• Aucun résultat trouvé

FRAGMENTATION OF THE PROJECTILE NEAR THE FERMI ENERGY

N/A
N/A
Protected

Academic year: 2021

Partager "FRAGMENTATION OF THE PROJECTILE NEAR THE FERMI ENERGY"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00225765

https://hal.archives-ouvertes.fr/jpa-00225765

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FRAGMENTATION OF THE PROJECTILE NEAR THE FERMI ENERGY

R. Dayras

To cite this version:

R. Dayras. FRAGMENTATION OF THE PROJECTILE NEAR THE FERMI ENERGY. Journal

de Physique Colloques, 1986, 47 (C4), pp.C4-13-C4-28. �10.1051/jphyscol:1986402�. �jpa-00225765�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, suppl6ment au n o 8, Tome 47, aoQt 1986

FRAGMENTATION OF THE PROJECTILE NEAR THE FERMI ENERGY

R. DAYRAS

Service d e Physique Nucleaire, Basse Energie, CEN-Saclay, F-91191 Gif-sur-Yvette Cedex, France

Resume

-

Nous passons en revue l e s donnges experimentales r e l a t i v e s

i

l a f r a g m e n t a t i o n du p r o j e c t i l e au voisinage de 1 ' g n e r g i e de Fermi. Dans une corn- p a r a i s o n avec l e s r g s u l t a t s obtenus aux basses energies d'une p a r t e t aux energies r e l a t i v i s t e s d ' a u t r e p a r t c e t t e r e g i o n a p p a r a i t b i e n comme une rE- g i o n de t r a n s i t i o n . Les mecanismes dominEs p a r l e champ moyen aux basses energies csdent peu S peu l e pas aux c o l l is i o n s i n d i v i d u e l l e s n-n. Dans l e cas p r k e n t , c e t t e t r a n s i t i o n se t r a d u i t e n t r e a u t r e s par une d i m i n u t i o n ra- p i d e des r g a c t i o n s de t r a n s f e r t au p r o f i t du processus de fragmentation. Une d e s c r i p t i o n cohcrente des r e s u l t a t s observes nEcessite l a p r i s e en compte

i

l a f o i s des e f f e t s de champ moyen e t des c o l l i s i o n s i n d i v i d u e l l e s n-n.

A b s t r a c t

-

The experimental data about p r o j e c t i l e fragmentation around t h e m e r g y a r e reviewed. Comparisons w i t h l o w and h i g h energy data suggest t h a t t h i s energy domain i s indeed a t r a n s i t i o n region. Reaction mechanisms dominated by t h e mean f i e l d a t low energy p r o g r e s s i v e l y g i v e way t o i n d i v i - dual n-n c o l l i s i o n s . I n t h e p r e s e n t case, t h i s t r a n s i t i o n manifests i t s e l f by a r a p i d decrease o f t r a n s f e r r e a c t i o n s f o r t h e b e n e f i t o f fragmentation pro- cesses. A coherent d e s c r i p t i o n o f t h e observed r e s u l t s r e q u i r e s t o t a k e i n t o account mean f i e l d e f f e c t s as w e l l as I n d i v i d u a l n-n c o l l i s i o n s .

I

-

INTRODUCTION

U n t i l r e c e n t l y , f o l l o w i n g t h e developments i n heavy i o n a c c e l e r a t o r technology, heavy i o n induced r e a c t i o n s have been e x t e n s i v e l y s t u d i e d f o r p r o j e c t i l e s w i t h ener- g i e s l e s s than

-

20 MeV/n ( n f o r nucleon) /1,2/ o r g r e a t e r than

-

100 MeV/n /3,4/.

I n t h e low energy regime, i n t e r a c t i o n times are l a r g e compared t o t h e nucleon r e l a x - a t i o n time. As a r e s u l t , low energy heavy i o n induced r e a c t i o n s are dominated by c o l l e c t i v e e f f e c t s . Experimental observations a r e we1 1 accounted f o r i n t h e frame- work o f s t a t i s t i c a l e q u i l i b r i u m t h e o r i e s /5/ and o f mean f i e l d t h e o r i e s

161.

On t h e o t h e r hand, f o r bombarding energies E/A 2

-

200 MeV/n, i n t e r a c t i o n times become s h o r t e r than t h e r e l a x a t i o n time o f t h e various i n t r i n s i c degrees o f freedom. The reduced wavelength o f a nucleon o f t h e p r o j e c t i l e ( o r t a r g e t ) becomes s h o r t e r than t h e i n t r a n u c l e o n i c distance. One-body d i s s i p a t i o n gives way t o n-n c o l l i s i o n s . The main f e a t u r e s o f t h e data a r e s u c c e s s f u l l y described e i t h e r i n t h e framework of p a r t i c i p a n t s p e c t a t o r models /7/ o r i n terms o f f r e e n-n c o l l i s i o n s as i n i n t r a - n u c l e a r cascade c a l c u l a t i o n s /8,9/.

Only r e c e n t l y , w i t h t h e advent of new heavy-i on f a c i 1 i t i e s , t h e i n t e r m e d i a t e energy range (10 MeV < E/A < 100 MeV) has been opened up t o e x p e r i m e n t a l i s t s . T h i s energy regime i s f a s c i n a t i n g from several aspects : i ) T h i s i s a t r a n s i t i o n r e g i o n

/lo/

where c o l l e c t i v e beaviour dominated by one-body type c o l l i s i o n s i s expected t o g i v e way t o r e a c t i o n mechanisms determined by n-n c o l l i s i o n s . i i ) I n t e r a c t i o n times be- come comparable t o o r even s h o r t e r than r e l a x a t i o n times o f i n t r i n s i c degrees of freedom. Thus, n o n - e q u i l i b r i u m phenomena are expected t o i n c r e a s e i n importance.

iii ) The v e l o c i t y o f t h e p r o j e c t i l e becomes comparable o r g r e a t e r than c h a r a c t e r i s-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986402

(3)

C4-14 JOURNAL DE PHYSIQUE

t i c v e l o c i t i e s i n t h e nucleus such as t h e sound v e l o c i t y /11/ (E/A = 18 FleV) and t h e Fermi v e l o c i t y (E/A = 30 MeV). By going over those d i f f e r e n t thresholds, q u a l i t a t i - v e l y new mechanisms may be expected t o occur.

F i r s t i n d i c a t i o n s o f a r a p i d change i n the r e a c t i o n mechanism came from t h e measure- ments o f t h e momentum w i d t h of p r o j e c t i l e - l i k e fragments i n t h e r e a c t i o n 160 + 2 0 8 ~ b a t E/A = 20 MeV/n /12/ causing a f l u r r y o f experimental works i n t h e i n t e r m e d i a t e energy domain.

From sub-Coul omb energies t o re1 a t i v i s t i c energies, fragmentation o f t h e p r o j e c t i l e i s a pervasive phenomenon i n n u c l e a r r e a c t i o n s i n v o l v i n g composite p r o j e c t i l e s from deuteron t o heavy ions. Here, "fragmentation" i s used as a generic term which describes i n n u c l e a r r e a c t i o n s , t h e p r o d u c t i o n o f a c h a r a c t e r i s t i c group o f f r a g - ments w i t h masses l e s s than t h e p r o j e c t i l e one and w i t h v e l o c i t y mean value c l o s e t o t h e beam v e l o c i t y . Production o f such fragments i s a w e l l known process i n l i g h t - i o n induced r e a c t i o n . F o r instance, t h e deuteron break-up i s q u i t e an o l d and common method f o r neutron beam p r o d u c t i o n /44/ w i t h a narrow energy spread around an energy En = Ed/2.

I n t h e n e x t section, we w i l l review the p o s s i b l e mechanisms f o r p r o d u c t i o n o f pro- j e c t i l e - l i k e fragments. I n s e c t i o n s I 1 1 and I V we w i l l u n d e r l i n e t h e b a s i c f e a t u r e s and our c u r r e n t understanding o f p r o j e c t i l e fragmentation i n t h e low and t h e h i g h energy domains r e s p e c t i v e l y . I n s e c t i o n V, we w i l l consider t h e d i f f e r e n t aspects o f p r o j e c t i l e fragmentation i n t h e i n t e r m e d i a t e energy regime more thorougly. I n sec- t i o n V I we s h a l l t r y t o draw some conclusions and t o emphasize t h e basic questions n o t y e t answered.

I 1

-

POSSIBLE MECHANISMS FOR THE PRODUCTION OF PROJECTILE-LIKE FRAGMENTS

Many d i f f e r e n t types of i n t e r a c t i o n s between p r o j e c t i l e and t a r g e t can produce pro- j e c t i l e - l i k e fragments. Two b a s i c scenarios a r e d e p i c t e d i n f i g . 1. Each o f them can then be subdivided. I n case l a ) ,

a f t e r i n e l a s t i c s c a t t e r i n g o r a f t e r picking-up few nucleons from t h e t a r g e t T (which may be e x c i t - ed), t h e p r o j e c t i l e P i s e x c i t e d

t o a continuum s t a t e which decays

& @ !

subsequently ( s e q u e n t i a l break- up). I n case l b ) , a s u b s t r u c t u r e

"a" ( t h e " p a r t i c i p a n t " ) o f t h e

@ s,

p r o j e c t i l e i n t e r a c t s w i t h t h e t a r - g e t whereas t h e remaining p a r t "A"

( t h e "spectator") o f t h e p r o j e c t i - l e misses t h e t a r g e t . The specta-

t o r "A", almost unperturbed w i l l

&B

c o n t i n u e i t s way i n t h e forward d i r e c t i o n w i t h approximately t h e beam v e l o c i t y superimposed by ;he

Fermi motion o f s u b s t r u c t u r e A" Fig. 1

-

Basic scenarios f o r p r o j e c t i l e f r a g - i n s i d e t h e p r o j e c t i l e

P.

The sub- mentation.

s t r u c t u r e "a" can e i t h e r be elas-

t i c a l l y s c a t t e r e d by t h e t a r g e t ( e l a s t i c break-up) o r i t can undergo any k i n d of i n t e r a c t i o n s w i t h t h e t a r g e t i .e. from compound t o d i r e c t r e a c t i o n processes. T h i s p a r t i c i p a n t - s p e c t a t o r d e s c r i p t i o n o f t h e fragmentation processes i s a t t h e o r i g i n of t h e geometrical model o f Serber /45/ and c o n s t i t u t e s t h e u n d e r l y i n g p i c t u r e o f many r e c e n t t h e o r e t i c a l approaches 146-531. A t r e l a t i v i s t i c energies, t h e Coulomb f i e l d can be s t r o n g enough f o r i n d u c i n g an electromagnetic d i s s o c i a t i o n o f t h e p r o j e c t i l e /54/. I n p r i n c i p l e , a l l the above mechanisms can c o n t r i b u t e t o t h e measured y i e l d s of p r o j e c t i l e - l i k e fragments. However, one may expect t h e dominant process t o change d r a s t i c a l l y w i t h t h e p r o j e c t i l e energy. I n t h e n e x t sections, we w i l l t r y t o f o l l o w t h e e v o l u t i o n o f t h e fragmentation process w i t h bombarding energy.

(4)

PROJECTILE FRAGMENTATION AT

LOW

BOMBARDING ENERGIES

For incident energies not too f a r from the Coulomb b a r r i e r , production of projecti- l e - l i ke fragments with v e l o c i t i e s close t o the beam velocity i s 1 imi ted t o a narrow s t r e t c h of p a r t i a l waves near the grazing angular momentum.

For l i g h t p r o j e c t i l e s (from deuteron t o lithium) Baur e t a1 ./51/, using the p a r t i c i - pant-spectator approach have performed an extensive s e r i e s of

DWBA

calculations and have been successful in reproducing both singles and coincidence data. From t h i s analysis they conclude t h a t e l a s t i c break-up which leaves the t a r g e t i n i t s ground s t a t e does not contribute s i g n i f i c a n t l y t o the y i e l d of p r o j e c t i l e fragments.

For heavier projecti 1 e s , recent coincidence experiments /46 ,55,56/ have shown t h a t many processes can contribute to t h e p r o j e c t i l e fragmentation

:

i ) Fusion of the p a r t i c i p a n t with the t a r g e t (incomplete fusion, massive t r a n s f e r , etc.. .

)

.

i i )

Exci-

t a t i o n of the p r o j e c t i l e i n t o the continuum followed by sequential decay (sequential break-up). i i i ) Pick-up of a few nucleons by t h e p r o j e c t i l e which decays subsequent- l y . The existence of the two l a s t processes i s c l e a r l y i l l u s t r a t e d i n f i g . 2. taken from ref./52/. In f i g . 2a, a

9

MeV/n 2 0 ~ e ion s c a t t e r s inelas- t i c a l l y from a

12c

t a r g e t l e f t i n i t s ground s t a t e . The pro- j e c t i l e i s excited t o unbound d i s c r e t e s t a t e s which decay

3WC

LC

i n t o an 160 nucleus i n i t s

+

C

ground s t a t e and an

a

p a r t i c l e .

3

In f i g . 2b, the

9

MeV/n 160

8 p r o j e c t i l e picks-u f i r s t a

bl

tooc

t r i t o n from t h e

P 2 ~

t a r g e t

@ .

I

(leaving a

9~

nucleus i n i t s

73 U

round s t a t e ) , i t produces a

G

0 P9F

nucleus, excited t o unbound

u

s t a t e s , which then decays i n t o

a

1 5 N

nucleus i n i t s ground

1m

s t a t e and an

a

p a r t i c l e .

The competition between trans- f e r and sequenti a1 break-up seems strongly correlated with E

:

: (channels) the binding energy of the par-

t i c i p a n t and the spectator i n

Tr~ton pickup react~on

-

alpha decoy

t h e p r o j e c t i l e 1461. Sequential break-up i s favoured

b

; small

binding energies. The 0 ener-

LPN + a } detected gy

spectra resulting from the

break-up of 13 MeV/n 2 0 ~ e pro- j e c t i l e bombarding a 4 0 ~ a t a r - g e t a r e well reproduced by

DWBA

c a l c u l a t i o n s t a k i n g i n t o account t r a n s f e r and e l a s t i c

b) break-up of t h e p r o j e c t i l e

/46/.

Such calculations made over a wide range of energy would be most valuable.

E x "F = €,,I ("N

-

0 ) + 4 014MeV

Fig. 2 - a ) Relative k i n e t i c energy of

a

p a r t i c l e s and 160 ions in t h e sequential

break-up of *ONe. b) Relative k i n e t i c energy of

a

p a r t i c l e s and

1 5 N

ions i n the

break-up of

1 9 ~

formed by a t r i t o n pick-up by the 160 p r o j e c t i l e . Ref ,1521.

(5)

JOURNAL DE PHYSIQUE

A n o t h e r i n t e r e s t i n g

aspect o f t h e data i n

600 -

t h i s energy domain i s

-

t h e i n c r e a s e o f t h e

momentuln d i s p e r s i o n o f 4 0 0

- E 2 0 N e = 'OMeV

t h e p r o j e c t i l e - l i k e

5 O 0

f r a g m e n t s w i t h t h e

energy o f t h e p r o j e c -

200 - 169

t i l e . T h i s f e a t u r e i s 7

i l l u s t r a t e d i n f i g . 3 1 I I

1

I

where a r e shown t h e

600 -

energy spectra o f 160 fragments from a 2 0 ~ e p r o j e c t i l e bombarding an l g 7 A u t a r g e t i n t h e energy range 7.5 MeV/n t o 20 MeVIn /15/. The w i d t h o f these spectra taken near t h e g r a z i n g angle increases great- l y w i t h b o m b a r d i n g energy.

T h i s increase i n mo- mentum d i s p e r s i o n w i t h bombarding energy was imputed by McVoy and Nemes 1471 t o t h e com- p e t i t i o n between two p r o c e s s e s n a m e l y t r a n s f e r and e l a s t i c break-up. I n t h e f i r s t process which should dominate a t low ener- gy, t h e p a r t i c i p a n t i s captured by t h e t a r - get. I n t h i s case mo- mentum c o n s e r v a t i o n r e d u c e s t h e p h a s e soace a v a i l a b l e t o t h e spectator, producing

fragments w i t h a nar- F i g . 3

-

Laboratory ener spectra o f 160 fragments from t h e row momentum width. I n i n t e r a c t i o n o f %Ne w i t h l . 7 ~ ~ . Ref .Ill/.

t h e second p r o c e s s

expected t o dominate a t h i g h energy, t h e p a r t i c i p a n t does n o t i n t e r a c t w i t h t h e t a r - g e t and t h e momentum w i d t h o f t h e s p e c t a t o r i s given by t h e w i d t h o f i t s Fermi mo- mentum d i s t r i b u t i o n i n s i d e t h e p r o j e c t i l e . Except f o r sequential break-up which happens f a r from t h e t a r g e t , t h e Coulomb b a r r i e r i n t h e entrance channel i s expected t o reduce t h e momentum w i d t h f o r b o t h t r a n s f e r and break-up processes 147, 49,501.

Taking an approach s i m i l a r t o S e r b e r ' s 1451, Friedman I 4 9 1 and Utsunomiya 1501 em- phasize t h e p e r i p h e r a l n a t u r e o f t h e fragmentation process by assuming t h a t t h e s p e c t a t o r "A" misses t h e t a r g e t whereas t h e p a r t i c i p a n t "a" s t r i k e s and i n t e r a c t s i n a l l k i n d s o f way. The i n t r i n s i c momentum d i s t r i b u t i o n o f "A" i n t h e p r o j e c t i l e

P

i s governed by t h e square o f the F o u r i e r t r a n s f o r m o f t h e r e l a t i v e wave f u n c t i o n o f "a"

and "A" i n s i d e

P,

-

P r

$ 1

a f o r r 2 RC

,

w i t h p = m / . K where mr and Es a r e r e s p e c t i v e l y t h e reduced mass and t h e sepa- r a t i o n energyrofs"a' and "AU ; Rc i s a c r i t i c a l distance. F o r s e p a r a t i o n distances r

<

RC, t h e c l u s t e r s "a" and "A" loose t h e i r i n d i v i d u a l i t y . F o r t h e s p e c t a t o r "A" t o

(6)

s u r v i v e t h e c o l l i s i o n , t h e r e l a t i v e separation r should be g r e a t e r than Rc. Thus t h e momentum d i s t r i b u t i o n o f "A" depends d i r e c t l y on t h e separation energy ES r a t h e r than on t h e Fermi energy. W i t h i n t h i s approach, t h e i n c r e a s i n g w i d t h o f t h e momentum d i s t r i b u t i o n of t h e p r o j e c t i l e - 1 i ke fragments w i t h bombarding energy does n o t r e s u l t from a c o m p e t i t i o n between two mechanisms b u t i s s o l e l y due t o t h e decreasing impor- tance o f t h e Coulomb b a r r i e r r e l a t i v e t o t h e i n c i d e n t energy. The success o f t h i s model f o r l i g h t p r o j e c t i l e s up t o Ne, from low energies t o r e l a t i v i s t i c energies i s impressive 1491. However i t f a i l s t o describe t h e fragmentation o f heavier p r o j e c t i - l e s such as Ar.

r l I I I I I l I _

- a Thus, several possi b i l i t i e s e x i s t

- 1 0 t o e x p l a i n t h e increase o f t h e

momentum w i d t h o f p r o j e c t i l e - 1 i k e fragments w i t h bombarding energy.

-

-2 On t h e b a s i s o f t h e e x i s t i n g data

i t i s n o t p o s s i b l e y e t t o choose between t h e d i f f e r e n t models.

I V

-

PROJECTILE FRAGMENTATION AT HEH ~NERGIES

The concept o f p r o j e c t i l e fragmen- t a t i o n was f i r s t i n t r o d u c e d t o cha- r a c t e r i z e f r a ments from re1 a t i v i s- t i c 12C and

B

0 p r o j e c t i l e s imping- i n g on v a r i o u s t a r g e t s 1571. I n c o n t r a s t w i t h low energy data where p r o j e c t i l e - 1 i k e fragments a r e l i m i - t e d t o few masses around t h e pro-

?

(MeV/c) j e c t i l e mass, fragments w i t h beam

I . ~ . . I ~ . . . I - ' . v e l o c i t y were observed down t o pro-

b)

tons. These fragments are e m i t t e d

i n t h e beam d i r e c t i o n w i t h a vel o-

2 0 0

-

c i t y s l i g h t l y smaller than t h e beam

v e l o c i t y . I n t h e p r o j e c t i l e frame, t h e momentum d i s t r i b u t i o n s o f t h e fragments ( f i g . 4a) c o u l d be des- c r i b e d by Gaussian d i s t r i b u t i o n s :

=

c

exp(-

A) P*

exp[-

dp3

2 4

( 1 )

F i g . 4

-

a) P r o j e c t i l e - f r a m e p a r a l - l e l -momentum d i s t r i b u t i o n f o r l O ~ e fragments from

12c

a t 2.1 GeV/n on a Be t a r g e t . b) P a r a l l e l momentum

o 5 1 0 15 w i d t h ol o f f r a g m e n t s f r o m a 2.1

GeVIn 16b p r o j e c t i l e . From r e f .I571

FRAGMENT MASS (AMU)

where C i s a n o r m a l i z a t i o n c o n s t a n t . P,, and P a r e t h e f r a g m e n t momenta i n t h e d i r e c t i o n s p a r a l l e l and perpendicular t o t h e beam r e s p e c t i v e l y . The associated variances a r e a,, and ol. Po i s t h e average momentum s h i f t i n t h e p r o j e c t i l e frame. A good f i t t o t h e d a t a c o u l d be o b t a i n e d assuming a = ell. When t h e widths all a r e p l o t t e d versus the fragment mass ( f i g . 4b), they d i s h a y a p a r a b o l i c dependence on t h e fragment mass which can be parameterized as

all = K

I/-

(7)

JOURNAL DE PHYSIQUE

where K i s a n o r m a l i z a t i o n c o n s t a n t and Ap and AF a r e t h e masses o f t h e p r o j e c t i l e and o f t h e fragment r e s p e c t i v e l y .

These experiments were t h e s t a r t i n g o f t h e o r e t i c a l i n t e r p r e t a t i o n s /58, 59/ which a r e a t t h e o r i g i n of more s o r h i s t i c a t e d w d e l s . I n one approach /58/, t h e t a r g e t a c t s o n l y t o i n j e c t energy i n t h e p r o j e c t i l e , making i t explode. The fragment momen- tum i s then given e s s e n t i a l l y by t h e momentum i t had r e l a t i v e t o t h e c e n t e r o f mass o f t h e p r o j e c t i l e p r i o r t o t h e c o l l i s i o n . I n h i s s t a t i s t i c a l approach t o fragmenta- t i o n , Go1 dhaber /59/ assumes t h a t random nucleons are suddenly abraded from t h e p r o j e c t i l e ( f a s t - f ragmentation hypothesis

1.

Applying momentum conservation t h e f o l - l o w i n g r e l a t i o n i s d e r i v e d :

A (A -A )

.2= F P F $

" Ap-1 0 (2

where Ap and AF a r e t h e masses o f the p r o j e c t i l e and o f t h e fragment r e s p e c t i v e l y whereas a0 i s r e l a t e d t o t h e Fermi momentum PF o f t h e .nucleons i n s i d e t h e projec- t i l e :

p t

u2 =-•

0 5

Thus t h e p a r a b o l i c law found e m p i r i c a l l y /57/ i s recovered. Hence, i n p r i n c i p l e , r e l a t i o n (21 can be used i n order t o determine t h e Fermi nucleon momentum i n s i d e t h e p r o j e c t i l e . Using t h e value P = 250 l.leV/c deduced from e l e c t r o n s c a t t e r i n g measure- ments one gets a, = 112 ~eveY/F which agrees f a i r l y w e l l w i t h t h e experimental value o f s 90 MeVlc. However, t h i s agreement may be f o r t u i t o u s . Indeed, i n t h i s compari- son, t h e p r o j e c t i l e fragments a r e assumed t o emerge from t h e c o l l i s i o n s w i t h l i t t l e e x c i t a t i o n energy i n o r d e r f o r evaporation n o t t o p e r t u r b e t h e momentum width.

Taking i n t o account Paul i c o r r e l a t i o n s , Bertsch 160/ has shown t h a t f o r 4 0 ~ r , t h e uo value should i n f a c t be reduced by

-

20 %, i n agreement w i t h t h e measured value /13/. However, i n a r e c e n t c a l c u l a t i o n Murphy /61/ shows t h a t phase-space con- s t r a i n t s , when taken i n t o account i n c o n j u n c t i o n w i t h Paul i c o r r e l a t i o n s , r e s u l t i n a r e d u c t i o n o f t h e value o f a, by more than a f a c t o r o f 2 f o r an ' + O A ~ p r o j e c t i l e . Thus, i n t h e l i g h t o f these c a l c u l a t i o n s , t h e simple i n t e r p r e t a t i o n o f a,, as re- f l e c t i ng d i r e c t l y t h e Fermi momentum d i s t r i b u t i o n o f t h e nucleons i n s i d e t h e nucleus i s c a l l e d i n question.

The s l i g h t down-shift o f the fragment v e l o c i t y r e l a t i v e t o t h e beam v e l o c i t y has been s u c c e s s f u l l y e x p l a i n e d /62/, assuming t h a t successive removal o f bound nucleons from t h e p r o j e c t i l e r e s u l t s i n a f r i c t i o n a l f o r c e which slows down t h e p r o j e c t i l e . The measured mass y i e l d s are w e l l accounted f o r by t h e f a s t abrasion mechanism /63- 651. I n t h i s p u r e l y geometrical p i c t u r e , i t i s assumed t h a t t h e o v e r l a p r e g i o n be- tween t a r g e t and p r o j e c t i l e i s sheared away t o form a h o t zone o f n u c l e a r matter, :he " p a r t i c i p a n t s " , whereas t h e remaining p a r t s o f t h e p r o j e c t i l e and t a r g e t , t h e

spectators" are o n l y s l i g h t l y perturbed. The abraded p r o j e c t i l e almost preserves i t s i n i t i a l d i r e c t i o n and v e l o c i t y and c a r r i e s a r e l a t i v e l y small amount o f e x c i t a - t i o n energy which i s p r o p p r t i o n a l t o t h e d i f f e r e n c e i n surface energy between t h e deformed abraded nucleus and a s p h e r i c a l nucleus o f same volume. The e x c i t a t i o n energy o f t h e fragments i s then d i s s i p a t e d by nucleon evaporation ( a b l a t i o n stage).

I s o t o p i c d i s t r i b u t i o n s o f the fragments can be reproduced q u i t e w e l l i f proton-neu- t r o n c o r r e l a t i o n s a r i s i n g from t h e z e r o p o i n t v i b r a t i o n o f t h e g i a n t d i p o l e resonan- ce a r e taken i n t o account 113,651.

As we w i l l hear a t t h i s conference, t h e geometrical aspect o f t h e abrasion model i s a t t h e o r i g i n o f several more s o p h i s t i c a t e d approaches t o p r o j e c t i l e fragmentation /66,67/.

(8)

THE INTERMEDIATE

ENERGY

REGIME

: A

TRANSITION REGION V . l Introduction

The dramatic change in the production of p r o j e c t i l e - l i k e fragnents with bombarding e n e r v i s well i l l u s t r a t e d in f i g .

5.

In f i g . 5a, a 6.75 MeVIn 'OAr beam impinges on a

l o

Mo t a r g e t /68/. Fragments with beam velocity a r e limited t o few masses around t h e p r o j e c t i l e whereas the bulk of the cross section i s dominated by deep i n e l a s t i c c o l l i s i o n s . In f i g . 5b, a 27.5 MeV/n

' + O A ~

beam h i t s a 68Zn t a r g e t 1271. As a t rela- t i v i s t i c energies, the masses of fragments with approximately beam velocity extend down t o the l i g h t e s t elements. However, one s t r i k i n g difference

w i t h

r e l a t i v i s t i c fragmentation i s immediately apparent in f i g . 6 1401. The fragment velocity spectra ( f i g . 6 a ) , peaked a t v e l o c i t i e s s l i g h t l y smaller than the beam velocity, are asymme- t r i c

w i t h

a low velocity t a i l . This t a i l i n g i s c l e a r l y seen i n the contour p l o t s of t h e i n v a r i a n t c r o s s s e c t i o n i n t h e p a r a l l e l

V

and transverse VI-velocity plane ( f i g . 6b). I t may indicate the action of dissipakive forces not present a t r e l a t i - v i s t i c energies.

E

(MeV

Fig.

5

- P l o t of mass versus energy f o r a ) the reaction

' + O A ~ +

loOMo a t 7 MeVIn 1681 and b) the reaction *OAr

+

68Zn a t 27 MeVIn 1271.

In the following sub-sections, we will review the properties of the p r o j e c t i l e frag- mentati on i n t h e intermediate energy regime.

V.2 Fragment y i e l d s

The cross sections f o r production of p r o j e c t i l e - l i k e fragments from an

'+OAr

projec-

t i l e have been measured f o r various t a r g e t s a t bombarding energies ranging from 27

MeV/n t o 213 MeVIn /13,21,27,31,40/. Elemental d i s t r i b u t i o n s i n t e rated over angles

a r e shown i n f i g . l a up t o Z=l7. Except f o r t h e 41 IleV/n

+ O A ~ +

q2C reaction, they

display quite simi 1 a r behavi our, with t h e same odd-even s t r u c t u r e and an enhancement

around

Z=6.

The magnitude of the cross sections increases regularly with the t a r g e t

size. For the 44 MeV/n

'+OAr + 1 2 C

reaction, the Z-distribution shows a strong enhan-

cement around Z=14. This was successfully interpreted 1311 a s the r e s u l t of an in-

complete fusion of t h e p r o j e c t i l e with the t a r g e t , followed by evaporation. Then, i t

may seem surprising t h a t t h e 27.6 MeVIn

' + O A ~ +

'j8Zn data I271 behave l i k e those from

the 213 MeVIn '+OAr

+ 1 2 C

reaction 1131. This would tend t o indicate t h a t a s long as

t h e t a r g e t i s s u f f i c i e n t l y heavy, the production of fragments from an

' + O A ~

projecti-

l e has already reached i t s asymptotic value a t 27.5 MeVIn. The d i f f e r e n t behaviour

of the 44 MeVIn '+OAr

+ 1 2 C

data suggests t h a t the beam velocity i s not a s u f f i c i e n t

criterium f o r describing t h e onset of the fragmentation process.

A

b e t t e r parameter

(9)

C4-20 JOURNAL

DE

PHYSIQUE

seems t o be t h e v e l o c i t y o f t h e p r o j e c t i l e pr r e l a t i v e t o t h e v e l o c i t y o f t h e c e n t e r o f mass. The v e l o c i t p (expressed i n u n i t o f c ) i s q u i t e low, 0.071 f o r a 44 MeV/n ' + O A ~ impinging on a 13C Farget whereas i t reaches 0.153 f o r 27.6 MeV/n * O A ~ on 6 8 ~ n , a value which i s reached by 213 MeV/n '+OAr on 12C. Except f o r t h e 44 MeV/n '+OAr +

1 2 ~ r e a c t i o n , t h e c r o s s s e c t i o n s c a l c u l a t e d w i t h t h e abrasion-abl a t i o n model a r e i n s a t i s f a c t o r y agreement w i t h t h e data. The geometrical aspect o f t h e fragment produc- t i

?

n i s supported b f i g . 7b where t h e r a t f o s o f t h e mass y i e l d s between t h e

7

' + O A ~ + na T i a n d ' + O A ~ + A1 a r e r e p o r t e d as a f u n c t i o n o f t h e fragment mass. The decrease o f these r a t i o s w i t h t h e fragment mass i s q u i t e w e l l reproduced by an abrasion c a l - c u l a t i o n .

Fig. 6

-

a) V e l o c i t y spectra f o r few fragments produced a t 2.5' i n t h e r e a c t i o n '+OAr + 27A1 a t 44 MeV/n. The arrows i n d i c a t e t h e beam v e l o c i t y . b ) I n v a r i a n t cross sec-

t i o n c o n t o u r - p l o t s i n t h e VI, Vn-plane f o r t h e same fragment /40/.

/

0.05

V.3 I s o t o p i c d i s t r i b u t i o n s o f t h e fragments

-t,)

I + 2 7 ~

'

~

Eiab=1760

MeV

A t h i g h bombarding energies (> 100 MeV/n), t h e measured i s o t o p i c d i s t r i b u t i o n s o f t h e p r o j e c t i 1 e-1 i ke fragments a r e independent o f t h e t a r g e t and merely r e f 1 e c t t h e composition o f t h e p r o j e c t i l e . T h i s i s expected i n a f a s t fragmentation process i n which t h e t a r g e t j u s t a c t s t o i n j e c t energy i n t h e p r o j e c t i l e . On t h e o t h e r hand, from measurements a t much lower energy (- 10 MeY/n), t h e

N/Z

r a t i o i s one o f t h e degrees o f freedom which e q u i l i b r a t e s t h e most r a p i d l y . Fig. 8 shows t h e v a r i a t i o n w i t h Z o f t h e cN>/Z r a t i o o f t h e p r o j e c t i l e - 1 i k e fragments f o r 27 MeV/n ( f i g . 8a) and 44 MeV/n ( f i g . 8b) 40Ar p r o j e c t i l e impinging on v a r i o u s t a r g e t s /21,40,42/. The

(10)

F i g . 7

-

a) E f f e c t o f t h e t a r g e t on t h e ele- mental d i s t r i b u t i o n s o f fragments from an '+OAr p r o j e c t i l e a t v a r i o u s energies. b ) R a t i o s o f t h e mass y i e l d s between t h e 4 0 ~ r + T i and ' O A ~

+

2 7 ~ 1 reactions. The s o l i d curve i s t h e p r e d i c t i o n o f t h e c l e a n - c u t abrasion model

1401.

C

2.0

-

Exp.

more neutron r i c h t h e t a r g e t , t h e more neutron r i c h the fragments.

T h i s e f f e c t seems t o be s t r o n g e r a t 27 MeV/n than a t 44 MeVIn. Before g i v i n g any i n t e r p r e t a t i o n o f t h i s e f f e c t , i t should be noted t h a t t h e fragments may be e x c i t e d and t h a t sequential decay may s i g n i f i c a n t l y modify t h e i n i t i a l i s o t o p i c d i s t r i - b u t i ons. However r e c e n t measure- ments /39,69/ seem t o i n d i c a t e t h a t indeed t h e primary fragments c a r r y 1 i t t l e e x c i t a t i o n energy. Thus t h e measured i s o t o p i c d i s t r i b u t i o n s should be c l o s e t o t h e primary ones.

..--.

+

Q

5

-

\

.-

1.0

The dependence o f t h e cN>/Z r a t i o upon t h e t a r g e t might be an i n d i c a - t i o n o f t h e p e r s i s t e n c y o f mean f i e l d e f f e c t s l e a d i n g t o a few- nucleon exchange between p r o j e c t i l e and t a r g e t . As i t i s observed, t h i s e f f e c t i s supposed t o decrease w i t h i n c r e a s i n g bombarding energy. The presence o f fragments h e a v i e r than t h e p r o j e c t i l e /27, 40,43/ which a r e more abundantly produced a t 27 MeVIn than a t 44 MeVIn a t t e s t s o f t h i s exchange process.

-Abrasion -

" 5 :

*...

-

: 1

1 I 1

A q u i t e d i f f e r e n t e x p l a n a t i o n i s brought o u t by Harvey 1661. He suggests t h a t t h e increase o f t h e

<N>/Z r a t i o o f t h e fragments f o r neutron r i c h t a r g e t i s n o t due t o a fragment enrichment i n neutrons b u t r a t h e r t o a d e p l e t i o n i n protons.

T h i s comes about from t h e energy dependence o f t h e n-n cross sec- t i o n s . Below

-

500 MeV, onp i s

-

3

t i m e s l a r g e r than u o r oPp. Thus f o r a t a r g e t w i t h

fl

> 2, r o t o n s from the p r o j e c t i l e a r e more l i k e l y t o be s c a t t e r e d from t a r g e t nucle- ons than p r o j e c t i l e neutrons are.

10 20 3 0 G 0

The above mentioned processes can i n f a c t compete. The f i r s t one i s expected t o dominate a t low energy whereas t h e second one should increase w i t h bombarding ener- gy. I t would be i n t e r e s t i n g t o determine a t which energy t h e <N>/Z r a t i o reaches i t s s a t u r a t i n g value.

V.4 Momentum d i s t r i b u t i o n s o f t h e fragments : evidences f o r competing mechanisms A t h i g h energy, t h e w i d t h o f t h e momentum d i s t r i b u t i o n o f a given fragment ( f o r a g i v e n p r o j e c t i l e ) i s independent o f t h e i n c i d e n t energy, whereas a t low bombarding energy, i t increases w i t h bombarding energy /12,15,16/. The momentum w i d t h o f t h e fragments i s u s u a l l y determined by a f i t o f t h e i r energy s p e c t r a through t h e r e l a - t i o n :

EFsi n2e

E ~ c o s ~ c I - z ( E ~ E ) ~ / ~

COSB+E)~

*

= NO (AFEF)1/2 exp

[ -

AF

(-

+ ( 3 )

dE

dsZ 4 4

(11)

CP-22 JOURNAL DE PHYSIQUE

A f t e r i n t e g r a t i o n over energy, r e l a t i o n ( 3 ) can be used t o f i t t h e fragment angular d i s t r i b u t i o n s and t o e x t r a c t values o f t h e momentum w i d t h ol perpendicular t o t h e beam d i r e c t i o n . The values o f al t h u s e x t r a c t e d as a f u n c t i o n o f t h e fragment mass a r e shown i n f i g . 9b f o r t h e r e a c t i o n 44 MeV/n '+OAr

+

2 7 ~ 1 . I n c o n t r a s t w i t h t h e r e 1 a t i v i s t i c e n e r g y d a t a , t h e values o f ol a r e much l a r g e r than t h e values of a

.

Such a d i f f e r e n c e has already been noted i n t h e fragmentation o f an 160 p r o j e c t i f e /14/ a t 90 and 120 MeV/n and o f a 12c p r o j e c t i l e /18/ a t 86 MeV/n. T h i s d i f f e r e n c e between al and a , has been i m p u t e d t o t h e d e f l e c t i o n o f t h e p r o j e c t i l e i n t h e

which i s j u s t t h e conversion I

i n t h e Laboratory frame o f t h e

l a)

momentum d i s t r i b u t i o n found 2 7 ~ e ~ / u ''A,

a t r e l a t i v i s t i c energy and g i v e n by r e l a t i o n

(1).

I n

t h i s expression, No i s a nor- 120

-

ma1 i z a t i o n c o n s t a n t , A t h e mass o f t h e f r a g m e n t ,

4

it2

laboratory k i n e t i c energy, E i t s m o s t p r o b a b l e k i , n e t i c energy,

e

i s t h e l a b o r a t o r y

d e t e c t i o n angle and al and al

>

11s-

are t h e momentum widths i n t h e d i r e c t i o n p a r a l l e l and

"

p e r p e n d i c u l a r t o t h e beam r e s p e c t i v e l y . However, as

mentioned e a r l i e r , t h e energy

.

'"AU

s p e c t r a a t low and interme-

d i a t e bombarding e n e r g i e s 0 1 0 3 ~ h

p r e s e n t low energy t a i 1 s which cannot be f i t t e d by eq.3. It i s u s u a l l y assumed t h a t o n l y t h e h i g h energy p a r t o f t h e

.

! I

\ I

.

"NI

$ 1

$1

s p e c t r a m i g h t have i t s o r i g i n 10s. 1 . I . I .

i n a fragmentation process. 5 10 15 Z

Thus t h e momentum w i d t h all i n t h e beam d i r e c t i o n i s e x t r a c t - 1.20 ed from r e l a t i o n ( 3 ) by fit- t i n g o n l y t h e h i g h energy p a r t o f t h e energy spectra. The momentum w i d t h a o f fragments

-

-

197

b) - -

.

Au

-

58 .

-

o NI

from a 44 MeV/n I 0 A r p r o j e c t i -

-

nat

-

l e bombarding an 2 7 ~ 1 t a r g e t 1.15- A Ti

/40/ a r e shown as a f u n c t i o n o f t h e mass o f t h e fragments r-'

i n f i g . 9a. The average t r e n d

,;

o f t h e data i s w e l l reproduced by Go1 dhaber' s parabol i c law

r a b l e t o t h e l i m i t i n g value ( r e l a t i o n ( 2 ) ) w i t h a value o f oO = 87 MeV/c which i s compa- obtained a t much h i g h e r ener- g i e s /13 57/. Except f o r t h e 40Ar + r e a c t i o n /31/, a l l

a v a i l a b l e 44 MeV/n '+OAr data "05-

-

g i v e s s i m i l a r r e s u l t s /22,40/ I 1 I 1 1 I \ I

8 10 12 16

independently o f t h e t a r g e t . 16

The same value o f o i s a l s o

Atomic number

obtained w i t h a 27 #ev/n pro- Fig. 8

-

I n f l u e n c e o f t h e target-neutron excess on j e c t i l e f o r fragments l i g h t e r t h e <N>/Z r a t i o o f t h e p r o j e c t i l e fragments i n '+OAr than s u l f u r . Thus i t seems induced r e a c t i o n s a t a) 27 I.(eV/n and b ) 44 MeV/n.

t h a t a l r e a d y a t 27 MeV/u, a, has reached i t s asymptotic value f o r an 4 0 ~ r p r o j e c t i l e .

(12)

A ( a.m.u.1

1 1 1 1 / I I l I I l l I l l l I I

0 12 13

LOO

E,,,=1760 M e V 300 -

Fig. 9

-

P a r a l l e l and transverse momentum widths o f p r o j e c t i l e - l i k e fragments i n the r e a c t i o n 4 0 ~ r +

2 7 ~ 1 a t 44 !,leV/n /40/.

nuclear and Coulomb f i e l d s o f t h e t a r g e t p r i o r t o fragmenta- t i o n . Such an e f f e c t i s expec- t e d t o become more important a t l o w e r energy. An o t h e r e f f e c t n o t i c e a b l e i n f i g . 9b i s , f o r a g i v e n fragment mass, a small b u t systematic increa- se o f t h e variances a: as the chdrge ndmber i n c r r d s ~ s . Tne opposi t e e f f e c t was observed i n t h e fragmentation o f 160 and 4 0 ~ r p r o j e c t i l e s /19/ a t

-

100 FleV/n. T h i s was a t t r i b u t e d /19/ t o a Coulomb f i n a l s t a t e i n t e r a c t i o n between t h e frag- ments and t h e protons disso- c i a t e d from t h e p r o j e c t i l e . Both e f f e c t s , d e f l e c t i o n o f t h e p r o j e c t i l e and f i n a l s t a t e i n t e r a c t i o n have been used t o generate t h e curves shown i n f i g . 9b which come s h o r t t o e x p l a i n t h e data. Recently, A .J

.

Cole /67/ was successful 1 i n reproducing t h e angular d i s t r i b u t i o n s o f t h e p r o j e c t i - 1 e-1 i ke fragments observed i n the r e a c t i o n 4 0 ~ r + 68Zn /27/.

I n h i s model, t h e r e a c t i o n mechanism i s g i v e n b y t h e number o f n u c l eon-nucl eon c o l l i s i o n s i n t h e o v e r l a p r e g i o n between t h e t a r g e t and t h e p r o j e c t i l e . Angular d i s - t r i b u t i o n s a r e o b t a i n e d as t h e c o n v o l u t i o n o f d i s t r i b u t i o n s due t o d e f l e c t i o n by t h e ion- p o t e n t i a l and r e c o i l e f f e c t s due t o t h e change i n mass.

I n a n a l y s i n g t h e momentum w i d t h o f t h e p r o j e c t i l e f r a g - ments from t h e 27 MeV/n 4 0 ~ r + 68Zn r e a c t i o n Rami e t a1 ./27/

found t h a t fragments 1 ig h t e r t h a n AF = 3 5 h a d a r e d u c e d momentum w i d t h 5, = 85 MeV/c whereas f o r h e a v i e r fragments a, = 50 MeV/c. T h i s suggests two d i f f e r e n t o r i g i n s f o r t h e p r o d u c t i o n o f t h e fragments. F o l l o w i n g McVoy and Nemes /47/ one i s tempted t o a t t r i b u t e t h e h e a v i e s t fragments w i t h the s m a l l e s t reduced momentum w i d t h a, t o t r a n s f e r r e a c t i o n s and t o a t t r i b u t e t h e l i g h t e r ones heaving t h e l a r g e s t values o f a, t o p r o j e c t i l e fragmentation. Using t h i s o p e r a t i o n a l d i s t i n c t i o n between t r a n s f e r and fragmentation, B o r r e l e t a1 ./42/ have undertaken a systematic study o f t h e c o m p e t i t i o n between these two processes using an 4 0 ~ r p r o j e c t i 1 e on v a r i o u s t a r g e t s . They found t h a t t h e reduced momentum w i d t h a, f o r t r a n s f e r products increases from 45 MeV/c t o 60 MeV/c between 27 MeV/n t o 44 MeV/n i n c i d e n t energies whereas f o r fragmentation products a, remained constant a t

-

90 MeV/c. A c o m p i l a t i o n o f t h e measured reduced w i d t h

IJ,

as a f u n c t i o n o f t h e bombarding energy EL, /A i s presented i n f i g . 10a f o r 2 0 ~ e and *OAr induced reactions. The values o? a, imputed t o t r a n s f e r r e a c t i o n s (eppty squares) i n t h e case o f 4 0 A r f o l l o w s t h e systematic t r e n d observed f o r 2 0 ~ e fragments. However, one may wonder why i n t h e r e g i o n o f overlap

(13)

JOURNAL DE PHYSIQUE

between 27 MeV/n and 44 MeV/n, t h e fragmentation l i m i t o f

-

90

MeV/c reached by t h e '+OAr f r a g - ments remote by more t h a t 5 mass u n i t s from t h e r o j e c t i l e i s never reached by RNe frag- ments. I s i t due t o s p e c i a l s t r u c t u r e o f t h e 20Ne nucleus?

I n f i g . l o b i s r e p o r t e d the ra- t i o of t h e t r a n s f e r 'to t h e fragmentation component /42/

f o r Z=16 and Z=17 isotopes from t h e fragments o f an ' + O A ~ pro- j e c t i l e a t 27 MeV/n and 44 MeV/n. The t r a n s f e r component decreases s h a r p l y w i t h bombard- i n g energy.

An o t h e r evidence f o r t h e per- s i s t e n c y o f d i r e c t s u r f a c e t r a n s f e r r e a c t i o n s a t interme- d i a t e energy comes from t h e observation o f fragments w i t h masses o r charges g r e a t e r than those o f t h e p r o j e c t i l e /27, 40,43/. T h i s prompted Mermaz /36,43/ t o analyse t h e energy s p e c t r a o f t h e fragments c l o s e t o t h e p r o j e c t i l e i n t h e frame- work o f a d i f f r a c t i o n a l model i n c l u d i n g p o p u l a t i o n o f c o n t i - nuum states. It i s assumed i n t h e c a l c u l a t i o n than t h e obser- ved fragments a r e t h e primary ones ( e x c i t a t i o n energy

<

15 MeV) whereas t h e e x c i t a t i o n energy o f t h e t a r g e t - 1 i k e frag- ments i s o n l y l i m i t e d by energy conservation. The main i n g r e - d i e n t i n t h e model i s t h e use o f W i l l i a m ' s p a r t i a l l e v e l d e n s i t i e s . Agreement w i t h t h e data i s q u i t e s a t i s f a c t o r y f o r fragments c l o s e t o t h e p r o j e c - t i l e .

V.5 E x c i t a t i o n energy o f pro- j e c t i l e - 1 i k e fragments I n t h e previous discussion, t h e d i s t i n c t i o n between t r a n s f e r and f r a g m e n t a t i o n p r o c e s s e s has been based e s s e n t i a l l y on the shape o f t h e energy spec- t r a o f t h e fragments. More d i - r e c t evidences are now coming from e x c l u s i v e experiments i n which p r o j e c t i l e - 1 i k e fragments are detected i n coincidence e i t h e r w i t h l i g h t p a r t i c l e s o r w i t h more massive fragments /15,25,29,30,34,37, 39,69-72/. 0

Fig. 10

-

a) Reduced momentum widths f o r 2 0 ~ e ( @ , A ) /15,32,41/ and '+OAr

(a,-)

/22,27,40,42/. For 20Ne, o n l y 12C and 160 fragments were considered. F o r '+OAr, t h e open squares correspond t o t h e t r a n s f e r channel o n l y /41/. b) R a t i o o f t h e t r a n s f e r t o t h e fragmentation component f o r Z=16 and 17 isotopes i n t h e ' + O A ~ + 5 8 ~ i r e a c t i o n a t 27 MeV/n and 44 MeV/n

/41/.

ne e s s e n t i a l f e a t u r e o f these data (which w i l l be

(14)

t r e a t e d in d e t a i l by Bizard) i s the low m u l t i p l i c i t y of f a s t charged p a r t i c l e s asso- c i a t e d t o the p r o j e c t i l e fragments. Thus, these fragments must emerge from the ini- t i a l c o l l i s i o n with a small amount of excitation energy. This r e s u l t i s confirmed by a recent measurement of the l i f e t i m e s of the primary fragments from a 44 MeV/n 40Ar projecti 1 e bombarding a Ge c r i s t a l , using the blocking technique /73/. The measured l i f e t i m e s

T = ( 2 f

1 ) 1 0 - 1 8 ~ e ~ f o r a l l fragments ( f i g .

11)

a r e compatible with prima- ry mass and excitation energy d i s t r i b u t i o n s as given by an abrasion calculation. In order t o f i t the data t h e excitation energies as predicted by the abrasion model had t o be increased by - 10 MeV.

I l CALC

Fig. 11 - Lifetimes of the primary frag- ments from a 44 MeV/n 40Ar p r o j e c t i l e bom- barding a Ge c r i s t a l . The histograms are t h e r e s u l t s of a c a l c u l a t i o n assuming excitation energies as given by the abra-

sion model plus 10 MeV /73/.

where

V.6 Energy damping of the fragments As noted previously (see f i g .

61, the

projecti 1 e fragments undergo an energy damping which increases as the mass of the fragments decreases. The average v e l o c i t y

V F

of t h e fragments has been successfully /22,27,42/ parametrized

where

A

and

AF

a r e the masses of the p r o j e c t i q e and of t h e fragment respec- t i v l e y

; V

i s t h e v e l o c i t y of t h e p r o j e c t i l e grid E i t s k i n e t i c energy

: Es

i s t h e energy Recessary t o s p l i t the p r o j e c t i l e i n t o i t s p a r t i c i p a n t and spectator parts and i s given by the abrasion model.

An

other approach /40/

i s t o modify the abrasion model i n order t o include kinematical e f f e c t s . In the center of mass frame, energy and momentum conservation provides the r e l a t i o n s

:

AK[ +

AK; +

AK[

=

sp

+

ST and

P [ + P ; + P ~ = o ,

a r e

t h

k i n e t i c energy losses f o r the p r o j e c t i l e and t a r g e t spectators respectively

~

and

A K C

i s t h e change i n k i n e t i c energy of the f i r e b a l l made up of the p r o j e c t i l e and t a r g e t participants. The projecti 1 e and t a r g e t separation energies are given by Sp and ST.

T h

l i e a r m Y e n t a of t h e p r o j e c t i l e and t a r g e t spectators and of the f i r e b a l l a r e P%, PI and PC respectively. I t i s assumed furthermore t h a t the k i n e t i c energy losses

0%

the p r o j e c t i l e r g e t spectators a r e i n the r a t i o of t h e sepa- r a t i o n e n e r g i e s

Sp

and S

: A K ~ ; A K ~ =

Sp/ST The observed energy damping i s well reproduced by such a calcuration /27,40/. An important f e a t u r e of the model i s the prediction of a change i n the reaction mechanism from massive t r a n s f e r (from the

1

i g h t t o t h e heavy nucleus) t o abrasion a s the bombarding energy increases. In f i g . 12, the prediction of the model a r e compared with recent coincidence data between r o j e c t i l e - l i k e and target-1 i k e fragments /38/ from the reaction '+OAr

+

27Al a t 44 Rev/n. Also shown in f i g . 12a (dashed curve) i s the

projectile-like/target-like mass

c o r r e l a t i o n predicted by GrZgoire e t a1./74/ using the Landau-Vlasov equation.

Although these data a r e consistent with the formation of a f i r e b a l l , there a r e not

y e t c l e a r evidences of such a phenomenon in t h e intermediate energy regime. Taking a

somewhat d i f f e r e n t approach, Bondorf e t a1 ./75/ assume t h a t the nucleons in the

f i r e b a l l r e s u l t i n g from the overlap between t a r g e t and p r o j e c t i l e a r e i s o t r o p i c a l l y

emitted. Those directed towards t h e spectators will contribute t o t h e i r excitation

energy and wi 11 communicate t o them recoil momenta, determining t h e i r kinematical

properties. Within t h i s picture, s t a t i s t i c a l fluctuations play an important role i n

t h e various c o r r e l a t i o n s between t a r g e t and p r o j e c t i l e spectators.

(15)

JOURNAL DE PHYSIQUE

Fig. 12

-

a) Target m a s s - p r o j e c t i l e mass c o r r e l a t i o n i n t h e r e a c t i o n 40Ar + 2 7 ~ 1 a t 44 MeV/n. b ) Average r e c o i l v e l o c i t y o f t h e t a r g e t fragments as a f u n c t i o n o f t h e i r mass. c ) Average r e c o i l angle o f t h e t a r g e t fragments as a f u n c t i o n o f t h e mass o f t h e p r o j e c t i l e fragments. The f u l l curves are t h e p r e d i c t i o n s o f an extended abra- s i o n model (see t e x t ) . The dashed curve i n fig. 12a i s t h e r e s u l t o f a c a l c u l a t i o n

i n t h e framework o f t h e Landau-Vlasov equation /74/.

F o r heavy p r o j e c t i l e such as Kr, t h e p r o d u c t i o n o f p r o j e c t i l e - 1 i k e fragments i s even more i n t r i c a t e d /75,77/. I n ref./76/, t h e authors assume t h a t under t h e e f f e c t o f t h e mean f i e l d , t h e h i g h l y e x c i t e d p a r t i c i p a n t zone may s t i c k e i t h e r t o t h e p r o j e c - t i l e o r t h e t a r g e t . However, l i k e i n a c l a s s i c a l c a l e f a c t i o n phenomenon, a gas o f nucleons a t the i n t e r f a c e between the h o t p a r t i c i p a n t zone and t h e c o l d s p e c t a t o r i n h i b i t s h e a t exchange and t h e p a r t i c i p a n t zone w i l l reseparate before thermal equi- l i b r i u m i s reached. T h i s p i c t u r e seems t o account f o r t h e p r o d u c t i o n o f low energy fragments c l o s e t o t h e p r o j e c t i l e charge i n t h e r e a c t i o n s K r + Au and K r + Mo a t 22 MeV/n /76/.

V I. SUMMARY

A f t e r t h i s quick survey o f t h e data on p r o j e c t i l e fragmentation a t i n t e r m e d i a t e energies, i t appears t h a t t h i s energy regime i s indeed a t r a n s i t i o n r e g i o n where l o w and h i g h energy mechanisms s t r o n g l y compete.

P r o j e c t i l e fragmentation which a t f i r s t glance seemed a very simple process i s i n f a c t very i n t r i c a t e d and i n v o l v e s several mechanisms. F o r t h e most p e r i p h e r a l c o l l i - sions, d i r e c t surface t r a n s f e r r e a c t i o n s s t i l l c o n t r i b u t e t o t h e y i e l d o f t h e f r a g - ments c l o s e t o t h e p r o j e c t i l e b u t t h e i r importance decreases r a p i d l y w i t h i n c r e a s i n g bombading energy. For these fragments, does t h e increase o f t h e reduced momentum w i d t h Go w i t h bombarding energy merely r e f l e c t t h e sagging o f Coulomb e f f e c t s o r does i t r e s u l t from a growth o f t h e a v a i l a b l e phase s p a c e A comprehensive descrip- t i o n o f t h e a v a i l a b l e data should answer t h i s question.

F o r fragments more remote from t h e p r o j e c t i l e , t h e s i t u a t i o n i s even l e s s c l e a r as t h e s t r u c t u r e o f t h e p r o j e c t i l e seems t o p l a y an i m p o r t a n t r o l e . F o r Ar p r o j e c t i l e s , the reduced w i d t h a. seems t o have already reached i t s s a t u r a t i n g value a t 27 MeV/n, whereas f o r l i g h t e r p r o j e c t i l e s such as Ne, t h i s value i s n o t y e t reached a t 44 MeV/n. I n a l l cases, t h e low energy t a i l observed i n t h e energy spectra a t t e s t s o f mean f i e l d e f f e c t s and t h e regime o f s t a t i s t i c a l fragmentation may n o t have been reached. I n any case, t h e ,significance o f t h e reduced w i d t h a,, and i t s l i n k w i t h t h e Fermi momentum i n s i d e t h e p r o j e c t i l e i s n o t c l e a r .

Although some data a r e c o n s i s t e n t w i t h t h e formation o f a f i r e b a l l , no d i r e c t e v i - dences o f such a process are a v a i l a b l e .

Some e x c l u s i v e experiments have already been performed and many more a r e i n pro- gress. Such experiments should h e l p t o answer t h e above questions and have already shown t h a t p r o j e c t i l e fragments c a r r y a r e l a t i v e l y reduced amount o f e x c i t a t i o n

(16)

energy. A t t h e same time, more m i c r o ~ c o p i c models i n c l u d i n g mean f i e l d e f f e c t s and n-n c o l l is i o n s /74,78/ should shed some 1 i g h t on t h e c o m p e t i t i o n between t h e v a r i o u s mechanisms involved.

ACKNOWLEDGEMENTS

I wish t o thank a l l my colleagues which have c o n t r i b u t e d unpublished data t o t h i s review, G. Bizard, J.L. Charvet, N. Frascaria, B. Heusch, D. Guerreau, C. ~ g 6 and many others.

I

am g r a t e f u l t o C. Gregoire and M. Di Toro f o r e n l i g h t e n i n g discussions on t h e o r e t i c a l aspects.

REFERENCES

/1/ L e f o r t , M. and Ng6, C., Ann. Phys. ( P a r i s ) 3 (1975) 5 and r e f s . therein.

/2/ B i r k e l und, J .R. and Huizenga, J .R., Ann. Rev. Nucl. P a r t . Sci. 33 (1983) 265.

/3/ Goldhaber, A.S. and Heckman, H.H., Ann. Rev. Nucl. Part. Sci. 2 8 ( 1 9 7 8 1 161.

/4/ Nagamiya, S e t al., Ann. Rev. Nucl. Part. Sci. 34 (1984) 155.

-

/5/ Feshbach, H., On Nuclear Spectroscopy, e d i t e d byAjzenberg-Sel ove, F. (Academic Press, New York, 1960)

,

p a r t B.

/6/ Negele, J.W., Rev. Mod. Phys. 54 (1982) 913.

/7/ W e s t f a l l , G.D. e t al., Phys. R F . L e t t . 37 (1976) 1202.

/8/ Yariv, Y. and Fraenkel

,

Z., Phys. Rev.

C m

(1979) 2227 ; i b i d

-

C24 (1981) 488.

/9/ Cugnon, J., Phys. Rev. C22 (1980) 1885.-

/ l o /

Scott, D.K., Nucl. P h y s x 4 0 9 (1983) 291c.

/11/ B l a i z o t , J.P., Phys. ~ e p . Y ( l 9 8 0 ) 171.

/12/ Gelke, C.K. e t al., Phys. x v . L e t t . 708 (1977) 415 ; Phys. Rep.

-

42 (19781 312.

/13/ Viyogi, Y.P. e t al., Phys. Rev. L e t t . T (1979) 33.

/14/ Van Bibber, K. e t al., Phys. Rev. L e t t 2 3 (1979) 840.

/15/ Egelhaaf, Ch. e t a1

.,

Phys. Rev. L e t t .

X 5

(1981) 813 ; Egelhaaf, Ch. e t a1

.,

Nucl. Phys. A405 (1983) 397 ; Homeyer, H T e t al., Z. Phys.

A319

(1984) 143.

/16/ Harvey, B.sy,G.. Rev. L e t t . 47 (1981) 454.

/17/ Natowitz, J.B. e t al., Phys. ~ eL e t t . 47 (1981) 1114. r /18/ Mougey, J. e t al., Phys. L e t t . 105B ( 1 9 8 n 25.

/19/ Wong, C.Y. and Van Bibber, K.,

Phys.

Rev. C25 (1982) 2990.

/20/ Menchaca-Rocha, A. e t al., Phys. L e t t . 1 3 1 8 1 9 8 3 ) 31.

/21/ Guerreau, D. e t al., Phys. L e t t . 1318

(m)

293.

/22/ Borrel, V. e t al., Z. Phys. A314 m 3 ) 191.

/23/ Murphy, M.J

.

and Stockstad,

m,

Phys. Rev. (1983) 428 ; Stockstad, R.G., Comm. on Nucl. and Part. Phys. 13 (1984) 231.

/24/ Namboodiri

,

M.N. e t al., Phys. Rev. C28 (1983) 4 m . /25/ Murphy, M.J. e t al., Phys. L e t t . 1 2 0 n 1 9 8 3 ) 75.

/26/ B a r r e t t e , J. e t al., Proc. of t h m I I n t . Meeting on Nuclear Physics, Bormio ( I t a l y ) 1984, (ed. U n i v e r s i t i D e g l i Studi d i Milano 35 (1984)) p. 561.

/27/ Rami, F. e t al.,

Z.

Phys. A318 (1984) 239 ; Nucl. PhE. A444 (1985) 325 and Rami, F., Thgse dlEtat, Un-sit6 de Strasbourg (1985)

.-

/28/ Guinet, D. e t al., Phys. L e t t . 1378 (1984) 318.

/29/ Murphy, M.J. e t al., Phys. R e n e t t .

-

53 (1984) 1543 ; Murphy, M.J. e t al., Phys. Rev.

C33

(1986) 165.

/30/ Lanzano, G. e t a1

. ,

Proc. o f t h e X X I V I n t e r n . Winter Meeting on Nuclear Physics, Bormio ( I t a l y ) January 1986.

/31/ Heuer, D. e t al., Phys. L e t t . 1618 (1985) 269.

/32/ llorjean, M. e t al., Nucl. ~hys-38 (1985) 547.

/33/ Bizard, G. e t al., X X I I I I n t . M e m g on Nuclear Physics, Bormio ( I t a l y ) , January 21-26, 1985, (ed. U n i v e r s i t y Degl i S t u d i d i Milano

47

(1985)) p. 472.

/34/ Wald, S. e t al., Phys. Rev. C32 (1985) 894.

/35/ Siwek-Wilczynska, S. e t a l . ,-PFiys. Rev. C32 (1985) 1450.

/36/ Mermaz, M.C. e t al., Phys. Rev. C31 ( 1 9 8 r 1 9 7 2 . /37/ Ost, R. e t al., Phys. Rev. C32

(TV85)

1927.

/38/ Coniglione, R. e t al., ~ u c l 7 h y s . A447 (1986) 95c.

/39/ Bizard, G. e t al., Report LPCC 85-0-ubmitted t o Phys. L e t t . ; Bizard, G., i n v i t e d paper a t t h i s conference.

/40/ Dayras, R. e t a1

. ,

submitted t o Nucl. Phys. A, and Saclay r e p o r t n02329.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to