• Aucun résultat trouvé

LHCb calorimeter electronics. Photon identification. Calorimeter calibration

N/A
N/A
Protected

Academic year: 2021

Partager "LHCb calorimeter electronics. Photon identification. Calorimeter calibration"

Copied!
148
0
0

Texte intégral

(1)

HAL Id: tel-00583998

https://tel.archives-ouvertes.fr/tel-00583998

Submitted on 7 Apr 2011

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LHCb calorimeter electronics. Photon identification.

Calorimeter calibration

F. Machefert

To cite this version:

F. Machefert. LHCb calorimeter electronics. Photon identification. Calorimeter calibration. Physique des Hautes Energies - Expérience [hep-ex]. Université Paris Sud - Paris XI, 2011. �tel-00583998�

(2)
(3)
(4)
(5)
(6)

β

β β

(7)
(8)
(9)
(10)

300mrad bb b¯b 2.0 ≤ η ≤ 5.5 L = 2 × 1032cm−2s−1 3 × 1011 bb

(11)
(12)

µ σbb/σinelastic

z

7TeV bb

(13)

P t 1cm 1034cm−2s−1 2 × 1032− 5 × 1032cm−2s−1 n = 0 cm−2s−1 3.5TeV ≈ 400 β∗ 2.5m 2.7

(14)

z pp

(15)

pp

z −50cm 1m

n+ n

(16)

3cm 8mm z 1.5cm z r φ r− 45◦ 45◦ r− 8.2mm 41.9mm 38µm 102µm φ− 8mm 17.25mm ±20◦ 17.25mm 41.9mm ±10◦ φ− r− 39µm 97µm

(17)

z 2.5m 27cm ±5◦ U − V K0 s p+ n % B

(18)

|B| 1.1T y z 4.7m x − z ! B.dl ≈ 4Tm 200GeV x 11 22cm 4m2 ±5◦ p+ n 198µm 6.0×4.9m2 ±5◦

(19)

4.9mm

CO2 O2 50ns

190µm

(20)

2.5 × 2.5mm2 25ns 60GeV n = 1.03 10GeV C4F10 n = 1.0014 10GeV 60GeV 15GeV 100GeV 120mrad CF4 n = 1.0005 C4F10 CF4 5mrad

(21)
(22)

6.2 × 7.6 m2 6.3 × 7.8 m2 6.8 × 8.4 m2 180mm 2.5X0 0.1λI 25X0 1.1λI 5.6λI 10%/√E ⊕ 1.5% 80%/√E ⊕ 10% ET ET

(23)

2 mm 12 × 12 cm2 6 × 6 cm2 4 × 4 cm2

(24)

12 × 12 6 × 6 4 × 4cm2

26.2 × 26.2 cm2 13.1 × 13.1 cm2

5.6λI 1.2m

4mm

(25)
(26)

2 × 1032cm−2s−1 pp 16MHz 12MHz b¯b Pt 1.1MHz 4µs

(27)
(28)
(29)
(30)

2 ×2

Et

π0

Pt

(31)
(32)
(33)
(34)

Pm

Buffer Integrator

Vss Vdd

Analog Chip

BICMOS 0.8 um Integrated circuit 4 channels per chip

+ -5 ns 25 Ω 65 Ω 27 Ω 45 Ω 12 M Ω 33 Ω 37 Ω 51.1 Ω 33 Ω 330 Ω 3.3 k Ω 1.5 K Ω 25 ns 110 Ω 2.2 nF 470 pF 27 Ω 22 nF 1.07kΩ ADC 12 bits 40 Mhz 4 pF 2.7 k Ω 4.7 k Ω 1 nF 1 nF 4.7 k Ω 4.7 nF +3 V 10kΩ 20 kΩ 20mA 25Ω 1V 250Ω 250µV Et = 2.5M eV 10GeV 25ns 2% ±2ns B → K⋆γ Pt

(35)

4pF 20MHz 25ns 25ns 25ns ± 0.5ns 100Ω 4.7nF ≈ 2µs 4pF 2kΩ ≈ 22ns ≈ 4ns 0 ≈ 25ns 300Ω 51Ω 250Ω 1.07kΩ 10kΩ 20kΩ 250Ω

(36)

! !

(fit−signal)/signal ±1%

(37)

! ! 1.5% A B A = m events " j #n channels " i xij − ¯x $2 = m%n2σ2 coh+ nσincoh2 & B = m events " j n channels " i (xij− ¯x)2 = m × n%σ2coh+ σincoh2 & σcoh σincoh A B

(38)

ns 25ns n × 25ns √ t 0ns σ2incoh= 0.60 + 0.02 × t in ADC2 σcoh = 0.08 + 0.5 × 10−2× t in ADC 25 50ns ≈ 1.3

(39)

3 × 3 3.5 2.4 ∼ 8.8MeV ∼ 6.0MeV Pt 4pF 2pF ±2ns ! ! (25 + 50)/2 = 37.5ns

(40)

∆t(500/333Ω) ∆t(500/333Ω) ∆t(500/333Ω) VIL VIH ns 500 333Ω 333V Et 2 × 2

(41)

! " # $ % & ' & ( ! " # $ % & ' & ) ! " # $ % & ' & * ! " # $ % & ' & + ! " " # $ % & ' ( ) * + , ' ( & - . $ / / 0 ( ' * 1 2 ! " ! " " + 3 4 + , ' ( & - . 4 5 , 6 # 7 ) - % 8 , ) 4 9 % / / ( ) , - . / 0 & 1 2 3 0 0 - 2 $ % & ' &$ 4 * 5 $ 6 3 ' 7 $ 8 $ 9 + $ : ; < $ $ = > + # $ : , ' , ! " " ; 3 ? + $ : ; < # @ A B C < = # 7 & ' ( ) / , - ( # > , & 3 ? ) ( @ * 1 2 # > , & A ? ) ( @ * 1 2 D - 2 7 3 A E $ * F + ( F ) + + 5 : , ' , G - & % A H ' I - J H - E B - 2 # > , & = ? ) ( @ * 1 2 # > , & 1 ? ) ( @ * 1 2 1 2 3 0 0 - 2 # & @ 3 6 2 & ' 3 A E A = A = ; 1 2 3 0 0 - 2 # & @ 3 6 2 & ' 3 A E A = A = ; 1 2 3 0 0 - 2 # & @ 3 6 2 & ' 3 A E A = A = ; 1 2 3 0 0 - 2 # & @ 3 6 2 & ' 3 A E A = A = ; = 3 > + $ " & ' & : ( ) , & " $ 6 7 0 ( ) A B 4 " ( C ' > 1 D E 7 / $ % & ' ( ! ) * + , + - . / 0 1 ' 2 3 2 3 2 3 2 3 1 7 ' $ 7 J H E B -% & ' ( 4 5 6 7 + + 8 F ' , ' % 0 K E ' - 2 2 H L ' 9 % ) 6 " " M - 3 0 ; 6 A H 2 7 $ % & ' &$ 4 H L $ ' A $ ( ) $ 6 3 ' 7 8 $ ? + $ : ; < = > + , - G - 7 - ' # $ 5 " : , ' , : , ' , # $ : , ' , : , ' , # $ : , ' , : , ' , G % B N % # $ : , ' , : , ' , % & ' ( 4 5 6 7 + + 3 % & ' ( 4 5 6 7 + + 2 % & ' ( 4 5 6 7 + + : % & ' ( 4 5 6 7 + + 8 % & ' ( 4 5 6 7 + + 3 % & ' ( 4 5 6 7 + 2 % & ' ( 4 5 6 7 + + : K ) # ! " # $ % & ' ! ( " ) * + , - " ; 7 6 - . & ! " " # $ % & ' ( ) . # " . / & % # . # " . / & % # 2 < = 8 F C . 4 E 7 / $ > ? @ / 5 " 5 " 5 " G / G / G / G / O N L ' P $ , 3 Q A 4 1 # 8 $ - H+ 3 > ? @ / > ? @ / > ? @ / I H 6 ' 2 & B ' A 2 I H 6 ' 2 & B ' A 2 I H 6 ' 2 & B ' A 2 I H 6 ' 2 & B ' A 2

(42)

±2ns

I2C

25ns

(43)
(44)

25ns cos θ Pt Pt [5, 16] ns n n cos θ

(45)
(46)
(47)
(48)

! !

!"#$

!"#$

±2 ns

(49)

±1 %

(50)

≈ 1.1

17

(51)
(52)
(53)
(54)
(55)
(56)

2 × 25ns

(57)
(58)
(59)
(60)
(61)
(62)

◦ ≤ 49◦ ≥ 54◦ ≤ 60◦ ≤ 49◦ ≤ 49◦ ≤ 49◦ ≥ 60◦ ≤ 65◦ ≥ 60◦ ≤ 65

(63)
(64)
(65)

148 × 1012 66 × 1012 130 × 1012 15 × 1012 30 × 1012 350 × 1012 350 × 1012 2.8db/km 100m 9db 1014

(66)

L

(67)
(68)

z

nF

(69)
(70)
(71)
(72)
(73)

t0 − 1 t0

(74)
(75)

t0 − 1 t0

(76)
(77)

pp L = 5 × 1032cm−2s−1 2 × 1032cm−2s−1 π cm−2year−1 z 12.30m 13.32m 3.5m

(78)

f + f ′ → f + f′ f + ¯f → f′ + ¯f ′ f + ¯f → g + g f + g → f + g g + g → f + ¯f g + g → g + g pt 107s π z = 12.30meters 3.7 × 106s

(79)

−2 −1 z = 12.30m z = 13.32m x y 100MeV f (x) = Ae−Bx+ CxD z = 12.30m z = 13.32m cm−2year−1MeV−1 2.2 × 109 1.8 × 109 MeV−1 0.27 0.28 0.43 × 109 0.49 × 109 −0.87 −0.89 z 12.30 13.32m

(80)

all particles Neutrons Protons K mesons π mesons Fit (z=12.30m) Fit (z=13.30m) cm−2year−1MeV−1 z = 12.30m z = 12.30m z = 13.30m 4.2 × 109 108cm−2s−1 200MeV 4cm 200MeV 4MeV. −1 2 6.5rad. −1

(81)
(82)

107

10.7 22.6krad

90MeV/

(83)

10−7µm−1

58MeV/

(84)

−2 µ . −1 2 2.4 × 107 2.4 × 107 2.4 × 107 3.0 × 107 2.4 × 107 2.3 × 107 2.4 × 107 2.4 × 107 43mA 52mA 6MeV.mg−1cm2 ∼ 1.5MeV.µm−1 dE/dx

(85)

100 -1 1 10 102 103 2 4 6 8 10 12 14 H He Li Be B C N O F Ne Na Mg Al Si dE/dx (MeV.cm2.mg-1) E (MeV) 6MeV.mg−1cm2 1.5MeV.µm−1 15MeV.mg−1cm2 10-1 1 10 102 103 10-11 10-10 10-9 10-8 10-7 10-6 10-5 H He Li Be B C N O F Ne Na Mg Al Si Probability (um-1) E (MeV) µ −1 1 1 2MeV 10−7µm−1 10µ

(86)

2 × 10−6 10µ 10µ µ sSEL sKr 1 − sSEL− sKr [sSEL, sKr] sKr > 10−8 LET ≤ 15MeV. −1 2 sKr < 10−8 sLimit sLimit = 8.9 × 10−9 8.9 × 10−7% 8.9 × 10−9 6MeV. −1 2 2 × 10−6 1.8 × 10−14 30MeV 4.2 × 109years−1 −2 N14 Si28 ∆Q = 29MeV 30MeV 30MeV 1GeV

(87)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 s SEL sKr 10 -11 10 -10 10 -9 10 -8 10 -11 10 -10 10 -9 10 -8 [sSEL, sKr] [sSEL, sKr] 14 sLimit smin year.chip−1) 8.9 × 10−9 3.9 × 10−8 1.3 × 10−7 4.0 × 10−8 5.0 × 10−7 1.3 × 10−7 3.1 × 10−7 5.7 × 10−8 8.1 × 10−5 2.7 × 10−5 sLimit smin 2 × 10−6 4.2 × 109cm−2year−1

(88)

γ

s sion

1 − s − sion

(89)

[s, sion]

sion > 6.2 × 10−8

sion < 6.2×10−8

(90)

f (ELET) = σ0 # 1 − e ! ELET −EL0 W "s$

(91)

σ0 L0

3.5 × 10−8cm2 1.44MeV.cm2/mg 15MeV.cm2/mg

1.0 × 10−6cm2 3.00MeV.cm2/mg 30MeV.cm2/mg

' ∞

0

φneutron(E) × σ(E)dE

(92)

φi(E) =

' ∞

0

φneutron(E′)pi(E, E′)tdE′

pi(E, E′) E µ E′ E′ pi(E, E′) φi(E) µ φi(E) i LETmax i LETmax i

(93)

"

ions

' ∞

0

φi(ELET) × σ(ELET)dELET

2 4 6 8 10 12 14 10-17 10-16 10-15 10-14 10-13 H He Li Be B C N O F Ne Na Mg Al Si SEU rate ) -1 .mg 2 LET (MeV.cm 6.5 × 10−13s−1

(94)

2 4 6 8 10 12 14 10-17 10-16 10-15 10-14 10-13 H He Li Be B C N O F Ne Na Mg Al Si SEU rate ) -1 .mg 2 LET (MeV.cm cm−2 5.5 × 10−13s−1 35.5 × 10−13s−1

(95)

0 2 4 6 8 10 12 14 16 10-10 10-9 10-8 10-7 sram R-Cell ("0" pattern) MeV.cm2.mg−1 cm2 10−9 5 × 10−8 10−6 3 × 10−6 10−5 10−5 σ0 L0 10−5cm2 5.0MeV.cm2/mg 20MeV.cm2/mg (√ N + 1) (√N + 1)

(96)

0 20 40 60 80 100 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

Clock Upset cross-section

) -1 .mg 2 LET (MeV.cm ) 2 cross-section (cm 2 4 6 8 10 12 14 10-17 10-16 10-15 10-14 10-13 H He Li Be B C N O F Ne Na Mg Al Si ) -1 .mg 2 LET (MeV.cm SEU rate 35.5 × 10−13s−1 5.5 × 10−13 420s−1.cm−2 1.2 × 10−9 7.3 × 10−6

(97)

6.5 × 10−13 420s−1cm−2 16µs 4.4 × 10−15 µ 16 × 2048 2.9 × 105 L0 7.9 × 10−5 HLT 1 1.6 × 107 107s

(98)

3.5 × 10−12 420s−1cm−2 1.47 × 10−9 108s−1.cm−2 109s−1cm−2 ∼ 100◦C ∼ 100◦C

(99)

100krad 100MeV.mg−1cm2 15MeV.mg−1cm2 20 − 25krad 30 − 35krad 100◦C 200rad

(100)
(101)
(102)
(103)

∆E = |E γ Rec− E γ M C| ERecγ !25% * ∆r ! 10mm ∆z ! 150mm π0 2.5GeV z z

(104)

3 × 3 2 × 2 Pt Pt 20MeV/c 50MeV/c Pt Pt B → π+ππ0 200MeV/c 3 × 3 Pt 3 × 3

(105)

%ptr 6X0 z %pcl χ2 2D χ22D(%p) = (%ptr− %p)TCtr−1(%ptr− %p) + (%pcl− %p)TScl−1(%pcl− %p) %p Ctr %ptr Scl χ2 min χ2 min (GeV/c) t P 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 f ra ct io n γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 χ2 min χ2 min Pt χ2 min χ2 min Pt χ2 min

(106)

χ2 min E (MeV) 0 10 20 30 40 50 60 70 80 90 100 3 10 × T ra n s fo rm E 1 2 3 4 5

(107)

ETransformed= ln(1.4 × E(MeV)) − 6.2)

γ

γ → e+e

(108)

1 10 2 10 3 10 4 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 No SPD constrain Signal No SPD constrain 1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 4 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7

No SPD hit (no conversion)

Signal

No SPD hit (no conversion)

1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 5 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 SPD hit (conversion) Signal SPD hit (conversion) 1 10 2 10 3 10 4 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 PRS Energy 0 20 40 60 80 100120140160180200 0 1 2 3 4 5 6 7 Background Photon x y

(109)

1 10 2 10 3 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 No SPD constrain Signal No SPD constrain 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7

No SPD hit (no conversion)

Signal

No SPD hit (no conversion)

1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 SPD hit (conversion) Signal SPD hit (conversion) 1 10 2 10 3 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 2D χ 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Background Photon χ2 min x χ2 min y

(110)

1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 No SPD constrain Signal No SPD constrain 1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7

No SPD hit (no conversion)

Signal

No SPD hit (no conversion)

1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 4 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background Photon 1 10 2 10 3 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 SPD hit (conversion) Signal SPD hit (conversion) 1 10 2 10 3 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background 1 10 2 10 3 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 All 1 10 2 10 3 10 /E seed E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 Background Photon Eseed/ECluster x Eseed/ECluster y

(111)

(MeV) t P 0 1000 2000 3000 4000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 - No conversion γ MC Z (mm) 0 200 400 600 800 1000 1200 -4 10 -3 10 -2 10 MC γ conversion position ±25% ±25% ±25% Eseed/E χ2 min

(112)

∆ log L ∆ log L -10-8 -6 -4 -2 0 2 4 6 8 10 0 10000 20000 30000 40000 50000 60000 70000 -10-8 -6 -4 -2 0 2 4 6 8 10 0 5000 10000 15000 20000 25000 30000 -10-8 -6 -4 -2 0 2 4 6 8 10 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 -10-8 -6 -4 -2 0 2 4 6 8 10 0 2000 4000 6000 8000 10000 ∆ log L Pt 200MeV Pt 500MeV ∆ log L

(113)

B → K∗γ B → π0π+π− B → K∗γ P t π0 ∆ log L ∆ log L Lγ− Lbackground ∆ log L + ǫ /γ!ee = Nγ Rec( )/N(γ!ee)M C

ǫ /γ→ee = NRec(γ )/N(γ→ee)M C

+ ρ = Nγ Rec( )/(N γ Rec( )+ N bkg Rec( ))

ρ = NRec(γ )/(NRec(γ )+ NRec(bkg ))

NRec(γ ) NRec(γ ) Nbkg N(γ!ee)M C N(γ→ee)M C χ2 min Pt 200MeV B → K∗γ ∆ log L ≤ 0 χ2 min ≤ 4 Pt ∆ log L −∞ ǫ = NγM C Rec /(Nγ M C) ρ = NγM C Rec /(N γM C Rec + N bkg Rec)

(114)

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0 0.2 0.4 0.6 0.8 1 ρ vs ∈ SPD ρ vs ee → γ ∈ SPD ρ vs ee → γ ∈ 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0 0.2 0.4 0.6 0.8 1 ρ vs ∈ SPD ρ vs ee → γ ∈ SPD ρ vs ee → γ ∈ ∆ log L Pt 500(MeV) 50 100 150 200 0 5000 10000 15000 20000 25000 30000 LL Cut Δ No 50 100 150 200 0 2000 4000 6000 8000 10000 12000 LL>-2 Δ 50 100 150 200 0 1000 2000 3000 4000 5000 6000 7000 LL>0 Δ mass (MeV/c) 0 π 50 100 150 200 0 500 1000 1500 2000 2500 LL>2 Δ π0 π0 π0 χ2 min Eseed/E µ = 0.4

(115)

0 50 100 150 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 0 0.1 0.2 0.3 0.4 0.5 0.6 PRS E 0 50 100 150 200 0 0.05 0.1 0.15 0.2 0.25 PRS E 0 50 100 150 200 0 0.05 0.1 0.15 0.2 0.25 0 20 40 60 80 100 0.01 0.02 0.03 0.04 0.05 0.06 0.07 min 2 χ 0 20 40 60 80 100 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.10.20.30.40.50.60.70.80.9 1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 /E seed E 0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 0.06 0.08 0.1 0.12 χ2 min Eseed/E β∗ 2.5m

(116)
(117)
(118)

β β β π0 β EP RS = βEScint.

(119)

EP RS EScint.

E = αEECAL+ βEScint.

α β α α β 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 factor β 6.5 7 7.5 8 8.5 9 9.5 10 10.5 EC A L m is c a li b r a ti o n 0.9 0.95 1 1.05 1.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 factor β 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 EC A L m is c a li b r a ti o n 0.9 0.95 1 1.05 1.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 factor β 7 8 9 10 11 12 EC A L m is c a li b r a ti o n 0.9 0.95 1 1.05 1.1 β z π0 π0 γ e−7/9×2.5X0 ≈ 14% π0 β EECAL EP RS β δβ β α δα x δβ ≈ 1 − δα(1 − x) x 134.98MeV/c2 (x, y) β

(120)

x x β α x x 0.9 1.0 1.1 1.2 ∆Β 0.98 1.00 1.02 1.04 ∆Α β x x β π0 π0 π0 E E t σE E = 10% √ E ⊕ 1.5% 5 mm

(121)

3 × 3 π0 Et 200 MeV π0 E (GeV) 0 10 20 30 40 50 60 70 80 90 100 (G eV) t E 0 1 2 3 4 5 6 7 8 9 100 50 100 150 200 250 300 350 0 50 100 150 200 250 300 E Et π0 π0 E (MeV) 0 5000 10000 15000 20000 25000 30000 ECAL /E Scint. E 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 EScint. β π0 β β

(122)

α β π0 β σECAL β β β β δβ β β σβ(β − βtrue) βtrue β β β βσP RS σβ(β −βtrue) β π0 m2 = 2(1 − cos θ)E1E2 θ x = EP RS/ET ot δα δβ δα = α/αtrue δβ = β/βtrue (m − -m.)2 ≈ m2P DG((δα− δβ)σ(x))2 π0 δβ β α π0 δβ ≈ δα x β α α β π0

(123)

correction β 0 0.2 0.40.6 0.8 1 1.2 1.41.6 1.8 2 m a s s (Me V) 0π 126 128 130 132 134 136 138 140 142 144 correction β 0 0.2 0.40.6 0.8 1 1.2 1.41.6 1.8 2 w id th (Me V) 0π 0 1 2 3 4 5 6 7 8 9 10 Energy smearing Position smearing PS Energy effect PS Energy/smearing effects All included β π0 β β β mP DG β α x β α β β α α β x y mπ0 δβ π0 β

(124)

correction β 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.41.5 m a s s (Me V) 0π 126 128 130 132 134 136 138 140 142 144 correction β 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.41.5 w id th (Me V) 0π 0 1 2 3 4 5 6 7 All included

ECAL miscalibration factor 0.95 ECAL miscalibration factor 1.05

π0 β π0 π0 β 20 mm π0 π0 β σP RS σP RS σP RS+θ π0 β

(125)

β

σ2(β, βcorr) = σECAL2 + σβ2(β − βcorr)2+ β2σP RS+θ2

! !β σπ σ!"#$ α σ%&'θ π0 β σECAL α β β π0 β π0 α β β π0 π0

(126)

β π0 α β α α β

β

β β β π0 γ β π0 β π0 β π0 β β

(127)

π0 π0 π0 ∆ log L π0 β π0 β 5% π0 β π0 ±2.5 × σ σ β β π0

(128)

reconstructed mass (MeV/c) 0 π 0 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350 3 10 × β = 8.3 αtrue βtrue

δαtrue δβtrue αrec βrec

γMC

γrec

γMC

β

δαtrueEγrec − EγM C δαtrue

δαtrue

δβtrue δαtrue

δαtrue

(δαtrueEγrec+ δβrec × βrecEP RS− EγM C)

(129)

α 1 1.0021.0041.0061.008 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005 / ndf 2 χ 4.891e-08 / 3 p0 -0.9642 ± 0.02027 p1 0.9609 ± 0.02019 / ndf 2 χ 4.891e-08 / 3 p0 -0.9642 ± 0.02027 p1 0.9609 ± 0.02019 Outer α 1.0061.008 1.01 1.0121.014 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 / ndf 2 χ 1.695e-07 / 3 p0 -0.9011 ± 0.03796 p1 0.8909 ± 0.03758 / ndf 2 χ 1.695e-07 / 3 p0 -0.9011 ± 0.03796 p1 0.8909 ± 0.03758 Middle α 1.0161.018 1.02 1.0221.024 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005 / ndf 2 χ 3.688e-08 / 3 p0 -0.9291 ± 0.01788 p1 0.9116 ± 0.01753 / ndf 2 χ 3.688e-08 / 3 p0 -0.9291 ± 0.01788 p1 0.9116 ± 0.01753 Inner δαtrueEγrec − EγM C δαtrue correction β 0.90.95 1 1.051.11.151.2 -0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 / ndf 2 χ 2.382e-08 / 5 p0 -0.07265 ± 0.0002752 p1 0.06673 ± 0.0002609 / ndf 2 χ 2.382e-08 / 5 p0 -0.07265 ± 0.0002752 p1 0.06673 ± 0.0002609 Outer correction β 0.90.95 1 1.051.11.151.2 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 / ndf 2 χ 2.061e-08 / 5 p0 -0.05707 ± 0.000256 p1 0.05013 ± 0.0002427 / ndf 2 χ 2.061e-08 / 5 p0 -0.05707 ± 0.000256 p1 0.05013 ± 0.0002427 Middle correction β 0.90.95 1 1.051.11.151.2 -0.008 -0.006 -0.004 -0.002 0 0.002 / ndf 2 χ 6.243e-07 / 5 p0 -0.04292 ± 0.001409 p1 0.03827 ± 0.001336 / ndf 2 χ 6.243e-07 / 5 p0 -0.04292 ± 0.001409 p1 0.03827 ± 0.001336 Inner βMC αMC

β

βtrue

(130)

δαtrue βrec δβrec βtrue

reconstructed mass (MeV

0 π 120 125 130 135 140 145 150 155 70 80 90 100 110 120 130 3 10 × π0

NOuter γγ βOuter γγ NM iddle γγ βM iddle γγ NI nner γγ βI nner γγ

9.40 ± 0.07 9.73 ± 0.09 10.15 ± 0.13

β π0

π0

(131)

correction β 0.5 1 1.5 2 (Me v) σ 6 8 10 12 14 ) γ γ → 0 π ( σ Fitted correction β 0.5 1 1.5 2 Ma ss (Me V) 128 130 132 134 136 138 140 142 144 146 148 ) γ γ → 0 π Fitted mass ( correction β 0.5 1 1.5 2 (Me v) σ 8 9 10 11 12 13 14 15 16 ) -e e -e + e0 π ( σ Fitted correction β 0.5 1 1.5 2 Ma ss (Me V) 115 120 125 130 135 140 145 150 ) -e + e -e + e0 π Fitted mass ( β π0 β π0 β β σ β βrec β β β β

(132)

Entries 16 Mean 9.281 RMS 0.2364 β 8.5 9 9.5 10 10.5 0 1 2 3 4 5 Entries 16 Mean 9.281 RMS 0.2364 Outer - Photon Entries 16 Mean 9.923 RMS 0.5144 β 9 9.5 10 10.5 11 0 1 2 3 4 5 Entries 16 Mean 9.923 RMS 0.5144 Middle - Photon Entries 16 Mean 10.33 RMS 0.6425 β 10 11 12 0 0.5 1 1.5 2 2.5 3 3.5 4 Entries 16 Mean 10.33 RMS 0.6425 Inner - Photon Entries 16 Mean 9.825 RMS 0.3363 β 9 9.5 10 10.5 0 0.5 1 1.5 2 2.5 3 3.5 4 Entries 16 Mean 9.825 RMS 0.3363 Outer - Electron Entries 16 Mean 10.07 RMS 0.4423 β 9 10 11 0 0.5 1 1.5 2 2.5 3 Entries 16 Mean 10.07 RMS 0.4423 Middle - Electron Entries 16 Mean 11.08 RMS 0.5945 β 10 11 12 0 0.5 1 1.5 2 2.5 3 Entries 16 Mean 11.08 RMS 0.5945 Inner - Electron β β

NOuter ee βOuter ee NM iddle ee βM iddle ee NI nner ee βI nner ee

9.85 ± 0.08 9.80 ± 0.10 10.76 ± 0.11

β π0

π0

(133)

β β π0 MeV/c π0 α true β π0 π0 αtrue β π0 αtrue β π0 β

β

β β π0

(134)

β correction β 0.5 1 1.5 2 (Me v) σ 6 8 10 12 14 16 ) γ γ → 0 π ( σ Fitted correction β 0.5 1 1.5 2 Ma ss (Me V) 130 135 140 145 150 ) γ γ → 0 π Fitted mass ( correction β 0.5 1 1.5 2 (Me v) σ 6 8 10 12 14 16 ) -e e -e + e0 π ( σ Fitted correction β 0.5 1 1.5 2 Ma ss (Me V) 120 125 130 135 140 145 150 ) -e + e -e + e0 π Fitted mass ( π0 β π0 β β 0.2% 1.0% β

(135)

Entries 10 Mean 8.76 RMS 0.17 Underflow 0 Overflow 0 β 8.5 9 0 0.5 1 1.5 2 2.5 3 Entries 10 Mean 8.76 RMS 0.17 Underflow 0 Overflow 0 Outer - Photon Entries 10 Mean 9.68 RMS 0.2002 Underflow 0 Overflow 0 β 9 9.5 10 10.5 0 0.5 1 1.5 2 2.5 3 Entries 10 Mean 9.68 RMS 0.2002 Underflow 0 Overflow 0 Middle - Photon Entries 10 Mean 11.15 RMS 0.405 Underflow 0 Overflow 0 β 10.5 11 11.5 12 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Entries 10 Mean 11.15 RMS 0.405 Underflow 0 Overflow 0 Inner - Photon Entries 10 Mean 9.39 RMS 0.102 Underflow 0 Overflow 0 β 9.2 9.4 9.6 9.8 0 1 2 3 4 5 6 Entries 10 Mean 9.39 RMS 0.102 Underflow 0 Overflow 0 Outer - Electron Entries 10 Mean 10.67 RMS 0.419 Underflow 0 Overflow 0 β 10 10.5 11 11.5 12 0 0.5 1 1.5 2 2.5 3 Entries 10 Mean 10.67 RMS 0.419 Underflow 0 Overflow 0 Middle - Electron Entries 10 Mean 12.98 RMS 0.3926 Underflow 0 Overflow 0 β 12 12.5 13 13.5 14 0 0.5 1 1.5 2 2.5 3 3.5 4 Entries 10 Mean 12.98 RMS 0.3926 Underflow 0 Overflow 0 Inner - Electron β Nzone π0

NOuter γγ βOuter γγ NM iddle γγ βM iddle γγ NInner γγ βInner γγ

8.69 ± 0.08 9.46 ± 0.09 10.95 ± 0.11

β

(136)

β

NOuter ee βOuter ee NM iddle ee βM iddle ee NInner ee βInner ee

9.40 ± 0.07 10.43 ± 0.08 12.79 ± 0.08

β

NOuter NM iddle NOuter π0

βOuter βM iddle βInner

γγ 8.69 ± 0.43 ± 0.08 9.46 ± 0.47 ± 0.09 10.95 ± 0.55 ± 0.11

e+ee+e9.40 ± 0.47 ± 0.07 10.43 ± 0.52 ± 0.08 12.79 ± 0.64 ± 0.08

π0 β

Outer) π0 βM iddle π0 βInner

γγ

e+ee+e

(137)
(138)
(139)

cos(θ)

π0

2.7

(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to