• Aucun résultat trouvé

An upscaled DGTD method for time-domain electromagnetics

N/A
N/A
Protected

Academic year: 2021

Partager "An upscaled DGTD method for time-domain electromagnetics"

Copied!
35
0
0

Texte intégral

(1)

HAL Id: hal-01974085

https://hal.inria.fr/hal-01974085

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

An upscaled DGTD method for time-domain

electromagnetics

A Gobé, S. Lanteri, Raphaël Léger, C Scheid, F. Valentin

To cite this version:

A Gobé, S. Lanteri, Raphaël Léger, C Scheid, F. Valentin. An upscaled DGTD method for

time-domain electromagnetics. Progress In Electromagnetics Research Symposium - PIERS 2018, Aug

2018, Toyama, Japan. �hal-01974085�

(2)

An upscaled DGTD method for time-domain electromagnetics

Multiscale and multiphysics computation and applications (2P3A)

Alexis Gob´e, St´ephane Lanteri, Rapha¨el L´eger and Claire Scheid Inria Sophia Antipolis - M´editerran´ee and University Cˆote d’Azur, France

Diego Paredes

Universidad Cat´olica de Valparaiso, Chile Fr´ed´eric Valentin

LNCC, Petropolis, Brazil

Progress In Electromagnetics Research Symposium - PIERS 2018 Toyama, Japan, August 1-4, 2018

(3)

Motivations

Computational nanophotonics: modeling challenges

Material properties:

Homogeneous v.s. heterogeneous; Isotropic v.s. anisotropic;

Physical dispersion (local v.s. non-local); Linear v.s. non-linear.

Multiscale problems in space and time

L-shaped waveguide formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spacing (computational domain: 550 nm ×750 nm ×400 nm).

(4)

Motivations

A concrete example in photovoltaics

Collaboration with Division of Renewable Energies, CIEMAT, Spain Study of thin-film silicon-heterojunction solar cells

(5)

Motivations

A concrete example in photovoltaics

Collaboration with Division of Renewable Energies, CIEMAT, Spain Study of thin-film silicon-heterojunction solar cells

Texturization technique based on controlled ablation of the surface by laser scanning

As-grown TCO: 10 µm Crystaline silicon: 510 µm Surface: 100 µm x 100 µm

(6)

Motivations

Objectives

Desiging a family of methods which are: Highly flexible in the discretization process; Well suited to (highly) heterogeneous problems; Well suited to multiscale problems;

Preserving high order convergence;

(7)

1

Multiscale Hybrid-Mixed (MHM) method

2

MHM-induced local time stepping

3

Numerical results in the 2D case

(8)

Outline

1

Multiscale Hybrid-Mixed (MHM) method

2

MHM-induced local time stepping

3

Numerical results in the 2D case

(9)

Multiscale Hybrid-Mixed (MHM) method

MHM method in a nutshell

Finite element type method

Accurate on general and coarse meshes

Induce an a posteriori error estimator (to drive mesh adaptivity) Locally conservative

Naturally adapted to HPC

R. Araya and C. Harder and D. Paredes and F. Valentin Multiscale hybrid-mixed method

SIAM J. Numer. Anal., Vol. 51, No. 6 (2013) C. Harder and D. Paredes and F. Valentin

A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients

J. Comput. Phys., Vol. 245 (2013)

Our goal: adaptation of the MHM framework to wave propagation contexts First target: system of time-domain Maxwell equations

(10)

Multiscale Hybrid-Mixed (MHM) method

Basic principles

One among several solution strategies recently devised for multiscale problems A two level method

First level

Discretization based on a very coarse and general mesh The skeleton of this mesh is the support of ahybrid variable

Hybrid variable problem discretized by a classical finite element formulation based onupscaled basis functions

Second level

Each (macro-)element of the first level mesh is triangulated (second level mesh) Local problems defined on each macro-element of the first level mesh

Continuous case: analytical solution for the local problems Discrete case: DGTDamethod for the local problems

(11)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Time-domain Maxwell equations - Initial and boundary value problem

                   ε∂tE − curl H = −J, in Ω × [0, T ] µ∂tH + curl E = 0, in Ω × [0, T ] n × E = 0, on Γm× [0, T ] n × E + n × (n × H) = n × Einc+ n × (n × Hinc), on Γ a× [0, T ] E = E0, in Ω × {0} and H = H0, in Ω × {0}

Functional space setting

THa simplicialmacro-meshof the computational domain and T∆T = [0, T ] = N [ n=1 In V :=v ∈ L2(Ω) : v | K∈ H1(K ) for all K ∈ TH

L is the space of the restriction of the tangential component of functions in H(curl ; Ω) to ∂K L :=nv × nK|∂K ∈ H−1/2(∂K ) for all K ∈ THwith v ∈ H(curl ; Ω)

o

(12)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations: principle of the method

Localization: on each In, for K ∈ Th

find (E, H) ∈ V × V such that ( (ε∂

tE, v)K− (curl H, v)K= (J, v)K, ∀v ∈ V,

(µ∂tH, w)K+ (curl E, w)K= 0, ∀w ∈ V.

+ Continuity conditions at the end points of In

Localization+hybridization: on each In, for K ∈ Th

find (E, H, λ) ∈ V × V × Λ such that ( (ε∂

tE, v)K− (H, curl v)K= (J, v)K−(λ, v)∂K, ∀v ∈ V,

(µ∂tH, w)K+ (curl E, w)K= 0, ∀w ∈ V.

+ Continuity conditions at the end points of In

Global problem: (ν, E)T

H = 0, ∀ν ∈ Λ It can be shown thatλ = −n × Hon ∂K × [0, T ]

(13)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations: principle of the method

Splitting of unknowns: E = EJ+ Eλ and H = HJ+ Hλ

Contribution of the current: on each In, for K ∈ Th

find (EJ, HJ) ∈ V × V such that

        ε∂tEJ, v  K −HJ, curl v  K= (J, v)K, ∀v ∈ V,  µ∂tHJ, w  K+  curl EJ, w  K= 0, ∀w ∈ V.

Contribution of the hybrid variable: on each In, for K ∈ Th

find (Eλ, Hλ) ∈ V × V such that

        ε∂tEλ, v  K−  Hλ, curl v K=− (λ, v)∂K, ∀v ∈ V,  µ∂tHλ, w  K+  curl Eλ, w  K= 0, ∀w ∈ V.

Global problem: : on each In, for K ∈ Th

find λ ∈ Λ such that ν, Eλ

∂TH= − ν, E

J

(14)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Principle of the method: one-level MHM

λHpiecewise constant in time on each In

Choose ΛHwith dim(ΛH) < +∞ and seek λH∈ ΛH

Decompose λHon a basis (Ψi) of ΛH λnH= dim(ΛH) X i =1 βinΨi

Define the set (ηE

i, ηHi ) , i ∈ [1, dim(ΛH)] solution of         ε∂tηEi, v  K −ηHi , curl v K= −Ψin.nK, v  ∂K, ∀v ∈ V,  µ∂tηHi , w  K+  curl ηEi, w  K= 0, ∀w ∈ V. (ηE

i, ηHi ) are themultiscale basis functions

On each Init can be shown that EλH and HλH can be defined as

EλH = dim(ΛH) X βinηEi , HλH= dim(ΛH) X βinηHi

(15)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Finally, in each K (and if J does not depend on time)

En= dim(ΛH) X i =1 βinηEi + EJ , Hn dim(ΛH) X i =1 βniηHi + HJ

Principle of the method: two-level method

Discretization in the DGTD framework

For each K , define Vh(K ) as the discretization of V

In our case, Vh(K ) is the DG discontinuous finite element space

Formulate a family of local discreteindependentproblems stated on

macro-elementsK         ε∂tηEi, v  K−  ηHi , curl v  K=−  Ψin.nK, v  ∂K, ∀v ∈ Vh(K ),  µ∂tηHi , w  K+  curl ηE i, w  K= 0, ∀w ∈ Vh(K ). ηE

(16)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Principle of the method: two-level method

Discretization in the DGTD framework

For each K , define Vh(K ) as the discretization of V

In our case, Vh(K ) is the DG discontinuous finite element space

Formulate a family of local discreteindependentproblems stated onmacro-elementsK

Formulate a global discretecoarseproblem stated on the skeleton of Th  νH, EλH  ∂TH= −  νH, EJ  ∂TH, ∀νH∈ ΛH ⇒ leads the βn i coefficients

(17)

MHM for the time-domain Maxwell equations

Summary

1 Local problem associated to J

Find (EJ,HJ) ∈ V h(K ) × Vh(K ) such that         ε∂tEJ, v  K−  HJ, curl v K= (J, v)K, ∀v ∈ Vh(K ),  µ∂tHJ, w  K+  curlEJ, w  K= 0, ∀w ∈ Vh(K ).

2 Multiscale basis functions

Find (ηEi,ηHi ) ∈ Vh(K ) × Vh(K ) such that

        ε∂tηEi, v  K−  ηHi , curl v  K= −  Ψin.nK, v  ∂K, ∀v ∈ Vh(K ),  µ∂tηHi , w  K+  curlηEi, w K= 0, ∀w ∈ Vh(K ). 3 Global problem Find (βn

1,. . . ,βdimn (ΛH)) ∈ IR such that dim(ΛH) X i =1 βni(νH,ηiE)∂TH = −(νH,E J) ∂TH, ∀νH∈ ΛH

(18)

MHM for the time-domain Maxwell equations

Summary

Fully discrete local problem for (

E

J

,

H

J

)

            µH n,JHn−1, J ∆T , wh  K +  En−12,J, curl wh  K= 0 εE n+1 2,J−En−12,J ∆T , vh ! K − Hn,J, curl v h  K= (J n, v h)K

Global problem

dim(ΛH) X i =1 βin(νH,ηEi)∂TH= −(νH,En+ 1 2,J)∂TH

(19)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

S. Lanteri, D. Paredes, C. Scheid and F. Valentin SIAM J. Multisc. Model. Simul., 2018

Second level solver: centered flux DGTD method with explicit LF2 time-stepping Formulation and theoretical study in the 3D case

Numerical study in the 2D case

0.0156 0.0312 0.0625 0.125 10−6 10−5 10−4 10−3 10−2 10−1 H || (h H − h , eH − e )|| ∞ DG, k=1 MHM, l=1 DG, k=2 MHM, l=2 0.0156 0.0312 0.0625 0.125 0.0003 0.001 0.004 0.016 0.064 0.256 1.024 4.096 H || ( hH − h , eH − e )| |cur l ,∞ DG, k=1 MHM, l=1 DG, k=2 MHM, l=2

Standing wave in a PEC cavity: comparison between the MHM method and the DG method with respect to the k(H − HH, E − EH)k∞(left) and k(H − HH, E − EH)kcurl,∞(right) norms.

(20)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Numerical study in 2D

Nanophotonic waveguide of photonic crystal type Holes of silicium in silica encapsulated in air

Second level discretization: non-dissipative DGTD method with explicit time-stepping and quadratic elements

(21)

Multiscale Hybrid-Mixed method

MHM for the time-domain Maxwell equations

Numerical study in 2D

Nanophotonic waveguide of photonic crystal type Holes of silicium in silica encapsulated in air

Second level discretization: non-dissipative DGTD method with explicit time-stepping and quadratic elements

Coarse problem: linear elements

DGTD method DGTD method MHM-DGTD method

with 589,824 DoF with 4,608 DoF with 9,216 DoF

(22)

Outline

1

Multiscale Hybrid-Mixed (MHM) method

2

MHM-induced local time stepping

3

Numerical results in the 2D case

(23)

MHM-induced local time stepping

∆T : 1st-level (coarse) time step

∆tK: 2nd-level (fine) time step verifying the CFL condition for the local problkem in K

Goal: assess the global stability, accuracy and efficiency of MHM-DGTD method Given H0and E12; for n = 1 → N do for k ∈ THdo SetEn,0,K = En−1,Mk K andH n,0, K = H n−1,Mk K ; for m = 1 → MK do if n = 1 then Solve(2)to determineηm+ 1 2,E K andη m,H K ; end

Solve(1)to determine andEn,m+

1 2, K andH n,m, K ; AssembleEn,m+ 1 2, K to the RHS of(3); end end Solve(3)to determineβn; Update En,MK+ 1 2 K =βnηKE+E n+12, and Hn,MK K =βnηHK+Hn,, ∀K ∈ TH; end

(24)

Outline

1

Multiscale Hybrid-Mixed (MHM) method

2

MHM-induced local time stepping

3

Numerical results in the 2D case

(25)

MHM-induced local time stepping

Validation: space refinement

Standing wave in a PEC cavity

Macro/micro meshes such that h = H/2β

PkPk apolynomial order with k in {1, 2, 3, 4}

aFor V

h(K ) and Λhrespectively.

(a) H = h× 25 (b) H = h

× 22 (c) H = h

(26)

MHM-induced local time stepping

Validation: spatial refinement (H

− h)

Standing wave in a PEC cavity

Macro/micro meshes such that h = H/2β

Pk−Pkpolynomial order with k in {1, 2, 3, 4}

10−2 10−1 H 10−7 10−6 10−5 10−4 10−3 10−2 L 2error P1−1 P2−2 P3−3 P4−4 DGTD,P1 DGTD,P2 DGTD,P3 DGTD,P4

(27)

MHM-induced local time stepping

Validation: temporal refinement (∆T

− ∆t)

Standing wave in a PEC cavity

Locally refined mesh such that hmax/hmin= 1500

(28)

MHM-induced local time stepping

Validation: temporal refinement (∆T

− ∆t)

Standing wave in a PEC cavity

Locally refined mesh such that hmax/hmin= 1500

0 1 2 3 4 5 6 7 Time (seconds) ×10−9 10−5 10−4 10−3 10−2 10−1 L 2error P1−1 P2−2 DGTD,P1 DGTD,P2

(29)

MHM-induced local time stepping

Validation: temporal refinement (∆T

− ∆t)

Standing wave in a PEC cavity

Locally refined mesh such that hmax/hmin= 1500

Interpolation orders: P1−P1

(30)

MHM-induced local time stepping

Validation: temporal refinement (∆T

− ∆t)

Standing wave in a PEC cavity

Locally refined mesh such that hmax/hmin= 1500

Interpolation orders: P1−P1 0 1 2 3 4 5 6 7 Time (seconds) ×10−9 10−3 10−2 10−1 100 L 2error ∆T = ∆t× 1 ∆T = ∆t× 10 ∆T = ∆t× 30 ∆T = ∆t× 100 ∆T = ∆t× 1000 ∆T = ∆t× 1500

(31)

MHM-induced local time stepping

Validation: temporal refinement (∆T

− ∆t)

Standing wave in a PEC cavity

Locally refined mesh such that hmax/hmin= 1500

Interpolation orders: P1−P1 1 2 3 5 10 50 100 500 1000 1500 DGTD ∆T min ∆tK 0 250 500 750 1000 1250 1500 CPU (seconds) Init Local E Local H Global Sum Error Energy

(32)

Outline

1

Multiscale Hybrid-Mixed (MHM) method

2

MHM-induced local time stepping

3

Numerical results in the 2D case

(33)

Closure

Summary of the main features of the MHM method

First level elements can be meshed independently to yield the second level mesh Non-conformity is naturally allowed

Local problems are independent i.e. can be solved in parallel

Local time-stepping is possible i.e. local problems can be time advanced with their own time step (or time scheme)

In the discrete case, first level problem is a linear system with a symetric positive definite matrix

Open questions and future works

Stability analysis of the MHM-induced local time stepping method A priori convergence analysis (ongoing)

Implementation in 3D

High performance computing issues (data-based versus task-based parallelization) Extension to frequency-domain (ongoing)

(34)

Closure

Summary of the main features of the MHM method

First level elements can be meshed independently to yield the second level mesh Non-conformity is naturally allowed

Local problems are independent i.e. can be solved in parallel

Local time-stepping is possible i.e. local problems can be time advanced with their own time step (or time scheme)

In the discrete case, first level problem is a linear system with a symetric positive definite matrix

Open questions and future works

Stability analysis of the MHM-induced local time stepping method A priori convergence analysis (ongoing)

Implementation in 3D

High performance computing issues (data-based versus task-based parallelization) Extension to frequency-domain (ongoing)

(35)

Closure

Thank you for your attention !

Nachos project-team

Numerical methods and high performance algorithms for the numerical modeling of wave interaction with complex geometries/media

Common project-team with J.A. Dieudonn´e Mathematics Laboratory UMR CNRS 7351, Cˆote d’Azur University

Références

Documents relatifs

La méthode de Monte Carlo cinétique cellulaire (CKMC) développée dans le cadre de ce travail s’applique à construire à partir de l’échelle atomique une mé- thode de

Tableau 10 : Les inhibitions dues à la production d’acides organiques………66 Tableau 11 : Activité antimicrobienne des bactéries pathogènes à Gram positif par les isolats

Moreover, the rapid increase of the unconfined maximum stress observed in Figure 4 and also obtained for similar material using dynamic mechanical analysis

Le phénol trouve aussi une large gamme d’autres applications, notamment comme matière première de la fabrication d’autres substances organiques (notamment le

Definition of behavioral semantics: To provide a behavioral semantics, we defined the semantics in two steps: (1) an extension of the metamodel with execution function and

The effects induced by long temporal correlations of the velocity gradients on the dynam- ics of a flexible polymer are investigated by means of theoretical and numerical analysis

Hysteresis loops of the continuous film and the array of dots, mea- sured at room temperature by longitudinal Kerr effect along the field cooling direction after cooling from T ⫽450

ب - ططخلما ينطولا نم لجأ لامعالأ ةيئيبلا ةيمنتلاو ةمادتسلما 0221 مت ا ريضحتل دادعلإ اذه طخلما دعب ضرع رقروتلا ينطولا لوا ةلاا ةئيبلا اهلبوتسمو ةنسل