -25 $

x

:

n

---

cz eM-5.4BE-3s-1 p e c t i v e l y on= 2 10-14, 5.7 10-15

E(.lBeVl I 1 E (.41eVI and 3.5 10-15 cm 2

.

1.5

::

rn

rn ?2 \\

I- 1.0- \ I Analysis o f N and P-type s i l i c o n

d

\a' has shown t h a t t h e major observed

/

'---

1 d e f e c t s a c t as e l e c t r o n t r a p s . The

0 . 5 - r o l e o f oxygen i n t h e formation o f

d e f e c t s seems be ambiguous. I n

1 I I I N-type m a t e r i a l no v a r i a t i o n i n t h e

100 i 4 5 i ~ o 235 DLTS peak h e i g h t versus oxygen den-

TemperatoPe (.KI s i t y has been observed /6, 43/. B u t

t h i s i m p u r i t y seems be a c t i v e i n P-type s i l i c o n . Moreover these d e f e c t s exhi b i t h i g h s t a b i l i t y . If we consider t h e quenching model where the vacancies generated a t h i g h temperature could p r e c i p i t a t e d u r i n g t h e f a s t c o o l i n g , we suggest the vacancy-oxygen complex and c l u s t e r s of vacancy l i k e surface d e f e c t s (Ec = 0.53 eV), divacancies (Ec = 0.41 eV),

5 2

pentavacancies V (Ec = 0.34 eV) o r divacancy-oxygen

v2

-

0 (Ec

-

0.27 eV) as a s s i - gnments f o r t h e observed defects. A l l these assignments a r e coherent w i t h t h e f a c t t h a t a r e l a t i v e h i g h temperature ( = 500' C) i s needed t o remove t h e observed defects.

0.6 1.0 1.6 z o as an e x c i t a t i o n source/ /49/. M e s l i

DEPTH f p m ) e t a l . have found t h r e e l e v e l s c o r r e s - ponding t o m i n o r i t y c a r r i e r t r a p s w i t h

CONCLUSION

(15)

C5-294 JOURNAL DE PHYSIQUE

I n s l i g h t l y disordered m a t e r i a l s , t h e recovery o f d e f e c t s depends i n t h e i r nature, so t h a t t h e annealing o f deep l y i n g d e f e c t s i n the c r y s t a l i s b e t t e r achieved by longer annealing time (msec t o sec) o r otherwise needs a p o s t l a s e r thermal treatment. F i n a l l y i n v i r g i n s i l i c o n , s t a b l e d e f e c t s found i n the molten l a y e r are mostly c o r r e - l a t e d t o an a s s o c i a t i o n of vacancies, which anneals i n t h e range o f 500

-

600° C. They a r e m a i n l y e l e c t r o n t r a p s which can p l a y a compensating r o l e i n P-type m a t e r i a l s .

REFERENCES

/I/. FOTI G., CAMPASINO S.U., R I M I N I E. and VITAL1 G.. J, ,Appl. -Phys.

2

(1978) 2569. /2/. CELLER G.K., POATE J.M. and KIMERLING L.C.. Appl. Phys. L e t t . 32 (1978) 464. /3/. NARAYAN I . , YOUNG R.T. and WHITE C.W.. J . Appl. Phys.

49

( 1 9 7 q 3912.

/4/. CULLIS A.G., POATE J.M. and CELLER G.K.. MRS Symposium Proceedings Laser Sol i d

I n t e r a c t i o n and Laser Processing (Boston USA 1978). FERRIS S.D., LEAMY M.L. and POATE J.M. eds (Am. I n s t . Phys. N.Y. 1979) 311.

/5/. CULLIS A.G.. MRS Symposium Proceedings Vol. 2 Defects i n Semi-conductors.

NARAYAN J

.

,

TAN F.Y. eds (1981) 393.

/6/. KIMERLING L.C. and BENTON J.L.. MRS Symposium Proceedings Laser and E l e c t r o n beam processing o f m a t e r i a l s (1979), WHITE C.W., PEERCY P.S. eds (Ac. Press 1980

1

385.

/7/. M E S L ~ A., MULLER J.C., SALLES D. and SIFFERT P.. Appl

.

Phys. L e t t .

39

(1981) 159.

/8/. BENTON J.L., KIMERLING L.C., MILLER G.L., ROBINSON D.A.H. and CELLER G.K.

MRS Symposium Proceedings Laser S o l i d I n t e r a c t i o n and Laser Processing (Boston USA 1978) 543.

/9/. MILLER G:L., BENTON J .L., KIMERLING L.C., ROBINSON D.A.H. and RODGERS J .W.. Semicond. C h a r a c t e r i z a t i o n Technics ( E l e c t r . Chem. S o c i e t y P r i n c e t o n 1978) 502.

/ l o / .

JOHNSON N.M., GOLD P.B., LIETOILA A. and GIBBONS J.F.. MRS Symposium Procee- dings Laser S o l i d I n t e r a c t i o n and Laser Processing (Boston USA 1978) 550.

/11/. WANG V.L., LIU Y.S., KIRKPATRICK C.G. and POSSIN G.E.. MRS Symposium Procee-

dings Laser S o l i d I n t e r a c t i o n and Laser Processing (Boston USA 1978) 569. /12/. SKOLNICK M.S., CULLIS A.G. and WEBBER H.C.. Appl. Phys. L e t t . 38 (1981) 464.

/13/. BROWER K.L., PEERCY P.S.. MRS Symposium Proceedings Laser and ETectron beam

processing o f m a t e r i a l s (1979) 441.

/14/. BLOOD P., DEARNALEY G. and WILKINS M.A.. Rad. E f f . 21 (1974) 245. /15/. BLOOD P., DEARNALEY G. and WILKINS M.A.. J . Appl

.

p y s . 45 (1974) 5123. /16/. MESLI A., GOLTZENE A., MULLER J.C., MEYER B, SCHWAB C. and-SIFFERT P.. MRS

Symposium Proceedings Laser and E l e c t r o n beam I n t e r a c t i o n w i t h S o l i d s (Boston USA 1981). APPLETON B.R. and CELLER G.K. eds, 349.

/17/. SERVIDRRI M., ZANI A. and GARULLI

.

Phys. S t a t . Sol. ( a ) 70 (1982) 691. /18/. SASAKI Y., TSUJIMOTO K., SUSUKI T., ITOH K. and MITSUISHI TT. Defects and Rad.

E f f . i n Semicond. Proceedings (Oiso, Japan,1980). I n s t . Phys. Conf. No. 59 (1980) 497.

/19/. BELL R

.o.,

TOULEMONDE M. and SIFFERT P.. Appl

.

Phys. 19 (1979) 313. /20/. NAKASHIMA H., SHIRAKI Y . and MIYAO M.. J. Appl. Phys. % (1979) 5966.

/21/. YOUNG R.T., WOOD R.F., CHRISTIE W.M. and JELLISON J r . E E . . Appl. Phys. L e t t . 39 (1981) 313.

/22/. ~GNANI F., GALLON1 R., PEDULLI L., BENTINI G.G., SERVIDORI M., CEMBALI F. and

DESALVO A.. P h o t o v o l t o i c S o l a r Energy Conf. B e r l i n (W.G.) (1979) REIDEL G. ed. 213.

/23/. MULLER J.C. and SIFFERT P.. Rad. E f f e c t s 63 (1982) 81. /24/. PRUSSIN S., VON DER OHE W.. J . Appl

.

Phys.51 (1980) 3853.

/25/, KACHURIN G.A., NIDAEV E.V. and DANYUSTIKINA~.V.

.

Sov. Phys

.

Semicond.

14

(1980) 386.

/26/. KACHURIN G.A., NIDAEV E.V. and POPOV A.I.. Sov. Phys. Semicond. 16 (1982) 13. /27/. KIMERLING L.C., DE ANGELIS H.M. and CARNES C.P.. Phys. Rev. B 3 n 9 7 1 ) 427. /28/ KIMERLING L.C., DE ANGELIS H.M. and DIEBOLD J.W.. S o l i d ~ t a t ~ o m m u n i c a t i o n

(16)

/29/. CHENG L.J., CORELLI J.C., CORBETT J.W. and WATKINS G.D.. Phys. Rev.

152

(1966) 761.

/30/. STEIN H.J., KNAPP J .A. and PEERCY P .S.. MRS Symposium Proceedings Laser and E l e c t r o n beam I n t e r a c t i o n w i t h S o l i d s (Boston USA 1981). APPLETON B.R. and CELLER G.K. eds, 349.

/31/. SUSKI J.J., RZEWOSKI H., KRYNICKI J . and GROTZSCHEL R.. Defects and Rad. E f f . i n Semicond. Proceedings (Oiso, Japan, 1980). I n s t . Phys. Conf. No. 59 (1980) 485.

/32/. RZEWUSKI H. and KRYNICKI J.. Rad. E f f e c t s 39 (1978) 123.

/33/. JASTRZEBSKI L., BELL A.E., WU P.,

ZANZUCCHIP.J..

J. Appl. Phys.

--

5 2 (1981)

4276.

/34/. JAROSLOWE and WILCOX Z.. J . Appl. Phys. 51 (1980) 2866.

/35/. KIM DAE.M., KONG D.L.. IEEE 3. o f Q u a n t u y E l e c t . QE 18 (1982) 224.

/36/. KRUER M., ALLEN R., ESTEROWITZ L., BARTOLI F.. O p m and Quantum E l e c t r o n i c s 8 (1976) 453.

/37/. NATSURKA Y . and USEMI A.. Appl. Phys. L e t t . 25 (1974) 574.

/38/. GIULIANI J.F. and MARQUARDT C.L.. J. Appl. Pfis. 45 (1974) 4993.

/39/. BUTTUNG E.. Thesis U n i v e r s i t y Strasbourg ( F r a n c e ) T l 9 8 1 ) . /40/. FAN Z.K., HO V.Q. and SUGONO T..Appl. Phys. L e t t . 40 (1982) 418.

/41/. GROVE A.S. .Physique e t Technologic des Disposi t i f s 3 Semi-conducteurs. Ed. DUNOD (1971) 173.

/42/. SZE S.M.. Physics o f Semiconductor Devices. WILEY J. and SONS, N.Y. (1969) 102. /43/. KACHURIN G.A., NIDAEV E.V. and POPOV A.J.. Sov. Phys. Semicond. 16 (1982) 688. /44/. LYSENKO K.S., NAZOROV A.N., LOKSHIN M. and KASCHIEVA S .B.. Sov. Phys. Semicond.

11 (1977) 1327.

/45/. mSHOVETS T.V.. Sov. Phys. Semicond. 16 (1982) 1.

/46/. NIKIFOROV YU. N., YANUSHKEVICH V.A..

50v.

Phys. Semicond. 14 (1980) 314.

/47/. IVANOV L . I . , NIKIFOROV YU. N. and YANUSHKEVICH V.A.. Sov. Phys. JETP

40

(1974) 75.

/48/. MOONEY P.M., YOUNG R.T., KARINS J., LEE Y.H. and CORBETT J.W.. Phys. S t a t . Sol. ( a ) 48 (1978) K31.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to