• Aucun résultat trouvé

NUCLEAR REACTION ANALYSIS OF HYDROGEN SURFACE CONTAMINATION OF Al(Li) ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "NUCLEAR REACTION ANALYSIS OF HYDROGEN SURFACE CONTAMINATION OF Al(Li) ALLOYS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226592

https://hal.archives-ouvertes.fr/jpa-00226592

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NUCLEAR REACTION ANALYSIS OF HYDROGEN SURFACE CONTAMINATION OF Al(Li) ALLOYS

J. Thomas, M. Fallavier, G. Beurton, G. Berlioux

To cite this version:

J. Thomas, M. Fallavier, G. Beurton, G. Berlioux. NUCLEAR REACTION ANALYSIS OF HYDRO-

GEN SURFACE CONTAMINATION OF Al(Li) ALLOYS. Journal de Physique Colloques, 1987, 48

(C3), pp.C3-527-C3-533. �10.1051/jphyscol:1987361�. �jpa-00226592�

(2)

NUCLEAR REACTION ANALYSIS OF HYDROGEN SURFACE CONTAMINATION OF Al(Li) ALLOYS

J.P. THOMAS, M. FALLAVIER, G. BEURTON* and G. BERLIOUX*

Institut de Physique Iiuclgaire (et IN2P3), Universite Claude Bernard, Lyon I , 43, Boulevard du 11 novembre 1918,

F-69622 Villeurbanne Cedex. France

" ~ ~ g e d u r - ~ e c h i n e y , Centre de Recherches et D6veloppernent, B.P. 27, F-38340 Voreppe, France

ABSTRACT - The zebonant nuctem zeaction ' ~ [ ' ~ ~ , a y ) has been used to nun desttuctively depth-pzo6Ze hydzogen neaz the suz6ace

06

AP.[Li) binazy d o y b . Lithium is one

06

the zaze intet6ezence 06 thih technique but we show how to extzact its contzibution. In otdez t o zeduce oz eUminate the hydzogen buzdace contamination [addecting the b ~ d k content detet- minationl vauouh tzeatments [machining-anneding] have been invehtigated.

I . INTRODUCTION

Hydrogen can be found i n aluminium i n various forms : inclusions, solid solutions hydroxides and hydrocarbons adsorbed a t the surface. I n the determination o f bulk content using the technique

of

fusion under i n e r t gas, the superficial contamination has to

be

estimated i n order to be reduced or eliminated.

A m o n g the non d e s t r u c t i v e a n a l y t i c a l methods able t o p e r f o r m a q u a n t i t a t i v e determination o f the hydrogen content i n the near surface r e ion nuclear reactions can be proposed such as ' H ( ~ L ~ , ~ ) c ~ c ~ , 'H( l ~ , a ) a a , ' ~ ( l 9 ~ , a y ) 1 6 0 and H ( " N , ~ ~ ) ' ~ c 9 [I]. Even i f the last one has been proved to be the most performing as regard depth resolution 121 and detection l i m i t [3], l i k e f o r the other ones, l i t h i u m is one o f the rare elements leading t o interfering reactions. One aim of this paper is t o demonstrate how t o eliminate the parasitic contribution of L i f r o m AR(Li) binary alloys when using the reaction.

Dealing w i t h samples o f cylindrical shape, base and generatrix have been differen- tiated in the analysis and various machining procedures (tool-lubricant) have been investiga- ted i n this respect.

A t last, since thermal annealing is p a r t o f the fusion technique procedure, such t r e a t m e n t s w e r e r e p e a t e d i n U H V c o n d i t i o n s and p r e l i m i n a r y r e s u l t s a r e r e p o r t e d .

11. EXPERIMENTAL PROCEDURE

11.1 - The analytical problem

The resonant nuclear reaction 15N('H,ay) is characterized by a y emission (4.43 MeV) showing a n a r r o w isolated resonance a t E = 6.384 MeV. The profiling method consists o f varying the incident energy o f "N2+ i o s according to the sketch shown fig. 1. A t the resonance energy the reaction takes place a t the surface and when increasing the energy, various depths can be probed according t o the slowing down o f the particles i n the material.

With the experimental values given fig. 1 f o r the resonance, the depth resolution correspon- ding to the FWHM of the resonance is about - 8 n m a t the surface f o r AR(Li 1.5%). The straggling e f f e c t is responsible f o r the degradation o f this parameter when the probed depth increases. A typical value of 30 n m can be reported a t a 400 n m depth.

F r o m the 4MV Van de Graaff accelerator o f the I n s t i t u t de Physique Nuclgaire de Lyon, doubly charged

' 5

ions can be accelerated allowing to cover an energy range f r o m

~

6.384 MeV t o 8 MeV. This ensures an analysable depth o f the order o f 1 pm f o r the aluminium alloys.

The samples can be placed either into a target chamber described elsewhere [21 where a translational displacement is allowed f o r the irradiation of the various samples, or into an UHV chamber [4] where the beam spot can be moved along the x and y axes and the sample can be heated up t o 400°C. Both chambers are designed to ensure a maximum efficiency for the y-ray detection performed w i t h a well shielded NaI(TR) detector 150 m m long and w i t h

a

106.5 rnrn diameter.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987361

(3)

C3-528 JOURNAL DE PHYSIQUE

The c o u n t i n g o f the y-rays r e s u l t i n g f r o m the previous r e a c t i o n is done f r o m a selected window including the 4.43 MeV and i t s t w o escape peaks. When i r r a d i a t i n g a L i F sample, a large background c a n be d e t e c t e d due t o a ~ i ( " ~ , y ) reaction. The t w o c o n t r i b u - tions are hardly discernible f o r r e a l i s t i c countings ( s t a t i s t i c a l l y s i g n i f i c a n t ) or would r e q u i r e p r o h i b i t i v e t i m e t o be observed b u t n o t d i f f e r e n t i a t e d . This p a r a s i t i c c o n t r i b u t i o n c a n lead t o erroneous i n t e r p r e t a t i o n of hydrogen c o n c e n t r a t i o n p r o f i l e s : a l l the AR(Li) samples i n v e s t i g a t e d ( f r o m 0.7 t o 5%) were showing "raw" p r o f i l e s w i t h apparent increase o f hydrogen as a f u n c t i o n o f the energy (depth). This is i n disagreement w i t h the hydrogen p r o f i l e i n a 2214 l i t h i u m - f r e e sample (fig. 2). Such p r o f i l e s corresponds t o stable hydrogen under beam impact, w h ~ c h w i l l be explained l a t e r on.

The i n t e g r a t e d e x c i t a t i o n f u n c t i o n o f t h e ~ i ( " ~ , y ) r e a c t i o n is shown on fig. 3 as obtained f r o m t h e v a r i a t i o n o f t h e yield o f the y-rays e m i t t e d i n the window previously defined. The presence o f surface hydrogen c a n be observed f r o m the peak a t the resonance energy o f 6.384 MeV.

'"I ;*.

2214 Li

-

FREE SAMPLE

-.-.-.-.-.A-

.-.-.- .-.-'- I

I I I

6.4 7 7.5 8

E (MeV)

F i g . 1 - P~inciple 06 the

hydwgen depth-p~odiling.

Exnczimenta! shape

06

the tebonance 6 ~ o m a pol Pished sample od u l t ~ a - puqe 4iPic0 n.

F i g .

2

- "Raww p.rog2e.s

dram a Li-61ee 2 2 1 4

sample and an A Q ( L i

0.7 % j one. Stable pzodiPes

undez beam impact (see

t e x t ] .

(4)

F i . 3 - $.liation 06 the y-zay emission 6zom the Lill 5N,y teaction a a 6unction e N enetgy [LiF b a m p k - same window as pzevious expezimentj.

11.2

- Estimation o f the parasitic contribution due t o l i t h i u m

The number o f emitted y-rays f r o m the reaction on Li, a t an energy E, is given by :

P r

N(E) = K.n.

I' 'threshold a [E(x) I d~ldx dE

where K includes the geometric factor and the detection efficiency ; u [E(x)] is the cross-section a t a depth x where the energy is E(x) ; dE corresponds _to the energy interval defined by dx a t an energy E(x) ; dE/dx is the stopping power (keV pg 'cm2) of the incident particles a t an energy E(x) (in keV) ; n is expressed i n a t / g (the l i t h i u m content o f the considered medium). The only possibility of establishing a simple r a t i o between N(E) determined f o r a given medium (LiF) and another medium [AR(Li)] is to f i n d a simple relationship between the respective stopping powers. This occurs i n our own case i n which f o r the energy range between 6 and 8 MeV, the stopping powers of "N++ i n L i F and AR(Li) obtained f r o m Ziegler's tables [5] have

a

nearly constant value. For example the 15N stopping powers r a t i o in L i F and AR(Li 3%) is 1.198 2% over the 6-8 MeV range. One can therefore w r i t e :

n,(at/g L i ) o f AR(Li) N(E) AI(Li 3%)

=

n2(at/g L i ) o f L i F x 1.198 x N(E) L i F

This multiplying coefficient can be determined for d i f f e r e n t percentage contents of Li i n each alloy as long as the considered conditions apply. Then, f r o m the Li profile obtained w i t h L i F (fig. 3) the L i contribution can be f i t t e d on spectra corresponding t o various L i content in AI(Li) as f o r the example of fig. 4. One should notice that the remaining difference between the "raw" profile and the l i t h i u m contribution a t the highest energy ( l a r g e s t d e p t h ) corresponds t o the e x p e r i m e n t a l b a c k g r o u n d o f ' H ( ' ' N , ~ ~ ) r e a c t i o n .

Fig. 4 - "Raw" pzo6iees 06

hydiogen 6zom t h t AQlLi 0.3 % j sample and lithium contzibution adjustment.

-

6.4 7 7.5 8

E

(MeV)

(5)

C3-530 JOURNAL DE PHYSIQUE

The l i m i t a t i o n of our procedure lies on the f a c t that the l i t h i u m concentration i n the investigated zone is well known and remains constant. This absolute uncertainty can only be removed if the real l i t h i u m p r o f i l e i n the surface region can be obtained. This has been the case f o r a few SIMS experiments performed a t the Centre de Recherches CEGEDUR- PECHINEY .de VOREPPE. Excepted f o r the 5% L i content where the poor agreement of our f i t can be explained by a very inhomogeneous Li distribution upon - 300 nm, a typical situation seems t o be a Li segregation l i m i t e d t o - 20 n m w i t h an increase f r o m 2.5% up t o

- 2% (2.5% Li sample). In such a case, the estimated incidence on the y contribution does n o t exceed 5%. As a consequence of this " a r t i f i c i a l " background, the detection l i m i t (at.%) w i l l be degraded as a function of depth. Typical values f o r three increasing depths (100, 500 and 1000 nm) are, f o r example, respectively 0.09, 0.14 and 0.25% for AR(Li 2.5%) sample, but 0.11, 0.18 and 0.34% f o r a AR(Li 5%) sample. These values include the background o f the

1 5

reactlon on hydrogen which sets a constant detection l i m i t of 0.06% (integrated

~

dose : 10 PC).

Formula giving the H content ( a t % of AR) f r o m the y-couting as a function of energy (depth) as well as the number of a t / c m 2 deduced f r o m the area under the p r o f i l e have been detailed elsewhere [6] and w i l l n o t be explicited here. Each depth p r o f i l e w i l l associate to the number of counts as a function o f the incident energy, a concentration scale as a function of depth and the number o f H a t / c m 2 corresponding to the integrated profile.

111.

ANALYSIS

OF THE

RESULTS

Two types o f depth profiles w i l l be presented : - I) zero dose profile : a l l the samples present an important hydrogen effusion a t the surface [7] and sometimes along the probed depth. Then the "true" concentration requires the extrapolation o f the curve giving the variation o f the number of characteristic y-rays as a function of the integrated ion dose.

Therefore each point o f such profile must be obtained f r o m "virgin" sample zones, which can be o f l i m i t e d number according t o the spot size (- 1 m m 2 ) and the dimensions o f the sample (0 8.7 mm). O f course, such profiles can be subject t o lateral inhomogeneities. As i t w i l l be shown, a t the very surface, the l i t h i u m contribution is generally negligible.

- 2) "Stable" p r o f i l e : obtained a t a given ion dose f o r which the hydrogen is no longer effusing under beam impact. Although depending of the irradiation conditions (dynamical equilibrium state) such p r o f i l e is rather well indicative o f the bound hydrogen quantity. A t t h i s stage, the l i t h i u m c o n t r i b u t i o n i s a l w a y s s i g n i f i c a n t and m u s t be deduced.

F r o m a rapid survey of the profiles obtained f r o m the base o f samples w i t h l i t h i u m content ranging between 0.7 and 5%, w i t h the exception o f the 5% case, already mentioned, the parasitic y contribution of the l i t h i u m seems correctly estimated. N o noticeable differences w i t h the l i t h i u m free sample can be reported. Detection l i m i t s are reached a t low depth (200-300 nm) but as expected they are much more higher than the bulk content (- 50 ppm against 1 t o 5 ppm). The l i t h i u m contribution is negligible as concerns the superficial content a t zero dose (several 1016 ~ / c m ' ) b u t such values w i l l induce a large uncertaint a t the 0.1 ppm level (- 33% f o r a disc o f 8.7 m m diameter and 40 m m thick f o r which 'lo1' a t / c m 2 are measured on the base as w e l l along the generatrix).

111.1 - Residual hydroqen from machininq procedures

Two c u t t i n g tools using natural or synthetic diamond have been tested using two lubricants acetone and methanol, on AR(Li 2.5%) samples.

As an example o f the profiles obtained ( L i contribution substracted), the results f r o m

a sample c u t w i t h natural diamond using an acetone lubricant are reported on fig. 5. As i t

can be seen, noticeable differences can be observed both on i n i t i a l and stable hydrogen

between base and generatrix. Surface concentrations range between I O ~ ~ - I O ~ ' H a t / c m 2 f o r

i n i t i a l hydrogen (zero dose profiles) while they are of the orher of l o i 5 H a t / c m 2 f o r stable

hydrogen. Such variations shown on fig. 5 are a general trend observed f o r a l l the samples

b u t w i t h a given tool, methanol leads to a higher hydrogen content f o r the base compared

to the generatrix while the opposite is observed for acetone. F o r either acetone or

methanol, the trend is f o r a decrease o f the residual hydrogen when natural diamond is used

instead o f the synthetic material. The differences range between 20% and ZOO%, significant

enough f o r ascertain a trend, but requiring a larger sampling t o make quantitative

conclusions. As a m a t t e r of f a c t the reproducibility between two series of each association

l u b r i c a n t - t o o l c a n e x c e e d 20% i n the w o r s t case ( f r o m t h e zero-dose p r o f i l e s ) .

(6)

60% babe and genezutzix bampt~b.

Condition5 : methanol, natuzd diamond.

E

(MeV)

soot

BASE (3.9 x10'5 ~ / c r n *

-

0.8

s

2,

200

0

GENERATRIX (8x10 ) I

-

0.2

B KG

-

0

Fig. 516) - Stable pzodieeb 6oz the

I I , , , I t ~ ~

p'~eviou5 .)ample&.

6.4

7

E

(MeV)

111.2

-

Results of thermal annealinq

Thermal annealing under UHV conditions h a s been performed a t t e m p e r a t u r e values corresponding t o given s t e p s in t h e fusion process used f o r hydrogen analysis a t t h e CRV laboratory. F o r this s t u d y t w o s e r i e s of s a m p l e s corresponding t o methanol and a c e t o n e lubricants have been considered. An AR(Li 2.5%) s a m p l e was analyzed only along i t s generatrix.

Although qualitatively similar t o t h e results obtained with methanol those concerning a c e t o n e wul n o t b'e r e p o r t e d h e r e s i n c e high initial c o n c e n t r a t i o n s w e r e d e t e c t e d on these s a m p l e s ( c o m p a r e d t o t h e previous results). As shown on

fig.

6 a 250°C annealing f o r 90 m n l e a d s t o a n i n c r e a s e of t h e superficial hydrogen c o n t e n t e i t h e r f o r t h e z e r o dose profile a s f o r t h e s t a b l e one. A t 400°C, 1 H annealing, t h e hydrogen c o n t e n t d e c r e a s e is l i m i t e d t o 20%, a s also observed f r o m both type of profile.

Considering t h e hydrogen p r e s e n t a t t h e very s u r f a c e (measured a t t h e resonance

energy) t w o d i f f e r e n t behaviours a r e observed f o r i t s evolution a s a function of t h e

annealing t i m e a t these t e m p e r a t u r e s . A t

250°C

e x c e p t a t t h e very beginning t h e hydrogen

c o n t e n t is continuously increasing reaching in a b o u t 1 H a s t a b l e value a l m o s t t w o t i m e s

g r e a t e r than t h e initial value. According t o t h e profile of

fig.

6 a fairly l a r g e thickness

(- 3 0 0 nm) s e e m s t o b e c o n c e r n e d by this accumulation. A t 400°C, a n i n c r e a s e of t h e

hydrogen c o n t e n t is f i r s t observed, f o r t h e f i r s t 2 0 n m followed by a rapid d e c r e a s e

down to a quasi s t a b l e value r e a c h e d a f t e r 25 mn. This value is lower than t h e initial value

(fig.

7). To observe a c o n s i s t a n t d e c r e a s e of t h e hydrogen c o n t e n t , 1 3 H annealing a t 400°C

a r e required leading t o a - 6 0 % reduction of t h e initial value. This is f a r t o be useful for an

e f f i c i e n t b u t realistic p r e t r e a t m e n t in t h e o p e r a t i n g mode of analysis by t h e fusion process.

(7)

JOURNAL DE PHYSIQUE

6.4 6.5 6.6 6.7

E

(MeV)

F i g - . 6

-

fnitial (ze.ro dose) pzog2ea 60% the "methanoP" sample taken at R.T., and adtez 250°C and 400°C annealing.

,100

0 P

-. o

-

(I) I-

5

5 0 -

8

F i g . iL - Evolution 06 the butdace hydzogen content ('te4onance enezgy) dot the "methanol" sample, a4 a dunction 06 annealing time (250°C and 40O0CJ.

CONCLUSION

-

lH

30-250°c(6.7x 1 0 ' ~ )

-

R.T. (4.6 x 10 16 )

-

1

H

4 0 0 ' ~ (3.5~ loi6)

--- --- - .- .-.- .-.-.-.- -=--- -

I 1 I

Non d e s t r u c t i v e hydrogen d e p t h profiling c a n be p e r f o r m e d in AR(Li) a l l o y s using t h e r e s o n a n t n u c l e a r r e a c t i o n ' H ( ' ~ N , C ~ ~ ) . In t h i s p a r t i c u l a r c a s e t h e i n t e r f e r i n g r e a c t i o n w i t h l i t h i u m c a n be f a i r l y well e s t i m a t e d provided t h a t t h e Li c o n t e n t is well known and d o e s n o t show too l a r g e d e v i a t i o n f r o m a c o n s t a n t value. Although t h e p r o c e d u r e l e a d s t o a l a c k in bulk s e n s i t i v i t y , t h e r e p o r t e d values a t t h e s u r f a c e a r e l a r g e enough t o n e g l e c t t h e parasitic c o n t r i b u t i o n ( 1 0 ' ~ - 10"). T h e m e t h o d h a s b e e n a b l e t o show s i g n i f i c a n t d i f f e r e n c e s b e t w e e n machining p r o c e d u r e s (tool - l u b r i c a n t ) which a r e n o t y e t e f f i c i e n t enough t o avoid u n c e r t a i n t i e s in bulk c o n t e n t d e t e r m i n a t i o n using a fusion technique. Nor t h e i n t e r m e d i a t e s t e p s of t h e r m a l a n n e a l i n g a t 250°C a n d 400°C a r e a b l e t o r e m o v e t h e s u p e r f i c i a l hydrogen.

As m o r e c o n c l u s i v e e x p e r i m e n t s , ion e t c h i n g u n d e r UHV c o n d i t i o n s is r e a d i l y a p p l i c a b l e in o u r s e t - u p o r o t h e r t e c h n i q u e s c a n be possibly a d a p t e d like glow discharge.

20

- s .-

15

-

-I

7

-I0 I 5

Wotk dinanced by CEGEDUR-Pe'chiney and the Minihtkze de !a Rechezche e t de

PIEnseignement Supe'tieui.

(8)

[I] ZIEGLER J.F. e t a]., Nucl. Instr. and Meth., 149 (1978) 19

[21 THOMAS J.P., PIJOLAT C. and F A L L A V I E R M., Rev. de Phys. Appl., 13 (1978) 433 [3] D A M J A N T S C H I T S C H H., WEISER M., HEUSSER H., K A L B I T Z E R S. and M A N N S P E R G E R H., N u c l . I n s t r . and Meth. i n Phys. Res., 218 (1983) 129 [41 FALLAVIER M., CHARTOIRE M.Y. and THOMAS J.P., Nucl. Instr. Meth. i n Phys. Res.

B-15 (1986) 712

[5] "Handbook o f stopping cross-sections f o r energetic ions i n a l l elements"

ZIEGLER J.F., ed. (Pergarnon Press, New York), 1980

[7] THOMAS J.P., F A L L A V I E R M., PIJOLAT C. and TOUSSET J., Radiation Eff., 61

(1982) 207

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to