• Aucun résultat trouvé

ECCO Version 4: Second Release

N/A
N/A
Protected

Academic year: 2021

Partager "ECCO Version 4: Second Release"

Copied!
147
0
0

Texte intégral

(1)

ECCO Version 4: Second Release

G. Forget

1

, J.-M. Campin

1

, P. Heimbach

1

,

2

,

3

, C. N. Hill

1

, R.

M. Ponte

4

, and C. Wunsch

5

1Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge

MA 02139 USA;2Institute for Computational Engineering and Sciences, The University of Texas at Austin,

Austin, TX 78712, USA;3Jackson School of Geosciences, The University of Texas at Austin, Austin, TX

78712, USA;4Atmospheric and Environmental Research, Inc., Lexington MA 02421 USA;5Dept. of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02139 USA

(2)

The purpose of this note is twofold: (1) document the second release of ECCO version 4 state estimates (ECCO v4-r2); (2) provide a citable identifier to distinguish it from the previous release (ECCO v4-r1; Forget et al 2015).

Access ECCO v4-r2:online access is free and unrestricted via http://ecco-group.org/ ; at the time of writing the ECCO v4-r2 files are accessed via ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/ and http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release2/contents.html

Software Used for ECCO v4-r2:the state estimate output files (provided online) and its depiction (provided below) were produced using the ‘checkpoint64u’ versions of the general circulation model (MITgcm and ECCO v4 settings) and Matlab analysis toolboxes (gcmfaces and MITprof).

Solution History:the 1992-2011 solution documented here (ECCO v4-r2) is a minor update to the original ECCO v4 solution documented by Forget et al 2015 (ECCO v4-r1). As compared with ECCO v4-r1 (see Forget et al 2015 for details and notations) ECCO v4-r2 benefits from a few additional corrections in the model settings:

1. Inclusion of geothermal heating at the sea floor in MITgcm and ECCO v4 settings.

2. Inclusion of Kgmand Kσinterpolation to C-grid velocity points in MITgcm and ECCO v4 settings. 3. Re-inclusion of targeted bottom viscosity in ECCO v4 settings.

4. Re-inclusion of estimated wind stress adjustments over 2000-2011 in ECCO v4 settings.

5. Re-adjustment of ECCO v4 global mean precipitation (homogeneously) to match the AVISO global mean sea level time series (http://www.aviso.altimetry.fr/).

Contents Included Below:the gcmfaces ‘standard analysis’ (introduced in Forget et al. 2015) appended below for ECCO v4-r2 depicts routinely monitored characteristics of ECCO solutions. It allows for direct comparison with the published ECCO v4-r1 standard analysis (doi:10.5194/gmd-8-3071-2015-supplement).

References:Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071-3104, doi:10.5194/gmd-8-3071-2015 (http://www.geosci-model-dev.net/8/3071/2015/)

(3)

Table of contents

fit to data fit to in situ data fit to altimeter data (RADS) fit to sst data

fit to seaice data volume, heat and salt transports

barotropic streamfunction meridional streamfunction

meridional streamfunction (time series) meridional heat transport

meridional freshwater transport meridional salt transport meridional transports (time series) transects transport

mean and variance maps

sea surface height 3D state variables air-sea heat flux air-sea freshwater flux surface wind stress global, zonal, regional averages

zonal mean tendencies equatorial sections global mean properties zonal mean properties zonal mean properties (surface) seaice time series

mixed layer depth fields

budgets : volume, heat and salt (top to bottom) budgets : volume, heat and salt (100m to bottom)

(4)

fit to in situ data

Figure :

Time mean misfit (model-data) for in situ profiles, at various

(5)

fit to in situ data

1995 2000 2005 2010 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 800 600 400 200 0 depth (in m)

mean cost for T: 1.71 (median: 0.536)

0 2 4 6 8 latitude normalized misfit pdf −50 0 50 −5 0 5 0 0.1 0.2 0.3 0.4 0.5 1995 2000 2005 2010 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 800 600 400 200 0 depth (in m)

mean cost for S: 1.8 (median: 0.578)

0 2 4 6 8 latitude normalized misfit pdf −50 0 50 −5 0 5 0 0.1 0.2 0.3 0.4 0.5

Figure :

Cost function (top) for in situ profiles, as a function of depth

and time. Distribution of normalized misfits (bottom) as a function of

latitude. For T (left) and S (right).

(6)

fit to in situ data

normalized misfit atlExt_25N90N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_25N90N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 arct_25N90N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 normalized misfit atlExt_25S25N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_25S25N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 indExt_25S25N_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 normalized misfit atlExt_90S25S_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_90S25S_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 indExt_90S25S_misDisT 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4

Figure :

Distribution of normalized misfits per basin (panel) as a function

(7)

fit to in situ data

normalized misfit atlExt_25N90N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_25N90N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 arct_25N90N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 normalized misfit atlExt_25S25N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_25S25N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 indExt_25S25N_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 normalized misfit atlExt_90S25S_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 pacExt_90S25S_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4 indExt_90S25S_misDisS 2000 2010 −5 0 5 0 0.1 0.2 0.3 0.4

Figure :

Distribution of normalized misfits per basin (panel) as a function

(8)

fit to altimeter data (RADS)

(9)

fit to altimeter data (RADS)

Figure :

log(prior error variance) – sea level anomaly (m

2

) – large

(10)

fit to altimeter data (RADS)

(11)

fit to altimeter data (RADS)

(12)

fit to altimeter data (RADS)

Figure :

modeled-observed log(variance) – sea level anomaly (m

2

) – large

(13)

fit to altimeter data (RADS)

Figure :

modeled-observed log(variance) – sea level anomaly (m

2

) –

(14)

fit to altimeter data (RADS)

(15)

fit to altimeter data (RADS)

Figure :

modeled-observed cost – sea level anomaly

(16)

fit to altimeter data (RADS)

(17)

fit to altimeter data (RADS)

Figure :

observed log(variance) – sea level anomaly (m

2

) – large

(18)

fit to altimeter data (RADS)

(19)

fit to altimeter data (RADS)

Figure :

modeled log(variance) – sea level anomaly (m

2

) – large

(20)

fit to altimeter data (RADS)

(21)

fit to sst data

(22)

fit to sst data

(23)

fit to sst data

(24)

fit to sst data

(25)

fit to seaice data

(26)

fit to seaice data

(27)

fit to seaice data

(28)

fit to seaice data

Figure :

ECCO (left) and NSIDC (right, gsfc bootstrap) ice

(29)

fit to seaice data

Figure :

ECCO (left) and NSIDC (right, gsfc bootstrap) ice

(30)

fit to seaice data

1995 2000 2005 2010 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 10 13 m 2 Northern Hemisphere 1995 2000 2005 2010 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 10 13 m 2 Southern Hemisphere

Figure :

ECCO (blue) and NSIDC (red, gsfc bootstrap) ice concentration

in March and September in Northern Hemisphere (left) and Southern

Hemisphere (right)

(31)

fit to seaice data

1995 2000 2005 2010 0 1 2 3 4 5x 10 12 m 2

Entire Southern Ocean

1995 2000 2005 2010 0 1 2 3 4x 10 11 m 2 20E to 90E 1995 2000 2005 2010 0 2 4 6x 10 11 m 2 90E to 160E 1995 2000 2005 2010 0 5 10 15x 10 11 m 2 160E to −130E 1995 2000 2005 2010 0 2 4 6x 10 11 m 2 −130E to −62E 1995 2000 2005 2010 0 0.5 1 1.5 2x 10 12 m 2 −62E to 20E

Figure :

ECCO (blue) and NSIDC (red, gsfc bootstrap) ice concentration

(32)

fit to seaice data

1995 2000 2005 2010 1.5 1.55 1.6 1.65 1.7x 10 13 m 2

Entire Southern Ocean

1995 2000 2005 2010 2.5 3 3.5 4x 10 12 m 2 20E to 90E 1995 2000 2005 2010 1.2 1.4 1.6 1.8 2x 10 12 m 2 90E to 160E 1995 2000 2005 2010 3 3.5 4 4.5x 10 12 m 2 160E to −130E 1995 2000 2005 2010 1 1.5 2 2.5x 10 12 m 2 −130E to −62E 1995 2000 2005 2010 5 5.5 6 6.5 7x 10 12 m 2 −62E to 20E

Figure :

ECCO (blue) and NSIDC (red, gsfc bootstrap) ice concentration

(33)

barotropic streamfunction

(34)

barotropic streamfunction

(35)

meridional streamfunction

(36)

meridional streamfunction

(37)

meridional streamfunction

(38)

meridional streamfunction

(39)

meridional streamfunction

(40)

meridional streamfunction

Figure :

1992-2011 standard deviation – Atlantic overturning

(41)

meridional streamfunction (time series)

19920 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2 4 6 8 10 12 14 16 18 20

annual global overturning at ≈ 1000m depth (Sv)

25N 35N 45N 55N

(42)

meridional streamfunction (time series)

19920 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2 4 6 8 10 12 14 16 18 20

annual atlantic overturning at ≈ 1000m depth

25N 35N 45N 55N

Figure :

annual Atlantic overturning at select latitudes at ≈ 1000m depth

(43)

meridional heat transport

−80

−60

−40

−20

0

20

40

60

80

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Meridional Heat Transport (in PW)

global

Atlantic

Pacific+Indian

(44)

meridional heat transport

−80

−60

−40

−20

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

Meridional Heat Transport (in PW)

global

Atlantic

Pacific+Indian

(45)

meridional freshwater transport

−80

−60

−40

−20

0

20

40

60

80

−1.5

−1

−0.5

0

0.5

1

1.5

2

Meridional Freshwater Transport (in Sv)

global

Atlantic

Pacific+Indian

(46)

meridional freshwater transport

−80

−60

−40

−20

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Meridional Freshwater Transport (in Sv)

global

Atlantic

Pacific+Indian

Figure :

1992-2011 standard deviation – meridional freshwater transport

(47)

meridional salt transport

−80

−60

−40

−20

0

20

40

60

80

−50

−40

−30

−20

−10

0

10

20

30

40

50

Meridional Salt Transport (in psu.Sv)

global

Atlantic

Pacific+Indian

(48)

meridional salt transport

−80

−60

−40

−20

0

20

40

60

80

0

10

20

30

40

50

60

Meridional Salt Transport (in psu.Sv)

global

Atlantic

Pacific+Indian

Figure :

1992-2011 standard deviation – meridional salt transport

(49)

meridional transports (time series)

(50)

meridional transports (time series)

(51)

meridional transports (time series)

(52)

transects transport

1995

2000

2005

2010

−1

0

1

2

3

Bering Strait (>0 to Arctic) (mean = 1.04 Sv)

1995

2000

2005

2010

−3

−2

−1

0

1

Davis Strait (>0 to Arctic) (mean = −1.5 Sv)

1995

2000

2005

2010

−6

−4

−2

Denmark Strait (>0 to Arctic) (mean = −5.95 Sv)

1995

2000

2005

2010

0

2

4

6

8

Iceland Faroe (>0 to Arctic) (mean = 4.54 Sv)

1995

2000

2005

2010

−4

−2

0

2

4

Faroe Scotland (>0 to Arctic) (mean = 1.72 Sv)

1995

2000

2005

2010

−0.5

0

0.5

Scotland Norway (>0 to Arctic) (mean = 0.05 Sv)

(53)

transects transport

1995

2000

2005

2010

20

25

30

35

40

Florida Strait (>0 to Atlantic)

(mean = 29.89 Sv)

1995

2000

2005

2010

20

25

30

35

40

Florida Strait W1 (>0 to Atlantic)

(mean = 28.57 Sv)

1995

2000

2005

2010

−1

0

1

2

3

Florida Strait E1 (>0 to Atlantic)

(mean = 2.43 Sv)

1995

2000

2005

2010

−6

−4

−2

0

2

Florida Strait E2 (>0 to Atlantic)

(mean = −3.75 Sv)

(54)

transects transport

1994

1996

1998

2000

2002

2004

2006

2008

2010

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Gibraltar Overturn (upper ocean transport towards Med.)

(mean = 0.73 Sv)

(55)

transects transport

1995

2000

2005

2010

120

140

160

180

Drake Passage (>0 westward)

(mean = 155.12 Sv)

1995

2000

2005

2010

140

160

180

200

Madagascar Antarctica (>0 westward)

(mean = 180.01 Sv)

1995

2000

2005

2010

−40

−30

−20

−10

Madagascar Channel (>0 westward)

(mean = −23.86 Sv)

1995

2000

2005

2010

140

160

180

200

Australia Antarctica (>0 westward)

(mean = 171.35 Sv)

(56)

transects transport

1994

1996

1998

2000

2002

2004

2006

2008

2010

5

10

15

20

25

Indonesian Throughflow (>0 toward Indian Ocean)

(mean = 15.53 Sv)

(57)

sea surface height

(58)

sea surface height

(59)

sea surface height

Figure :

1992-2011 standard deviation – sea surface height (EXCLUDING

(60)

sea surface height

Figure :

1992-2011 standard deviation – sea surface height (INCLUDING

(61)

3D state variables

(62)

3D state variables

(63)

3D state variables

(64)

3D state variables

(65)

3D state variables

(66)

3D state variables

(67)

3D state variables

(68)

3D state variables

(69)

3D state variables

(70)

3D state variables

(71)

3D state variables

(72)

3D state variables

(73)

3D state variables

(74)

3D state variables

(75)

3D state variables

(76)

3D state variables

(77)

3D state variables

(78)

3D state variables

(79)

3D state variables

(80)

3D state variables

(81)

3D state variables

(82)

3D state variables

(83)

3D state variables

(84)

3D state variables

(85)

3D state variables

(86)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(87)

3D state variables

(88)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(89)

3D state variables

(90)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(91)

3D state variables

(92)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(93)

3D state variables

(94)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(95)

3D state variables

(96)

3D state variables

Figure :

1992-2011 standard deviation – vertical velocity (in mm/year) at

(97)

air-sea heat flux

(98)

air-sea heat flux

(99)

air-sea heat flux

(100)

air-sea heat flux

(101)

air-sea freshwater flux

(102)

air-sea freshwater flux

(103)

air-sea freshwater flux

(104)

air-sea freshwater flux

(105)

surface wind stress

(106)

surface wind stress

(107)

surface wind stress

(108)

surface wind stress

(109)

zonal mean tendencies

Figure :

1992-2011 , last year minus first year – zonal mean temperature

(110)

equatorial sections

Figure :

1992-2011 mean – equator temperature (degC;top) and zonal

(111)

global mean properties

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.05 0.1 0.15 0.2

Global Mean Sea level (m, uncorrected free surface)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 3.58 3.59 3.6

3.61 Global Mean Temperature (degC)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 34.724 34.725 34.726 34.727

Global Mean Salinity (psu)

monthly annual mean

(112)

global mean properties

Figure :

global mean temperature (K; top) and salinity (psu; bottom)

(113)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(114)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(115)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(116)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(117)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(118)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(119)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(120)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(121)

zonal mean properties

Figure :

mean temperature (top; K) and salinity (bottom; psu) minus

(122)

zonal mean properties (surface)

Figure :

zonal mean temperature (degC; top) and salinity (psu; bottom)

(123)

zonal mean properties (surface)

Figure :

zonal mean SSH (m, uncorrected free surface) minus first year,

(124)

zonal mean properties (surface)

Figure :

zonal mean ice concentration (no units) and mixed layer depth

(125)

seaice time series

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 5 10 15 20

Northern Hemisphere ice cover (in 1012m2)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 5 10 15 20 25

Southern Hemisphere ice cover (in 1012m2)

monthly annual mean

Figure :

sea ice cover (in 10

12

m

2

) in northern (top) and southern

(126)

seaice time series

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 10 20 30 40 50

Northern Hemisphere ice volume (in 1012m3)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 5 10 15

Southern Hemisphere ice volume (in 1012m3)

monthly annual mean

Figure :

sea ice volume (in 10

12

m

3

) in northern (top) and southern

(127)

seaice time series

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 1 2 3 4 5

Northern Hemisphere snow volume (in 1012m3)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 1 2 3 4

Southern Hemisphere snow volume (in 1012m3)

monthly annual mean

Figure :

snow volume (in 10

12

m

3

) in northern (top) and southern

(128)

seaice time series

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 1 2 3 4 5

Northern Hemisphere ice thickness (in m)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.5 1 1.5 2

Southern Hemisphere ice thickness (in m)

monthly annual mean

Figure :

sea ice thickness (in m) in northern (top) and southern (bottom)

(129)

seaice time series

1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.1 0.2 0.3 0.4

Northern Hemisphere snow thickness (in m)

monthly annual mean 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.05 0.1 0.15 0.2 0.25

Southern Hemisphere snow thickness (in m)

monthly annual mean

Figure :

snow thickness (in m) in northern (top) and southern (bottom)

(130)

mixed layer depth fields

Figure :

1992-2011 March mean – mixed layer depth per Kara formula

(131)

mixed layer depth fields

Figure :

1992-2011 March mean – mixed layer depth per Suga formula

(132)

mixed layer depth fields

Figure :

1992-2011 March mean – mixed layer depth per Boyer M.

(133)

mixed layer depth fields

Figure :

1992-2011 September mean – mixed layer depth per Kara

(134)

mixed layer depth fields

Figure :

1992-2011 September mean – mixed layer depth per Suga

(135)

mixed layer depth fields

Figure :

1992-2011 September mean – mixed layer depth per Boyer M.

(136)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Global Mean Mass (incl. ice); in kg/m2; residual : 2.5e−12 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −200 −100 0 100 200

Budget Northern Mean Mass (incl. ice); in kg/m2; residual : 4.1e−12 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Southern Mean Mass (incl. ice); in kg/m2; residual : 7.2e−12 content vert. div. hor. div. residual bp

Figure :

1992-2011 global (upper) north (mid) and south (lower), mass

(137)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −50

0 50

Budget Global Mean Mass (only ice); in kg/m2; residual : 7.7e−14 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −200 −100 0 100 200

Budget Northern Mean Mass (only ice); in kg/m2; residual : 1.7e−13 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Southern Mean Mass (only ice); in kg/m2; residual : 7.4e−14 content vert. div. hor. div. residual bp

Figure :

1992-2011 global (upper) north (mid) and south (lower), mass

(138)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100

0 100

Budget Global Mean Mass (only ocean); in kg/m2; residual : 2.2e−12 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −400 −200 0 200 400

Budget Northern Mean Mass (only ocean); in kg/m2; residual : 4.7e−12 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Southern Mean Mass (only ocean); in kg/m2; residual : 6.3e−12 content vert. div. hor. div. residual bp

Figure :

1992-2011 global (upper) north (mid) and south (lower), mass

(139)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −4 −2 0 2 4x 10

8 Budget Global Mean Ocean Heat (incl. ice); in J/m2

; residual : 8.4e−04 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 109 Budget Northern Mean Ocean Heat (incl. ice); in J/m2; residual : 7.3e−04 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 109 Budget Southern Mean Ocean Heat (incl. ice); in J/m2; residual : 9.2e−04

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), heat

(140)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −2 −1 0 1 2x 10

7 Budget Global Mean Ocean Heat (only ice); in J/m2

; residual : 6.3e−06 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −5

0 5

x 107 Budget Northern Mean Ocean Heat (only ice); in J/m2; residual : 7.8e−06 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −4 −2 0 2 4x 10

7 Budget Southern Mean Ocean Heat (only ice); in J/m2; residual : 6.3e−06

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), heat

(141)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −4 −2 0 2 4x 10

8 Budget Global Mean Ocean Heat (only ocean); in J/m2

; residual : 8.5e−04 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 109 Budget Northern Mean Ocean Heat (only ocean); in J/m2; residual : 7.4e−04 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 109 Budget Southern Mean Ocean Heat (only ocean); in J/m2; residual : 9.3e−04

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), heat

(142)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 10−6 Budget Global Mean Ocean Salt (incl. ice); in g/m2; residual : 5.2e−07 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −2 −1 0 1 2x 10

4 Budget Northern Mean Ocean Salt (incl. ice); in g/m2

; residual : 3.4e−07 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1 −0.5 0 0.5 1

x 104 Budget Southern Mean Ocean Salt (incl. ice); in g/m2; residual : 6.6e−07

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), salt

(143)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −200 −100 0 100

200 Budget Global Mean Ocean Salt (only ice); in g/m

2

; residual : 1.1e−12 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −500

0 500

Budget Northern Mean Ocean Salt (only ice); in g/m2; residual : 4.3e−12 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −400 −200 0 200 400

Budget Southern Mean Ocean Salt (only ice); in g/m2; residual : 1.1e−12 content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), salt

(144)

budgets : volume, heat and salt (top to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −200 −100 0 100

200 Budget Global Mean Ocean Salt (only ocean); in g/m

2

; residual : 5.2e−07 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −2 −1 0 1 2x 10

4 Budget Northern Mean Ocean Salt (only ocean); in g/m2

; residual : 3.4e−07 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1 −0.5 0 0.5 1

x 104 Budget Southern Mean Ocean Salt (only ocean); in g/m2; residual : 6.6e−07 content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), salt

(145)

budgets : volume, heat and salt (100m to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Global Mean Mass (only ocean); in kg/m2; residual : 8.8e−12 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −400 −200 0 200 400

Budget Northern Mean Mass (only ocean); in kg/m2; residual : 2.2e−11 content vert. div. hor. div. residual bp

1994 1996 1998 2000 2002 2004 2006 2008 2010 −100 −50 0 50 100

Budget Southern Mean Mass (only ocean); in kg/m2; residual : 1.4e−11 content vert. div. hor. div. residual bp

Figure :

1992-2011 global (upper) north (mid) and south (lower), mass

(146)

budgets : volume, heat and salt (100m to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −2 −1 0 1 2x 10

8 Budget Global Mean Ocean Heat (only ocean); in J/m2

; residual : 1.6e−05 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −5

0 5

x 108 Budget Northern Mean Ocean Heat (only ocean); in J/m2; residual : 2.6e−05 content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −5

0 5

x 108 Budget Southern Mean Ocean Heat (only ocean); in J/m2; residual : 1.0e−05

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), heat

(147)

budgets : volume, heat and salt (100m to bottom)

1994 1996 1998 2000 2002 2004 2006 2008 2010 −4000 −2000 0 2000 4000

Budget Global Mean Ocean Salt (only ocean); in g/m2; residual : 4.3e−09

content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 104 Budget Northern Mean Ocean Salt (only ocean); in g/m2; residual : 2.3e−08

content vert. div. hor. div. residual

1994 1996 1998 2000 2002 2004 2006 2008 2010 −1

0 1

x 104 Budget Southern Mean Ocean Salt (only ocean); in g/m2; residual : 1.0e−08

content vert. div. hor. div. residual

Figure :

1992-2011 global (upper) north (mid) and south (lower), salt

Figure

Figure : Distribution of normalized misfits per basin (panel) as a function of latitude, for S
Figure : modeled-observed cost – mean dynamic topography
Figure : modeled-observed cost – sea level anomaly – large space/time scales
Figure : modeled-observed cost – sea level anomaly – pointwise
+7

Références

Documents relatifs

In this paper we consider a Lagrange Multiplier-type test (LM) to detect change in the mean of time series with heteroskedasticity of unknown form.. We derive the limiting

Using PIV measurements as well as results from axisymmetric numerical simulations, we confirm quantitatively the main features of Busse’s analytical solution: the zonal flow takes

Our main results are (i) Theorem 5.1, stating the existence of an equilibrium for the mean field game model we propose in this paper, and (ii) Theorem 6.1, stating that

bending energy of a single membrane and, correspondingly, the free energy of purely undulatory membrane interaction are known to be scale invariant.. The main effect of a gradient

To accommodate a full analytical description without simplification of the shape of the outer boundary, we consider the simpler model composed of two cylindrical plates rotating in

Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day

For all the forcings, we have shown that the leading-order mean zonal flows in the bulk scale as 2 , and are independent of the Ekman number when ω is greater than twice the

In a different context, a conceptually similar approach was adopted by Koskela and Rohde in their proof that mean porosity replaces porosity for upper estimates of the