• Aucun résultat trouvé

Ab initio investigations of spin-dependent quantum transport

N/A
N/A
Protected

Academic year: 2021

Partager "Ab initio investigations of spin-dependent quantum transport"

Copied!
146
0
0

Texte intégral

(1)

HAL Id: tel-02459090

https://tel.archives-ouvertes.fr/tel-02459090

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ab initio investigations of spin-dependent quantum

transport

Jiaqi Zhou

To cite this version:

Jiaqi Zhou. Ab initio investigations of spin-dependent quantum transport. Micro and nanotechnolo-gies/Microelectronics. Université Paris Saclay (COmUE); Beihang university (Pékin), 2019. English. �NNT : 2019SACLS508�. �tel-02459090�

(2)
(3)
(4)
(5)
(6)
(7)
(8)

(!/e)S/cm

10−5e2/h

(9)

∆ ∆ µ1 µ2 z k|| Γ ∆1 k|| = (0.526, 0.900)

(10)

E = EF E = EF−0.3 E = EF E = EF − 0.3 k kz σxyz E = EF E = EF − 0.3 Γ 1 2 1 3 √ 2 3 E = EF E = EF+0.84 E = EF E = EF+ 0.84 k kz σxyz E = EF E = EF + 0.84 Γ 1 2 1 3 √ 2 3 1−x x 1−x x x x x x 1−x x 1−x x x E = EF kz σx yz E = EF k|| kz = 0

(11)

Γ E = EF − 0.02 Γ E = EF−0.15 E = EF−0.36 ′

(12)

σz xy k E = EF E = EF − 0.09 k kz σzxy E = EF E = EF−0.09 Γ ±∞ p d

(13)
(14)
(15)
(16)
(17)
(18)
(19)

• ∆1 (!/e)S/cm (!/e)S/cm (!/e)S/cm E = EF+0, 84 1−x x 1−x x x (!/e)S/cm

(20)

(!/e)S/cm

(!/e)S/cm E = EF − 2.0

σz

(21)

σz

xy (!/e)S/cm

(22)
(23)
(24)
(25)

= − × 100% =× 100%.

= ↑ + ↓ ↑ ↓

= ↑ + ↓ ↑ ↓

(26)

∆ ∆

(27)

k || = 0 k|| = 0 ∆1 spd ∆ ∆1 ∆1 ∆1 ∆5 ∆′2 ∆2 ∆1 ∆′2 ∆2 ∆5 ∆1 ∆1 ↑

(28)

300◦C

(29)

425◦C

400◦C

420◦C

(30)
(31)
(32)

Js

Jc

(33)

σzxy(ω) = ! ! BZ d3k (2π)3 " n fnk ×" m̸=n 2 Im#⟨nk|ˆjx|mk⟩ ⟨mk |−eˆvy| nk⟩ $ (ϵnk− ϵmk)2− (!ω + iη)2 σz xy x y z ϵn ϵm n m fnk ˆjxz = 12{ˆsz, ˆvx} ˆ sz = !2ˆσz ˆvy = 1!∂H(k)∂ky H(k) ω η • •

(34)

dm dt =−γm × BM+ αm× dm dt + γ Ms T m = M/Ms Ms γ α m BM m T = τFLm× ζ + τDLm× (m × ζ), ζ τFL (m, ζ) τDL (m, ζ)

(35)
(36)
(37)
(38)
(39)

(T + V + V + T + V ) χ(RNI, rNe) = Eχ(RNI, rNe), RNI rNe χ(RNI, rNe) E T V V T V e2 =! = 2m e= 1 e ! me T = " µ=1,NI 1 2Mµ∇ 2 µ, V = " µ̸=ν ZµZν |Rµ− Rν| , T = " i=1,Ne ∇2i, V = " i̸=j 1 |ri− rj| , V =− " µ=1,NI " i=1,Ne Zµ |Rµ− ri| , Mµ Z

(40)

χ(Rµ, ri) = Φ(Rµ)ΨR(ri), ΨR(ri) (T + V + V ) ΨR(ri) = ERΨR(ri). R V Ψ( ) Ψ( ) = ψ1( 1)ψ2( 2) . . . ψN( N), ψi( i) Ψ( ) HΨ( ) = EΨ( )

(41)

E =⟨Ψ|H|Ψ⟩ =" i ⟨ψi|Hi| ψi⟩ + 1 2 " i,j ⟨ψiψj|Hij| ψiψj⟩ , Hi Hij ⎡ ⎣−∇2+ V ( ) + " i′(̸=i) ! d ′|ψi′( ′)| 2 | ′− | ⎤ ⎦ ψi( ) = Eiψi( ). −∇2 V ( ) V Ψ(r1, r2, . . . , rN) = 1 √ N ! ) ) ) ) ) ) ) ) ) ) ) ) ) ψ1(r1) ψ2(r1) · · · ψN(r1) ψ1(r2) ψ2(r2) · · · ψN(r2) ψ1(rN) ψ2(rN) · · · ψN(rN) ) ) ) ) ) ) ) ) ) ) ) ) ) .

(42)

E = ⟨ψi(ri)|H|ψi(ri)⟩ ψ ⎡ ⎣−∇2+ V ( ) + " i′(̸=i) ! d ′|ψi′( ′)|2 | ′− | ⎤ ⎦ ψi( )− " i′(̸=i),|| ! d ′ψ ∗ i′( ′)ψi( ′) | ′ − | ψi′( ) = Eiψi( ). * i′(̸=i),|| + d ′ ψ∗i′( ′)ψi( ′) |′− | ψi′( ) || • V (r)

(43)

ρ(r) • E [ρ( )] = T + V + V + T + V = T [ρ( )] + E [ρ( )] + V ( ) + E , T [ρ( )] E [ρ( )] V ( ) E = T + V V ( ) E F [ρ( )] F [ρ( )] = T [ρ( )] + E [ρ( )], T [ρ( )] E [ρ( )]

(44)

ρ( ) T [ρ( )] E [ρ( )] , −∇2+ V KS[ρ( )] -ψi( ) = Eiψi( ). ∇2 VKS VKS[ρ( )] = V ( ) + V [ρ( )] + V [ρ( )] = V ( ) + ! d ′ ρ( ′) | − ′|+ δE [ρ( )] δρ( ) . ρ( ) = N " i=1 f (Ei, µ)|ψi( )|2. f (Ei, µ) µ VKS[ρ(r)] ρ(r) V [ρ(r)]

(45)

VKS[ρ(r)]

ψi(r)

Ei ψi(r)

ρ(r) ψi(r)

(46)

ρ(r) ρ(r) ρ(r) ρ′(r) E [ρ( )] E [ρ( )] E [ρ( )] E [ρ( )] = T [ρ( )]− T [ρ( )] + E [ρ( )] − E [ρ( )], T [ρ( )] T [ρ( )] E [ρ( )] E [ρ( )] E [ρ(r)] = ! drρ(r)ε [ρ(r)],

(47)

ε [ρ(r)] V [ρ( )] = δE [ρ( )] δρ( ) ≈ d dρ( ){ρ( )ε [ρ( )]} = ε [ρ( )] + ρ( ) dε [ρ( )] dρ( ) . ε [ρ( )] ε [ρ( )] ε [ρ( )]

(48)

µ1 µ2

(49)

|ψ⟩ H|ψ⟩ = E |ψ⟩ . H |ψ⟩ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ H1 τ1 0 τ1† Hd τ2† 0 τ2 H2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ |ψ1⟩ |ψd⟩ |ψ2⟩ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠= E ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ |ψ1⟩ |ψd⟩ |ψ2⟩ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠, H1 |ψ1⟩ H2 |ψ2⟩ Hd |ψd⟩ τ1,2 G(E) (E− H)G(E) = I,

(50)

|v⟩ |ψ⟩ = −G(E)|v⟩. G G† G g1 g2 |ψ2⟩ = g2(E)τ2|ψd⟩ , g2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ E− H1 −τ1 0 −τ1† E− Hd −τ2† 0 −τ2 E− H2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ G1 G1d G12 Gd1 Gd Gd2 G21 G2d G2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠= ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ I 0 0 0 I 0 0 0 I ⎞ ⎟ ⎟ ⎟ ⎟ ⎠. G1d = g1τ1Gd, G2d = g2τ2Gd, Gd = (E− Hd− Σ1− Σ2)−1, Σ1 = τ1†g1τ1 Σ2 = τ2†g2τ2 |v⟩ |ψR

(51)

|ψA (E− H)|ψ⟩ = −|v⟩, ) )ψR4 ))ψA4 |ψR⟩ = −G|v⟩, |ψA⟩ = −G†|v⟩. (E− H)(|ψR⟩ − |ψA⟩) = (E − H) 5 G− G†6|v⟩ = (I − I)|v⟩ = 0. A = i5G− G†6. |ψ⟩ = A |v⟩ |v⟩ G = 1 E + iδ− H = " k |k⟩⟨k| E + iδ − ϵk , iδ |k⟩ H ϵk A =" k |k⟩⟨k| 2δ (E− ϵk)2+ δ2 δ→0 = 2π" k δ(E− ϵk)|k⟩⟨k|. A

(52)

|ψ1,n⟩ n a1 a1 |ψ1,n⟩ + |ψR⟩ |ψ1,n⟩ |ψ1,n⟩ τ1|ψ1,n⟩ = (E − H1)|ψ1,n⟩ |ψR 1,n⟩ (H1+ τ1+Hd+ τ1†+ τ2†+ H2+ τ2)(|ψ1,n⟩ + ) )ψR4) = E( |ψ1,n⟩ + ) )ψR4), (H − E)))ψR4=−τ† 1|ψ1,n⟩. |ψR −τ1†|ψ1,n⟩ ) )ψR4 = Gτ† 1|ψ1,n⟩ . |ψd⟩ |ψd⟩ = Gdτ1†|ψ1,n⟩ .

(53)

|ψ2⟩ |ψ2⟩ = g2τ2|ψd⟩ = g2τ2Gdτ1†|ψ1,n⟩ . |ψ1⟩ = (1 + g1τ1Gdτ1†)|ψ1,n⟩ . ρ =" n f (En, µ)|ψn⟩ ⟨ψn| , f (En, µ1) µ1 |ψd,n⟩ = Gdτ1†|ψ1,n⟩ . ρd,1 |ψ1,n⟩ ρd,1 = ! ∞ −∞ dE" n f (E, µ1)δ(E− En)|ψd,n⟩ ⟨ψd,n| = ! −∞ dEf (E, µ1)Gdτ1† a1 2πτ1G † d = 1 2π ! ∞ −∞ dEf (E, µ1)GdΓ1G†d.

(54)

Γ1 = τ1†a1τ1 = i(Σ1− Σ†1) ρ = 1 2π ! −∞ dE " i=1,2 f (E, µi)GdΓiG†d. 0 = ∂ * i|ψi|2 ∂t = i7#⟨ψ1|τ1|ψd⟩ − ⟨ψd|τ1†|ψ1⟩ $ +#⟨ψ2|τ2|ψd⟩ − ⟨ψd|τ2†|ψ2⟩ $8 . * i|ψi|2 i |i⟩ ⟨i| j −e ij =−i(⟨ψj|τj| ψd⟩ − ⟨ψd|τj†|ψj⟩), j = 1, 2. i 1 2 =−i(⟨ψ2|τ2| ψd⟩ − ⟨ψd|τ2†|ψ2⟩). i 1 2 =⟨ψ1,n|τ1Gd†Γ2Gdτ1†|ψ1,n⟩,

(55)

Γ2 = τ2†(g2†− g2)τ2 n I 1 2 = ! ∞ E=−∞ dEf (E, µ1) " n δ (E− En)⟨ψ1,n|τ1Gd†Γ2Gdτ1†|ψ1,n⟩ = 1 2π ! ∞ E=−∞ dEf (E, µ1) Tr(G†dΓ2GdΓ1) I = I 1 2− I 2 1 = 1 π ! ∞ −∞

dE[f (E, µ1)− f(E, µ2)] Tr(G†dΓ2GdΓ1).

ρ(r) VKS[ρ(r)] H[ρ(r)] Σ1 Σ2 ρ′(r) ρ(r) ρ(r) ρ(r) ρ(r) ρ′(r) ρ(r)

(56)
(57)
(58)
(59)

z

x y

(60)

k 31× 31 × 1 Gσ = e2 h " k|| Tσ(k||, EF),

(61)

σ Tσ(k||, EF) σ k|| = (kx, ky) e h 20× 20 × 1 k k 300× 300 × 1 k 10× 10 × 10 σyzx =−e 2 ! 1 V N3 k " k Ωxyz(k), k × × k

(62)

z

z

(63)
(64)

∆1 ↑ ↑ ↑ ↑ Γ ∆1 s pz dz2 ∆1 ∆1

(65)

k||

∆1

k|| = (0, 0)

(66)

Γ ∆1 ↓ ↓ ↓ = 0.8991 k|| = (0.526, 0.900)

(67)

k|| = (0.526, 0.900)

k|| = (0.526, 0.900)

(68)

k|| = (0.526, 0.900)

(69)

=+=+ ↓ ↑ ↑ ↓ ↓ ↓ ↓ −412 (!/e)S/cm −841 (!/e)S/cm E = EF−0.3 (!/e)S/cm E = EF + 3.82

(70)

σyzx =e 2 ! 1 V N3 k " k Ωxyz(k), k Ωxyz(k) =" n fnkΩxn,yz(k), Ωxn,yz(k) = !2 " m̸=n −2 Im[⟨nk|12{ˆσx, ˆvy}|mk⟩⟨mk|ˆvz|nk⟩] (ϵnk − ϵmk)2 . Ωx yz(k)

(71)

E = EF E = EF − 0.3 E = EF E = EF − 0.3 k Ωx n,yz(k) = ⎧ ⎪ ⎨ ⎪ ⎩ sgn(x) lg|x|, |x| > 10, x 10, |x| ! 10.

(72)

E = EF − 0.3 −841 (!/e)S/cm k E = EF Γ Γ E = EF − 0.3 Γ Γ Γ kz σyzx E = EF E = EF − 0.3 Γ 1 2 1 3 √ 2 3 kz

(73)

Γ E = EF E = EF − 0.3 E = EF−0.3 (!/e)S/cm E = EF + 0.84 (!/e)S/cm −1713(!/e)S/cm E = EF − 4.42 −1577 (!/e)S/cm E = EF − 3.74

(74)

E = EF E = EF + 0.84 E = EF E = EF + 0.84 k E = EF + 0.84

(75)

E = EF + 0.84 (!/e)S/cm k E = EF E = EF+ 0.84 kz σyzx E = EF E = EF + 0.84 Γ 12 1332 E = EF E = EF + 0.84

(76)

(!/e)S/cm E = EF (!/e)S/cm E = EF + 0.84 (!/e)S/cm β − (!/e)S/cm ± β ± (!/e)S/cm β β − − − − − EF EF − 0.4 EF + 1.24 EF + 3.82 EF + 0.84 ± ±

(77)

1−x x 1−x x x x

x x

(!/e)S/cm E = EF + 0.84

EF

(78)

1−x x

1−x x x

(79)

E = EF

kz σyzx

(80)

Γ

(81)

− (!/e)S/cm (!/e)S/cm (!/e)S/cm

E = EF + 0.84

1−x x

1−x x x

(82)
(83)
(84)
(85)

k 1× 21 × 21 k 1× 150 × 150 k 6×16×16 k × × 10−5e2/h ↑ ↓ ↑ ↓ ↓ = 1.11× 10−3 e2/h= 9× 10−5 e2/h

(86)

k|| kz = 0

(87)

= 0.16 Γ ↑ ↑ ↓ ↑ ↑ == 0.57 Γ== 1.11×10−3e2/h ↓ ↓ = 1.82× 10−3 e2/h= 1.19×10−4 Γ ↑ == 0.57 Γ Γ ↓ = 0.57 1.19 × 10−4 E = EF − 0.02

(88)

Γ

E = EF − 0.02

(89)

E = EF − 0.02 E = EF − 0.02 ↑ == 0.91 Γ E = EF − 0.15 E = EF − 0.36 ↑ = 0.95 E = E F − 0.15 ↓ = 0.94 E = EF−0.36 ↓ = 1.19× 10−4

(90)

x E = EF − 0.15 E = EF− 0.36 E = EF − 0.15 ↑ = 0.95 Γ E = EF−0.36 ′ k|| = (0.283, 0.283) ′

(91)

= 9.5× 10−3 ′ ′ ′ ↓ = 3.8× 10−8 Iσ = e h !

Tσ(E)[f (E− µ1)− f(E − µ2)]dE,

f µ1 µ2

(92)
(93)

k||

(94)
(95)

− ! E = EF − 2.0

(96)
(97)

x y kx ky a b c a b c k 12× 10 × 6 k × ×

(98)

σαβγ α β γ α β α β C4v σz xy −σzyx σyzx −σzyx σzxy −σyxz σz yx −361 (!/e)S/cm σzxy (!/e)S/cm (!/e)S/cm σx yz σzyx σxzy σyzx σzxy σyxz −18 45 −88 286 −176 −361 −0.72 −44 −44 −61 103 −204 −15 −0.54

(99)

σzxy −204 (!/e)S/cm = max α,β,γ(σ γ αβ(EF))/σxx α,β,γ(σαβγ (EF)) σxx × × −0.72 −0.54 σz yx σyzx σxyz −390 −178 (!/e)S/cm (!/e)S/cm −0.5 σz yx σz yx −528 (!/e)S/cm E = EF−0.094 −400 (!/e)S/cm E = EF+0.47 σzxy σyzx (!/e)S/cm E = EF − 0.048

(100)

σz xy

−204 (!/e)S/cm E = EF (!/e)S/cm E = EF − 0.09

Ωz n,xy(k)

(101)

σz xy k E = EF E = EF− 0.09 E = EF Γ (!/e)S/cm k

(102)

k kz σzxy E = EF E = EF − 0.09 Γ Γ −0.09 Γ Γ Γ k kz E = EF E = EF − 0.09 Γ E = EF

(103)

Γ

E = EF − 0.09 Γ

(104)

−34 (!/e)S/cm (!/e)S/cm E = EF− σz yx −361 (!/e)S/cm σz xy −204 (!/e)S/cm

(105)
(106)

x

(107)

±∞

2.866×√2 = 4.053

(108)

1× 21 × 1 k

(109)
(110)

= ) ) ) ) ↑ ↓ ↑+ ↓ ) ) ) )× 100%, ↑ ↓ p d p p d

(111)

p d

(112)

(E, V )

−V/2 ≤

(113)
(114)
(115)

∆1

(116)

(!/e)S/cm

σz yx

(117)
(118)
(119)
(120)
(121)

/ /

(122)
(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)

VSe2

2

(136)
(137)

WTe2

WTe2

(138)

Mn3X X = Ge

(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)

Références

Documents relatifs

Abbreviations used: DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GFP, green fluorescent protein; GST, glutathione S-transferase;

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide