• Aucun résultat trouvé

Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide.

N/A
N/A
Protected

Academic year: 2022

Partager "Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide."

Copied!
8
0
0

Texte intégral

(1)

Toward an effective strategy in

glioblastoma treatment. Part II: RNA interference as a promising way to

sensitize glioblastomas to temozolomide

Khaled Messaoudi

1,2

, Anne Clavreul

1,2

and Fre´de´ric Lagarce

1,2,3

1LUNAMUniversite´,Angers,France

2InsermU1066,MicroetNanome´dicinesBiomime´tiques,IBS,AngersCedex9,France

3ServicePharmacie,CHUAngers,France

RNA interference (RNAi) is a strategy of gene regulation that has opened up many opportunities for the treatment of cancers, especially glioblastoma multiforme (GBM). This strategy reduced the expression of many proteins involved in the resistance of these tumors to anticancer drugs, particularly to

temozolomide (TMZ). A significant research effort has gone into RNAi delivery and target selection for clinical application of this new discovery in the treatment of GBMs. However, some limitations must be resolved to enhance the safety of RNAi-based therapeutics and to reduce their immune response. In this review, the mechanism of RNAi will be described. Moreover, the opportunities offered by RNAi strategy to reverse the phenotype of these tumor cells as well as prospects and challenges ahead in the RNAi-based therapy will be discussed.

Introduction

Resistance to anticancer drugs is a problem in many cancers, particularlyglioblastomamultiforme(GBM)–themostcommon typeofprimarybrain tumor[1].Theprognosis ofthesetumors remains poor with a median survival of 14.6 months despite receiving many therapies including surgery, radiotherapy and chemotherapy[2].Combiningradiationtherapywithtemozolo- mide(TMZ)iscurrentlythefirst-linetherapyforGBMs.However, the efficiency of TMZ remains limited owing to inherent and acquiredresistanceofglialtumorcells.Themainresistancemech- anismshavebeendetailedinpartIofthisreviewseries.Different strategiesof inhibiting the effect ofthese proteins involvedin resistancetoTMZweretested.However,theeffectsobtainedare ofteninadequateordisappointing.

Development of the RNA interference (RNAi) strategy has openednewperspectivesforthetreatmentofthesemalignancies.

Indeed,theprincipleofRNAiisbasedonthereductionofexpres- sionofatargetmRNAintoprotein.Thisstrategyhasbeenapplied withsuccessinvitroandinvivoindifferentpathologiesincluding cancers, viral infections and metabolic disorders [3]. However, transport and delivery of interfering RNA requires the use of

vectors that must besafe and efficient. In this review, we will initially describe the RNAi strategy mechanism, followed by a description ofdifferent nonviral vectors used forthe transport anddeliveryofinterferingRNA.Finally,applicationofthisstrate- gyinGBMsandthevariouschallengesandobstaclesthatmustbe overcomeforsuccessfulclinicalapplicationwillbediscussed.

RNAi mechanism in mammalian cells

In recentyears,the strategy ofRNAi, the principleof whichis based oninhibitionof proteinsynthesis by targeting a specific mRNA,wasdiscovered and hasopened up newperspectivesin humandiseasetreatment.RNAiisanintrinsicallycellularpathway thatwasdiscoveredin1998[4,5].TwoclassesofsmallRNAshave been identifiedtomediateRNAi,smallinterferingRNA(siRNA) andmicroRNA(miRNA).

ForsiRNA-mediatedRNAi,thecellularprocessbeginswithlong double-strandedRNAs(dsRNAs)cleavedinthecytoplasmbythe enzymeDicertogeneratematuresiRNAsofabout21–23basepairs (bp). The resulting siRNAs are incorporated into RNA-induced silencingcomplex(RISC),whichbecomesactive.Then,theanti- sense strandremainsinthe RISCcomplexandguidestheRNAi enzymaticmachinerywhilethesensestrandiseliminatedfrom the RISC complex. The RISC-containing guide strand binds to

ReviewsPOSTSCREEN

Correspondingauthor:Lagarce,F. (frederic.lagarce@univ-angers.fr)

1359-6446/ß2015ElsevierLtd.Allrightsreserved.

(2)

complementarymRNA,whichcausesitsdegradationbytheen- zymeargonaute2(Ago-2)[6,7](Fig.1).

ConcerningmiRNA-mediatedRNAi,genesencodingmiRNAsare transcribed into longprimary transcripts (pri-miRNAs) that are cleavedbyRNAseIIIDroshatogenerateprecursormiRNAs(pre- miRNAs)inthenucleus[8,9].Pre-miRNAsaretransportedfromthe nucleus to the cytoplasm by exportin-5 and then processed by RNAseIIIDicertogeneratematuremiRNAsofabout22nucleotides inlength[8].Then,miRNAsareincorporatedintotheRISCcomplex andbindthroughimperfectcomplementaritytothe30untranslated region(UTR)ofitsmRNAtarget,leadingtotranslationalrepression ormRNAdegradation[8,10].AsinglemiRNAmoleculeisprobably capableofregulatingmultiplemRNAs,andconverselyonemRNA canberegulatedbymultiplemiRNAs(Fig.1).

RNAi delivery

TheuseofthesesmallRNAmoleculesaloneastherapeuticsisnot possibleforseveralreasons.Amongtheseistheirnegativecharge whichpreventsthemfromcrossingtheplasmamembranetoreach

theirtargetinthecytoplasm[6,11].Thepresenceofnucleasesin plasmaand inthe cytoplasmarealsolikelyto deterioratethese biopolymers rapidly after injection [12], not to mention the immuneresponsethatcanbetriggeredbytheirpresenceinthe blood[12].Thesereasonsemphasizetheneedforasuitablevector abletodeliverthesesmallRNAmoleculesintothedesiredcells.

Viraland nonviralvectorsweredevelopedto carrysiRNAsto their site of action located in the cytoplasm [13]. The RNAi inducedbyviraldeliverywasdemonstratedusingdifferentviruses particularly adeno-associated virus (AAV), herpessimplex virus (HSV)andlentiviralvectors[8,14].Despitetheirefficiency,viral vectorshavesomelimitationssuchastheir residualpathogenic effect,whichrepresentsapotentialrisktopatients[15].Moreover, a mutagenesis effect was observed in some clinical trials using thesevectors.Thisiswhyalotofresearchhasbeenfocusedonthe development of nonviralvectors. An ideal nonviral vector has certainattributesthatare:(i)tobebiocompatibleandbiodegrad- able; (ii) to be able to protect nucleic acids against nuclease degradationinplasmaand avoidtheirrenalclearance;and (iii)

REVIEWS DrugDiscoveryTodayVolume00,Number00April2015

DRUDIS-1606;NoofPages8

Pleasecitethisarticleinpressas:Messaoudi,K.etal.Towardaneffectivestrategyinglioblastomatreatment.PartII:RNAinterferenceasapromisingwaytosensitizeglioblastomasto temozolomide,DrugDiscovToday(2015),http://dx.doi.org/10.1016/j.drudis.2015.02.014

miRNA gene

Drosha

pri-miRNA pre-miRNA

pre-miRNA Long double strand RNA Cytoplasm

Dicer

miRNA duplex siRNA

Sens strand

RISC complex Sens strand

mRNA target AAAAAAA

mRNA degradation Translation inhibition

Exportin 5

Drug Discovery Today

FIGURE1

MechanismofactionofRNAinterference(RNAi)bysilencingRNA(siRNA)ormicroRNA(miRNA)inmammaliancells.

2 www.drugdiscoverytoday.com

ReviewsPOSTSCREEN

(3)

toallowareversiblebindingofnucleicacidsandtotriggertheir releaseatthesiteofcellularaction.

DifferentcarriersofsiRNAs andmiRNAs weredevelopedand describedintheliterature;mostofthemarepositivelychargedto allowattachmentofnucleicacidsthatarenegativelychargedand toenableabetterinteractionwiththecellmembraneandimprove thecellularuptake[16].Amongthesevectors,therearepolymeric nanoparticles,lipid-basedsystemsandinorganicnanoparticles.

Polymericnanoparticles

Cationicpolymerscaninteractwiththenegativelychargedphos- phate groups of nucleic acids, which create complexes called polyplexes. Natural and synthetic polymers are used for RNAi deliveryinmammaliancells[17].

Polyethyleneimine.Polyethyleneimine(PEI)isasyntheticpoly- merconsideredtobethemosteffectivepolymerforsiRNAdeliv- ery.Thehighdensityofpositivechargeprovidedbythispolymer createsstronglinks withnucleicacids,therebyprotectingthem fromenzymaticdegradationbynucleases.Factorssuchasmolec- ular weight (MW) and degree of branching of PEI affect the efficiencyandthetoxicityofthepolymer[18].Indeed,thehigh MWchainsaremoreeffectiveforsiRNAdeliverycomparedwith thelowMWchains.Similarly,branchedPEIismoreefficientfor siRNA binding than the linear form. However, the high MW chainsandbranchedchainsarethemosttoxic[18](Fig.2).

PEI–siRNAcomplexesareinternalizedbyendocytosisinvari- ouscells.Thispathwayiscomposedofvesiclesknownasendo- somes(withaninternalpHofapproximatelypH5)thatmature from early endosomes to late endosomes before fusing with lysosomes, which contain digestive enzymes [19]. The acidic lysosomal environment causes the protonation of the amine groupsofPEIthat,owingtotheprotonspongeeffectasaresult ofits highbufferingcapacity,inducesosmotic swellingofthe endocytosisvesicleuntilvesiclerupture,leadingtothereleaseof polyplexesintothecytoplasm[20].TheabilityofPEItoescape lysozomaldegradationenablesthereleaseof intactsiRNAand miRNAinthecytoplasmandthusprovidesahighefficiencyof genesilencing[19–21].

Chitosan.ChitosanisanotherpolymerusedforRNAidelivery.

Thisnaturalpolysaccharideconsists ofrepeatingD-glucosamine and N-acetyl D-glucosamine units linked by b(1–4) glycosidic

bonds[22].Itisobtainedbydeacetylationofchitinandisconsid- eredtobeanontoxicandbiocompatiblepolymer[23].

Chitosan MW, degree of deacetylation (DDA) and N:P ratio (ratioofthe protonatedamine groupsofchitosanonthephos- phategroupsofthesiRNA)arefactorsthatgreatlyinfluencesiRNA transfectionefficiency[24].Indeed,higherMWchainsareflexible allowingthemtowrapthesiRNAsinstablecomplexesandprotect themfromnucleasedegradation.However,thisstabilitycanbean obstacleto thereleaseofsiRNAsin thecytoplasm.Inaddition, highMWchitosanshoweddrawbackssuchasaggregationandlow solubilityatneutralpH.LowMWchains enablesmore-efficient intracellular release but low complexation [24]. Higher DDA enhanceselectrostaticinteractionwithsiRNAs,whichleadstoa greaterstabilityofthecomplexesformedwithsiRNAs[25](Fig.2).

The excess ofpositivecharges incomparisonwiththe negative charges increasesthestability ofthechitosan–siRNA complexes andincreasesuptakeacrossanioniccellsurface[25].

Dendrimers. Dendrimers are synthetic macromolecules; their structure is composed of a central core, branches of repeating unitsandterminalgroups,whichcaninteractwithchargedmole- culessuchasnucleicacids,imagingagentsandanticancerdrugs [26,27].Inaddition,theinternalhydrophobiccavitiesofdendri- merscanencapsulatehydrophobicanticancerdrugs[28](Fig.2).

Dendrimerswithpositivelychargedsurfacegroupsareusedfor RNAidelivery[29,30].Poly(amidoamine)dendrimers(PAMAM) arethemostimportanttypeinthedendrimerfamily[31].PAMAM possesstertiaryaminefunctionsintheirstructure,whichcanbe protonated inacidic medium and thusconfera protonsponge effect[32],whichallowsareleaseofsiRNAandmiRNAonthecell level whilepreventingdegradation in the endolysosomalcom- partment[31,33].SomestudiesshowedthatPAMAMdendrimers are excellent nonviral vectors for siRNA and miRNA delivery, thereby producing powerful gene silencing in vitro and in vivo [34–36].Despitetheirtransfectionefficiency,cationicandhigher generationdendrimershavethedisadvantageofinteractingwith bloodcomponents,destabilizingcellmembranesandcausingcell lysis[37].

Lipid-basedsystems

Liposomes. Liposomes are efficient vectors for the delivery of drugs and nucleic acids [38]. Liposomal forms of doxorubicin

Liposome Lipid nanocapsules Dendrimers Polymeric nanoparticles

+ +

+ +

+

Drug Discovery Today

FIGURE2

DifferenttypesofnanocarriersfordeliveryofsilencingRNA(siRNA)usedforRNAinterference.NegativelychargedsiRNAinteractwithpositivechargesofthe nanocarriercomponents.

ReviewsPOSTSCREEN

(4)

andamphotericinBobtainedFDAapprovalforthetreatmentof Kaposi’s sarcoma and fungalinfections, respectively[39]. Lipo- somes areformed by unilamelar or multilamelar phospholipid bilayers.Threeclassesofphospholipidsareusedintheformula- tion of liposomes: anionic,cationic and neutral phospholipids [17,39](Fig.2).

Owing to their hydrophilic nature, the nucleic acids can be encapsulatedinthecoreofliposomes.Conversely,cationiclipids arethemostefficientforthetransportofnucleicacids,because they can interact as cationic polymers that create lipoplexes [20,40]. In addition to their ability to encapsulate drugs, the liposomesurfacecanbefunctionalizedtoallow,firstly,anavoid- anceofrecognitionbytheimmunesystem(i.e.pegylatedstealth liposomes)increasingtheplasmahalf-life[41]and,secondly,to targettumorcellsspecificallythroughtheuseofvariousligands suchasspecificantibodies[42].Despitetheirtransfectionefficien- cyofnucleicacids,cationicliposomeshavethedrawbackofbeing toxicbytheir interactionwith negativelychargedcellularcom- ponents(i.e.opsonins,serumproteinandenzymes)resultingin hemolysisandactivationofthecomplementsystem,whichcauses theirrapidelimination[43].

Lipid nanoparticles. Various types of lipid nanoparticles have beendeveloped.Amongthem,thelipidnanocapsules(LNCs)have astructurethatisahybridbetweenpolymericnanocapsulesand liposomes because oftheir oily core,whichis surrounded by a membranemadeoftensioactiveagentssuchasPEGhydroxystea- rate (Solutol1). LNCs have many advantagessuchas increased safety,highstabilityandthepossibilityoflipophilicdrugencap- sulation (e.g. paclitaxel) [44]. They can be produced without organicsolventsbyaphaseinversionprocessandwithgenerally recognized as safe (GRAS) excipients and are also genetically modifiedorganism(GMO)-free[45].Theconceptofthisprocess uses the specificabilityof somepolyethoxylated surfactants to modify their affinities for water and oil as a function of the temperature[46].Thesenanocapsuleshaveshowntheirefficiency forthedeliveryofnucleicacids.Indeed,siRNAcanbeentrapped intoLNCsafterformationoflipoplexeswithcationiclipids[47].

Another strategy consists of surface modification of LNCs by graftingacationicpolymersuchaschitosantoobtainacationic vectorcapableof fixingnucleic acidsby electrostatic attraction [48](Fig.2).

Inorganicnanoparticles

Anumberofinorganicnanoparticlessuchascarbonnanotubes, magneticnanoparticlesandgoldnanoparticleshavebeendevel- opedforgenetherapy[49].Thesesystemsaredifferentfromone anotherbecauseoftheircompositionandthemethodsofformu- lationused.

Carbonnanotubes.Somestudieshaveshownthatcarbonnano- tubes easily crossthe plasma membraneusing an endocytosis- independent mechanism [49]. Several functionalized carbon nanotubeshavebeendesignedandtestedforsiRNAandmiRNA delivery[50–53].Themosteffectiveformulationsofcarbonnano- tubeswerefunctionalizedwithaminogroups[54].Despitetheir efficiencyinthetransport ofnucleicacids,theirtoxicity profile causedproblemsfortheiruseintheclinic[55,56].

Magneticnanoparticles.Magneticnanoparticlesweredeveloped fortumorimagingand drugdelivery.siRNAdelivery wastested

withdifferentmagneticnanoparticles,suchasironoxidenano- particles,andhasshownpromisingresults[49].Theadvantageof thesenanoparticlesisthepossibilitytodeliversiRNAtothedesired tissuebyapplyinganexternalmagneticfield[57].

Goldnanoparticles.Goldnanoparticlesarealsousedasnonviral vectorsand present several opportunities forRNAi delivery be- causeoftheirinterestingproperties,in particulartheir biocom- patibilityandlowtoxicity[58,59].Theirstabilityenablesavoiding interactionswith serumioniccompoundsinparticularproteins [60].Goldnanoparticlespossessphotothermalpropertiesthatcan beexploitedforcancertherapy[60].Inaddition,theirsurfacecan befunctionalizedwithspecificligandsto alloweasyfixation of smallRNAmoleculesforgenetherapy[60,61].

RNAi delivery system used to sensitize GBM cells to TMZ

StudiesthatusedRNAitosensitizeGBMcellstoTMZaresumma- rizedinTable1.Theseresultsshowthatdifferenttargetsaretobe reachedbysiRNAforthetreatmentofGBMs.Theadministration ofRNAicanbedonedirectlyintothetumororintravenously.The resultsobtainedinthesestudiesareverypromising.Despitethis, onlyafewnonviralvectorsareapprovedbytheFDAandarein clinicaltrials,demonstratingthattherearestillsomebarriersto overcome,particularlyintermsofselectivity,efficacyandtoxicity.

Amongthevectorsthat havereachedclinicaltrials,theRon- delTMsystemproducedbyCalandoPharmaceuticalswasusedin clinicaltrialCALAA-01indicatedforthetreatmentofcancersand solidtumorsrefractorytoconventionaltherapy.ItusedansiRNA targetingtheM2subunitofribonucleasereductase,akeyenzyme inthesynthesisandreplicationofDNAthatconvertsribonucleo- tidesintodeoxyribonucleotides.RondelTMvectorconsists ofal- ternating b-cyclodextrins and a positively charged polymer to allowattachmentofsiRNAbyelectrostaticattraction;theformed nanocomplexeshaveadiameteroflessthan100nm.Eachcyclo- dextrinmoleculecontainsinitshydrophobiccavityamoleculeof admantane,whichiscovalentlyboundtoonemoleculeofpoly- ethyleneglycol(PEG).TheotherendofthePEGmoleculeislinked toatransferrinmoleculethatwillallowthenanocarriertobindto thetransferrinreceptor(TfR)overexpressedintumorcells[62].

Forclinicalapplication,RNAi-basedcancertherapeuticsshould specificallyrecognizecancercellswithoutaffectingnormalcells.

Theselectivityofnanocarrierswasimprovedbytheirconjugation tospecificligandsthatcanbindthetumorcellreceptors.However, toreachtheirtargetincancercells,itisnecessarytoincreasethe circulationtimeoftheseparticles inplasmabyprotectingthem againstacapturebythereticuloendothelialcellsystem(RES).This protectioncanbeefficientlyachievedthroughaPEGcoatingthat alsohasthedrawbackofreducingthetumorcelluptakeofthese particles[49].

Itiscrucialtoimprovevectorsafetybecauseeventhoughmany vectorshaveproventheirefficiencyinthetransportanddelivery ofdrugsand nucleicacidstheyoftencauseastimulationofthe immune response and cytotoxicity that does not allow their clinical use. The safety profile of vectors could be improved throughthe use ofbiocompatible, biodegradable and nontoxic compounds[49].In addition to efficacy, selectivityand safety, vectorsmustbeproducedona largescale toallowtheir usein clinicaltrials.However, theproduction ofnonviralvectorsata

REVIEWS DrugDiscoveryTodayVolume00,Number00April2015

DRUDIS-1606;NoofPages8

Pleasecitethisarticleinpressas:Messaoudi,K.etal.Towardaneffectivestrategyinglioblastomatreatment.PartII:RNAinterferenceasapromisingwaytosensitizeglioblastomasto temozolomide,DrugDiscovToday(2015),http://dx.doi.org/10.1016/j.drudis.2015.02.014

4 www.drugdiscoverytoday.com

ReviewsPOSTSCREEN

(5)

eryTodayVolume00,Number00April2015REVIEWS 06;NoofPages8

thisarticleinpressas:Messaoudi,K.etal.Towardaneffectivestrategyinglioblastomatreatment.PartII:RNAinterferenceasapromisingwaytosensitizeglioblastomastoDrugDiscovToday(2015),http://dx.doi.org/10.1016/j.drudis.2015.02.014

TABLE 1

In vitroand preclinicalin vivoRNAi delivery system used to sensitize glioblastomas to temozolomide.

Delivery system RNAi used Targeted gene

In vitromodel Efficacyin vitro Animal model Route Efficacyin vivo Refs

Viral vectors

Lentiviral vector shRNA MGMT LN18 and T98

GBM cell lines

Inhibition of 80% of the MGMT protein and increase of TMZ sensitivity in both cell types

Subcutaneous tumors in nude mice

Intratumoral Tumor size was reduced by 46% in combination with TMZ

[74]

Plasmid Anti-EGFR

shRNA + wild-type PTEN cDNA

EGFR and PTEN

U251 glioma cells

Downregulation of EGFR expression and upregulation of PTEN expression resulted in suppression of cell proliferation, cell cycle and promotion of cell apoptosis

Subcutaneous tumors in nude mice

Intratumoral The growth of the subcutaneous tumor was significantly inhibited

[75]

Plasmid siRNA Mdm2 Not applicable Not applicable Nude mice Intratumoral Suppression of the HepG2

xenografted tumor growth and reduction of 60% of the Mdm2 protein expression

[76]

Nonviral vectors

LipoTrustTMliposome siRNA MGMT T98G and U251 GBM cell lines

99% of MGMT knockdown Intracranial tumors in NOD/SCID mice

Intratumoral Response to TMZ significantly increased

[77]

ProFectionWMammalian Transfection

System

siRNA Galectin-1 HS683 GBM cells Inhibition of 60% of the galectin-1 and increase of cytotoxic effect of TMZ in these cells

Nude mice Intratumoral Galectin-1 knockdown in orthotopic xenograft-Hs683 enhanced the TMZ effect and increased the survival of mice

[78]

LipofectamineTM siRNA Mutant p53 T98G and U138 GBM cells

p53 knockdown led to a fivefold increase in chemosensitivity to TMZ

In vitromodel Not applicable Not applicable [79]

Chitosan transacylated lipid

nanocapsules

siRNA EGFR U87MG GBM cell line Inhibition of 51.9% of EGFR production on U87MG cells and increase of TMZ sensitivity

In vitromodel Not applicable Not applicable [48]

Polyurethane-short-branch polyethylenimine

miRNA-145 Oct4 and Sox2 GBM-CD133+ cells Increase the sensitivity of treated cells to radiation and TMZ

Intracranial tumors in nude mice

Intratumoral Delivery of PU-PEI-miR145 in orthotopic GBM-CD133+

improved survival in combination with radiotherapy and TMZ

[80]

Abbreviations: EGFR, epidermal growth factor receptor; GBM, glioblastoma multiforme; Mdm2, murine double minute 2; MGMT,O6-methylguanine DNA methyltransferase; NOD, non-obese diabetic; PEI, polyethyleneimine; PTEN, phosphatase and tensin homolog; PU, polyurethane; SCID, severe combined immunodeficiency; TMZ, temozolomide.

www.drugdiscoverytoday.com5

(6)

largescalehasonlybeendemonstratedwithalimitednumberof drug delivery systems, thisimpedes the use ofthese promising formulationsinclinicaltrials[63].

OnelimitationtotheuseofsiRNAintheclinicsistheoff-target effectduetotheimperfectcomplementaritybetweenthesiRNA andthe30UTRofthemRNAtranscripts.Thisleadstotheinhibi- tionofgenesotherthanthetargetgenesthatmighthaveimpor- tantconsequences forcellfunction[64].Toreduceoreliminate this effect, chemical modificationsof the nucleicacids averted complementarity with othermRNAs other than those targeted [64,65]. The short in vivo effect of siRNA (about one week) is anotherlimitationfortheirusethatrequiresrepeatedadministra- tionandcausesamassiveaccumulationofvectorsandsiRNAinto tumorsresponsiblefortoxicity[66].Itisthusnecessarytoobtain themostbiocompatiblevectorstopreventtheirtoxiceffect.

Thesaturationofthecellularenzymaticmachinerybyexoge- nousinterferingRNAisanotherproblemthatcancausedisruption ofcellularfunctionscontrolledbysmallRNAssuchasendogenous miRNA.Indeed,exportin-5isakeyproteinofthemiRNApathway thatcanbesaturatedwithexogenousmiRNA[64,67].Bycontrast, competition is alsopresent forthe incorporation ofinterfering RNA inthe RISC complex.Thiscompetition isproblematic be- cause the endogenous miRNA present incorporation kinetics slowerthanthatofexogenousRNA[68].

For GBM treatment using the intravenous route, an siRNA carrier must cross the blood–brain barrier (BBB) to release the interferingRNA.Thisbarrierprotectsthebrainfromtoxinsand drugs presentedin thecirculation;thisprotectionisensuredin particular by the tight junctions and efflux pumps such as P- glycoprotein (P-gp) that actively remove these molecules from thecirculation,whichexplainsthefailureofsomechemotherapy [69].Althoughthisbarrierseemstobesomewhatdisruptedinthe abnormal vascular networks characterizingGBMs, it frequently remains intactalong theinfiltrating areawherethe pluralityof recurrencestendtooccur[70].

Bycontrast,thelocaladministrationofnanocarriersavoidsthe crossingoftheBBBandallowsdrugdeliverydirectlyintothebrain parenchyma.Themajordrawbackofthistechniqueisapoordiffu- sionofparticlesinthetumor,whichdoesnotallowthedrugtoreach theareaoftherecurrenceofGBMslocatedafewcentimetersfrom the original tumorarea [71].Moreover,particlereflux fromthe tumorareaisoftenencounteredwhichreducestheeffectivenessof treatment.Thisispartlysolvedbythedevelopmentofconvection- enhanced delivery (CED), which allows injecting the particles underapressuregradient formore-homogeneousdistribution in

thetumor[72].Withthistechnique,thedrugconcentrationsin brain tumors can be superior to those obtained with systemic administration.

Inaddition,GBMsareveryheterogeneoustumorscharacterized by the paralleloverexpression ofmultipleproteins that arein- volvedinresistancetoTMZ.Thisimpliesthat,foreffectivetreat- mentbyRNAi,itisnecessarytoadaptthetherapytoeachpatient basedontheirmolecularcharacteristics.Also,GBMresistanceto TMZcanbeinnateoracquired,whichcancausearapidrecurrence oftumorafterinitialremission.Thisillustratesthatthesuccessofa therapyrequiresknowledgeofthegeneexpressionprofileofthe tumoratdifferenttimestoadaptthetreatmentwithsiRNAand possiblytargetotherproteinsinvolvedinthisnewinducedresis- tance [70]. Despite its effectiveness, drug administration using CEDhas several disadvantages including poordistribution dis- tanceofthedrugtothesiteofplacementofthecatheter(<3cm) whichisaproblemknowingtheinfiltratingandinvasivecharacter ofGBMs [73]. The complexity ofbrain tumors associated with edema and leakage of drugs into the subarachnoid space are drawbacksthatwillhavetobeaddressedfora betteruseofthis technique[73].

Concluding remarks

ConcomitantadministrationofTMZandradiotherapyimproved prognosisofpatientswithGBMbyincreasingmediansurvival,but thiseffectremainsmodest.Thedevelopmentofmolecularbiology hasenabledtheunderstandingoftheinvolvementofcertaingenes in cancer resistance and allowed the molecular profile of each tumortobedefined.RNAiisoneofthemostpromisingstrategies toovercomecancerresistance.Indeed,thisstrategycanbeapplied toachievedifferenttargetsinvolvedin GBMresistancetoTMZ.

Thesetargetscouldbeidentifiedbygeneticscreeningtofindthe genesthatareoutofcontrol foreveryindividual.This concept knownaspersonalizedmedicineadaptsthetherapeuticstrategy foreachpatient,whichisamajoradvantagegiventheheteroge- neityofGBMs.Inaddition,thedevelopmentofnanocarriersable totransportdrugsandnucleicacidsprovidesasynergisticeffect withlowereffectivedosesofthesedrugs and fewerside-effects.

Furtherinvestigationsarestillbeingcarried outto improvethe safety of these nanocarriers and their effectiveness for clinical application.

Acknowledgments

TheauthorsareverygratefultotheLiguecontreleCancer,Comite´

duMaineetLoire,whichfoundedthiswork.

References

1Stupp,R.etal.(2005)Radiotherapyplusconcomitantandadjuvanttemozolomide forglioblastoma.N.Engl.J.Med.352,987–996

2Lefranc,F.etal.(2006)Presentandpotentialfutureissuesinglioblastoma treatment.ExpertRev.AnticancerTher.6,719–732

3Williford,J.M.etal.(2014)Recentadvancesinnanoparticle-mediatedsiRNA delivery.Annu.Rev.Biomed.Eng.16,347–370

4Fire,A.etal.(1998)Potentandspecificgeneticinterferencebydouble-strandedRNA inCaenorhabditiselegans.Nature391,806–811

5McManus,M.T.andSharp,P.A.(2002)Genesilencinginmammalsbysmall interferingRNAs.Nat.Rev.Genet.3,737–747

6Aagaard,L.andRossi,J.J.(2007)RNAitherapeutics:principles,prospectsand challenges.Adv.DrugDeliv.Rev.59,75–86

7Kim,D.H.andRossi,J.J.(2007)StrategiesforsilencinghumandiseaseusingRNA interference.Nat.Rev.Genet.8,173–184

8Guo,D.etal.(2010)RNAinterferencetherapyforglioblastoma.ExpertOpin.Biol.

Ther.10,927–936

9Lee,Y.etal.(2003)ThenuclearRNaseIIIDroshainitiatesmicroRNAprocessing.

Nature425,415–419

10Peterson,S.M.etal.(2014)CommonfeaturesofmicroRNAtargetpredictiontools.

Front.Genet.5,23

11Reischl,D.andZimmer,A.(2009)DrugdeliveryofsiRNAtherapeutics:potentials andlimitsofnanosystems.Nanomedicine5,8–20

12Volkov,A.A.etal.(2009)Selectiveprotectionofnuclease-sensitivesitesinsiRNA prolongssilencingeffect.Oligonucleotides19,191–202

REVIEWS DrugDiscoveryTodayVolume00,Number00April2015

DRUDIS-1606;NoofPages8

Pleasecitethisarticleinpressas:Messaoudi,K.etal.Towardaneffectivestrategyinglioblastomatreatment.PartII:RNAinterferenceasapromisingwaytosensitizeglioblastomasto temozolomide,DrugDiscovToday(2015),http://dx.doi.org/10.1016/j.drudis.2015.02.014

6 www.drugdiscoverytoday.com

ReviewsPOSTSCREEN

(7)

13David,S.etal.(2010)Non-viralnanosystemsforsystemicsiRNAdelivery.

Pharmacol.Res.62,100–114

14Kota,J.etal.(2009)TherapeuticmicroRNAdeliverysuppressestumorigenesisina murinelivercancermodel.Cell137,1005–1017

15Hacein-Bey-Abina,S.etal.(2008)Insertionaloncogenesisin4patientsafter retrovirus-mediatedgenetherapyofSCID-X1.J.Clin.Invest.118,3132–3142 16Kim,S.S.etal.(2009)StrategiesfortargetednonviraldeliveryofsiRNAsinvivo.

TrendsMol.Med.15,491–500

17Nikitenko,N.A.andPrassolov,V.S.(2013)Non-viraldeliveryandtherapeutic applicationofsmallinterferingRNAs.ActaNaturae5,35–53

18Lungwitz,U.etal.(2005)Polyethylenimine-basednon-viralgenedeliverysystems.

Eur.J.Pharm.Biopharm.60,247–266

19Varkouhi,A.K.etal.(2011)Endosomalescapepathwaysfordeliveryofbiologicals.J.

Control.Release151,220–228

20Zhou,J.etal.(2013)Nanoparticle-baseddeliveryofRNAitherapeutics:progressand challenges.Pharmaceuticals6,85–107

21Ibrahim,A.F.etal.(2011)MicroRNAreplacementtherapyformiR-145andmiR-33a isefficaciousinamodelofcoloncarcinoma.CancerRes.71,5214–5224 22Buschmann,M.D.etal.(2013)Chitosansfordeliveryofnucleicacids.Adv.Drug

Deliv.Rev.65,1234–1270

23Mao,S.etal.(2010)Chitosan-basedformulationsfordeliveryofDNAandsiRNA.

Adv.DrugDeliv.Rev.62,12–27

24Jin,L.etal.(2014)Currentprogressingenedeliverytechnologybasedonchemical methodsandnano-carriers.Theranostics4,240–255

25Liu,X.etal.(2007)Theinfluenceofpolymericpropertiesonchitosan/siRNA nanoparticleformulationandgenesilencing.Biomaterials28,1280–1288 26Biswas,S.andTorchilin,V.P.(2013)DendrimersforsiRNAdelivery.Pharmaceuticals

6,161–183

27Menjoge,A.R.etal.(2010)Dendrimer-baseddrugandimagingconjugates:design considerationsfornanomedicalapplications.DrugDiscov.Today15,171–185 28Zhang,M.etal.(2011)Multifunctionaldendrimer/combretastatinA4

inclusioncomplexesenableinvitrotargetedcancertherapy.Int.J.Nanomed.6, 2337–2349

29Perez,A.P.etal.(2009)EthylendiaminecorePAMAMdendrimers/siRNAcomplexes asinvitrosilencingagents.Int.J.Pharm.380,189–200

30Taratula,O.etal.(2009)Surface-engineeredtargetedPPIdendrimerforefficient intracellularandintratumoralsiRNAdelivery.J.Control.Release140,284–293 31Wu,J.etal.(2013)DendrimersascarriersforsiRNAdeliveryandgenesilencing:a

review.ScientificWorldJ.2013,630654

32Kukowska-Latallo,J.F.etal.(1996)Efficienttransferofgeneticmaterialinto mammaliancellsusingStarburstpolyamidoaminedendrimers.Proc.Natl.Acad.Sci.

U.S.A.93,4897–4902

33Zhang,Y.etal.(2013)ProgressinmicroRNAdelivery.J.Control.Release172,962–

974

34Liu,X.etal.(2013)Poly(amidoamine)isanidealcarrierofmiR-7forenhancing genesilencingeffectsontheEGFRpathwayinU251gliomacells.Oncol.Rep.29, 1387–1394

35Liu,X.etal.(2014)Structurallyflexibletriethanolamine-corepoly(amidoamine) dendrimersaseffectivenanovectorstodeliverRNAi-basedtherapeutics.Biotechnol.

Adv.32,844–852

36Liu,X.etal.(2012)EfficientdeliveryofstickysiRNAandpotentgenesilencingina prostatecancermodelusingageneration5triethanolamine-corePAMAM dendrimer.Mol.Pharm.9,470–481

37Aillon,K.L.etal.(2009)Effectsofnanomaterialphysicochemicalpropertiesonin vivotoxicity.Adv.DrugDeliv.Rev.61,457–466

38Akhtar,S.andBenter,I.F.(2007)NonviraldeliveryofsyntheticsiRNAsinvivo.J.

Clin.Invest.117,3623–3632

39Ozpolat,B.etal.(2014)LiposomalsiRNAnanocarriersforcancertherapy.Adv.Drug Deliv.Rev.66,110–116

40Rai,K.etal.(2011)LiposomaldeliveryofMicroRNA-7-expressingplasmid overcomesepidermalgrowthfactorreceptortyrosinekinaseinhibitor-resistancein lungcancercells.Mol.CancerTher.10,1720–1727

41Pereira,D.M.etal.(2013)DeliveringthepromiseofmiRNAcancertherapeutics.

DrugDiscov.Today18,282–289

42Zhang,Y.etal.(2004)IntravenousRNAinterferencegenetherapytargetingthe humanepidermalgrowthfactorreceptorprolongssurvivalinintracranialbrain cancer.Clin.CancerRes.10,3667–3677

43Zhang,J.etal.(2014)Non-viralnanocarriersforsiRNAdeliveryinbreastcancer.J.

Control.Release190C,440–450

44Hureaux,J.etal.(2010)Toxicologicalstudyandefficacyofblankandpaclitaxel- loadedlipidnanocapsulesafteri.v.administrationinmice.Pharm.Res.27, 421–430

45Hureaux,J.etal.(2009)Lipidnanocapsules:ready-to-usenanovectorsforthe aerosoldeliveryofpaclitaxel.Eur.J.Pharm.Biopharm.73,239–246

46Heurtault,B.etal.(2002)Anovelphaseinversion-basedprocessforthepreparation oflipidnanocarriers.Pharm.Res.19,875–880

47Resnier,P.etal.(2013)EGFRsiRNAlipidnanocapsulesefficientlytransfectglioma cellsinvitro.Int.J.Pharm.454,748–755

48Messaoudi,K.etal.(2014)Anti-epidermalgrowthfactorreceptorsiRNAcarriedby chitosan-transacylatedlipidnanocapsulesincreasessensitivityofglioblastomacells totemozolomide.Int.J.Nanomed.9,1479–1490

49Lee,J.M.etal.(2013)Recentdevelopmentsinnanoparticle-basedsiRNAdeliveryfor cancertherapy.Biomed.Res.Int.2013,782041

50Bates,K.andKostarelos,K.(2013)Carbonnanotubesasvectorsforgenetherapy:

pastachievements,presentchallengesandfuturegoals.Adv.DrugDeliv.Rev.65, 2023–2033

51Wang,X.etal.(2008)TargetedRNAinterferenceofcyclinA2mediatedby functionalizedsingle-walledcarbonnanotubesinducesproliferationarrest andapoptosisinchronicmyelogenousleukemiaK562cells.ChemMedChem3, 940–945

52Chen,H.etal.(2012)Functionalizationofsingle-walledcarbonnanotubesenables efficientintracellulardeliveryofsiRNAtargetingMDM2toinhibitbreastcancer cellsgrowth.Biomed.Pharmacother.66,334–338

53Kam,N.W.etal.(2005)Functionalizationofcarbonnanotubesviacleavable disulfidebondsforefficientintracellulardeliveryofsiRNAandpotentgene silencing.J.Am.Chem.Soc.127,12492–12493

54Zhang,Z.etal.(2006)Deliveryoftelomerasereversetranscriptasesmallinterfering RNAincomplexwithpositivelychargedsingle-walledcarbonnanotubessuppresses tumorgrowth.Clin.CancerRes.12,4933–4939

55Firme,C.P.,3rdandBandaru,P.R.(2010)Toxicityissuesintheapplicationofcarbon nanotubestobiologicalsystems.Nanomedicine6,245–256

56Zhang,L.etal.(2010)Carbonnanotubeuptakeandtoxicityinthebrain.Methods Mol.Biol.625,55–65

57Wu,Y.etal.(2011)Anovelmagneto-fluorescentnano-bioprobeforcancercell targeting,imagingandcollection.Appl.Biochem.Biotechnol.163,813–825 58Sonavane,G.etal.(2008)Biodistributionofcolloidalgoldnanoparticlesafter

intravenousadministration:effectofparticlesize.ColloidsSurf.BBiointerfaces66, 274–280

59Zhao,E.etal.(2012)SurfaceengineeringofgoldnanoparticlesforinvitrosiRNA delivery.Nanoscale4,5102–5109

60Dreaden,E.C.etal.(2011)Beatingcancerinmultiplewaysusingnanogold.Chem.

Soc.Rev.40,3391–3404

61Giljohann,D.A.etal.(2009)GeneregulationwithpolyvalentsiRNA-nanoparticle conjugates.J.Am.Chem.Soc.131,2072–2073

62Davis,M.E.(2009)ThefirsttargeteddeliveryofsiRNAinhumansviaaself- assembling,cyclodextrinpolymer-basednanoparticle:fromconcepttoclinic.Mol.

Pharm.6,659–668

63Thomas,O.andLagarce,F.(2013)Lipidnanocapsules:ananocarriersuitablefor scale-upprocess.J.DrugDel.Sci.Tech.23,555–559

64Deng,Y.etal.(2014)TherapeuticpotentialsofgenesilencingbyRNAinterference:

principles,challenges,andnewstrategies.Gene538,217–227

65Birmingham,A.etal.(2006)30UTRseedmatches,butnotoverallidentity,are associatedwithRNAioff-targets.Nat.Methods3,199–204

66Xue,H.Y.etal.(2014)Nanotoxicity:akeyobstacletoclinicaltranslationofsiRNA- basednanomedicine.Nanomedicine9,295–312

67Wang,Z.etal.(2011)RNAinterferenceandcancertherapy.Pharm.Res.28, 2983–2995

68Castanotto,D.etal.(2007)CombinatorialdeliveryofsmallinterferingRNAs reducesRNAiefficacybyselectiveincorporationintoRISC.NucleicAcidsRes.35, 5154–5164

69Loscher,W.andPotschka,H.(2005)Roleofdrugeffluxtransportersinthebrainfor drugdispositionandtreatmentofbraindiseases.Prog.Neurobiol.76,22–76 70Huse,J.T.andHolland,E.C.(2010)Targetingbraincancer:advancesinthe

molecularpathologyofmalignantgliomaandmedulloblastoma.Nat.Rev.Cancer 10,319–331

71Tzeng,S.Y.andGreen,J.J.(2013)Therapeuticnanomedicineforbraincancer.Ther.

Deliv.4,687–704

72Zhang,R.etal.(2014)Concentrationratherthandosedefinesthelocalbrain toxicityofagentsthatareeffectivelydistributedbyconvection-enhanceddelivery.

J.Neurosci.Methods222,131–137

73Bidros,D.S.etal.(2010)Futureofconvection-enhanceddeliveryinthetreatmentof braintumors.FutureOncol.6,117–125

74Viel,T.etal.(2013)Optimizingglioblastomatemozolomidechemotherapy employinglentiviral-basedanti-MGMTshRNAtechnology.Mol.Ther.21,570–579

ReviewsPOSTSCREEN

(8)

75Han,L.etal.(2010)CombinationgenetherapywithPTENandEGFRsiRNA suppressesU251malignantgliomacellgrowthinvitroandinvivo.Med.Oncol.27, 843–852

76Zhao,Y.Y.etal.(2013)ShRNA-mediatedsilencingofMDM2inhibitsgrowthof HepG2hepatocellularcarcinomacellsxenograftedinnudemice.ZhonghuaGan ZangBingZaZhi21,213–217

77Kato,T.etal.(2010)Efficientdeliveryofliposome-mediatedMGMT-siRNA reinforcesthecytotoxityoftemozolomideinGBM-initiatingcells.GeneTher.17, 1363–1371

78LeMercier,M.etal.(2008)Knockingdowngalectin1inhumanhs683glioblastoma cellsimpairsbothangiogenesisandendoplasmicreticulumstressresponses.J.

Neuropathol.Exp.Neurol.67,456–469

79Wang,X.etal.(2013)MutantTP53enhancestheresistanceofglioblastomacellsto temozolomidebyup-regulatingO(6)-methylguanineDNA-methyltransferase.

Neurol.Sci.34,1421–1428

80Yang,Y.P.etal.(2012)Inhibitionofcancerstemcell-likepropertiesandreduced chemoradioresistanceofglioblastomausingmicroRNA145withcationic polyurethane-shortbranchPEI.Biomaterials33,1462–1476

REVIEWS DrugDiscoveryTodayVolume00,Number00April2015

DRUDIS-1606;NoofPages8

Pleasecitethisarticleinpressas:Messaoudi,K.etal.Towardaneffectivestrategyinglioblastomatreatment.PartII:RNAinterferenceasapromisingwaytosensitizeglioblastomasto temozolomide,DrugDiscovToday(2015),http://dx.doi.org/10.1016/j.drudis.2015.02.014

8 www.drugdiscoverytoday.com

ReviewsPOSTSCREEN

Références

Documents relatifs

(2017) Synchronizing the tracking eye movements with the motion of a visual target: basic neural processes. Learning the trajectory of a moving visual target and evolution of

domains formed “a crescent-shaped base” with the PAZ domain being held above this crescent by a “stalk-like” structure comprised by the region in between the N-terminal and

Such fractional equations of order 2α exhibit new phenomena that do not have any counterpart in the theory of second order elliptic equations in divergence form: In [ 14 ], building

Background: Resistance to conventional therapies and absence of targeted therapy for triple- negative mammary tumors are strong arguments for the search for new therapeutic agents

The evolution of the spectrum (area of the D-band), as a function of the number of grafted groups, led us to the conclusion that the electrochemical reduction

After 3 days of incubation with anti-EGFR siRNA at a concentration of 40 nM carried by LNCs transacylated with 1.2 mg/mL chitosan, treated U87MG cells showed increased sensitivity

However, the aim of this study was not to focus on the comparison between big and small CNT but to highlight shared trends in the biological impact of acid functionalization and to

Les résultats des méthodes FETI, MPFETI et AMPFETI, en termes de nombre d’itérations 5 , de taille d’espace de recherche et de temps de calcul, sont regroupés dans la Table 1..