• Aucun résultat trouvé

TEMPERATURE DEPENDENCE OF THE ELECTRON DRIFT MOBILITY IN HYDROGENATED a-Si PREPARED BY SPUTTERING

N/A
N/A
Protected

Academic year: 2021

Partager "TEMPERATURE DEPENDENCE OF THE ELECTRON DRIFT MOBILITY IN HYDROGENATED a-Si PREPARED BY SPUTTERING"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220887

https://hal.archives-ouvertes.fr/jpa-00220887

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TEMPERATURE DEPENDENCE OF THE ELECTRON DRIFT MOBILITY IN HYDROGENATED a-Si PREPARED BY

SPUTTERING

T. Tiedje, T. Moustakas, J. Cebulka

To cite this version:

T. Tiedje, T. Moustakas, J. Cebulka. TEMPERATURE DEPENDENCE OF THE ELECTRON

DRIFT MOBILITY IN HYDROGENATED a-Si PREPARED BY SPUTTERING. Journal de

Physique Colloques, 1981, 42 (C4), pp.C4-155-C4-158. �10.1051/jphyscol:1981431�. �jpa-00220887�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZe'ment au nOIO, Tome 42, octobre 1981 page C 4 - 1 5 5

TEMPERATURE DEPENDENCE OF THE ELECTRON DRIFT MOBILITY IN HYDROGENATED a-Si PREPARED BY SPUTTERING

T. T i e d j e , T.D. M o u s t a k a s a n d J . M . C e b u l k a

Corporate Research Laboratory, Emon Research and Engineering Co., Linden, NJ 07036, U.S.A.

Abstract.-The temperature dependence of t h e e l e c t r o n d r i f t mobility and i t s d i s p e r s i o n have been measured i n s p u t t e r e d a-SiHx f i l m s with d i f f e r e n t H contents. The d a t a a r e c o n s i s t e n t with t h e m u l t i p l e trapping model of d i s p e r s i v e t r a n s p o r t and demonstrate t h a t t h e e l e c t r o n t r a n s p o r t i s i n s e n s i t i v e t o H c o n t e n t i n t h e 14-19.5% range.

Hydrogen plays a c r u c i a l r o l e i n t h e e l e c t r o n i c ? r o o e r t i e s of hydrolenated amornhous s i l i c o n (a-SiHx). For example i t reduces t h e d e n s i t y of deep pa? s t a t e s t o very low l e v e l s by t h e e l i m i n a t i o n of dangling bonds. Also e l e c t r o n i c s t r u c t u r e calcu- l a t i o n s l and photoemission experiments2 show an SiH bondina o r b i t a l deep i n t h e valence band. However, very l i t t l e i s known about t h e e f f e c t of H on t h e s t a t e s near t h e band edges except t h a t t h e a d d i t i o n of H tends t o widen t h e o p t i c a l ga?.

In t h i s paper we explore t h e e f f e c t of tI on t h e conduction band edge by time-of-

f l i g h t measurements of t h e e l e c t r o n d r i f t mobi 1 i t y i n r e a c t i v e l y s p u t t e r e d a - ~ i ~ , ~ prepared with d i f f e r e n t H c o n t e n t s .

The films discussed here were deposited by r f diode s p u t t e r i n g a t an Ar p r e s s u r e of 5mT, s u b s t r a t e temperature of 325OC and v a r i a b l e p a r t i a l p r e s s u r e of hydrogen.

The 1.5um t h i c k undoped f i l m s were deposited on 5331 of n+ a-SiH, a s an ohmic con- t a c t t o s t a i n l e s s s t e e l s u b s t r a t e s . The P doped n+ l a y e r was ?redeposited t o avoid P contamination of t h e undoped l a y e r . Semitransparent 501 t h i c k 2mm2 P t d o t s were s p u t t e r e d onto t h e top of t h e undoped l a y e r a s blocking c o n t a c t s f o r t h e d r i f t mobility measurements.

The e l e c t r o n d r i f t mobility was measured with a t i m e - o f - f l i g h t technique i n which e l e c t r o n - h o l e p a i r s were generated near t h e P t c o n t a c t by an 8ns f l a s h of 457nm l i g h t from a N2 pumped dye l a y e r running a t a r e p e t i t i o n r a t e of 2 hz. The P t Schottky diode s t r u c t u r e was reverse biased by a voltage ~ u l s e t h a t was longer than t h e e l e c t r o n t r a n s i t time t~ but much s h o r t e r than t h e i n t e r v a l between l a s e r f l a s h e s . The photocurrent i n t h e sample was recorded by a Tektronix 7912AD t r a n - s i e n t d i g i t i z e r and s i g n a l averaged several hundred times. The signal-averaged c u r r e n t decay was converted by a desk-top c a l c u l a t o r t o a 10s c u r r e n t vs. log time p l o t , from which t h e t r a n s i t times and slopes of t h e c u r r e n t decays before and a f t e r t h e t r a n s i t time t~ were determined manually.

The room temperature e l e c t r o n d r i f t mobility p~ i s shown i n Fig. 1 a s a f u n c t i o n of hydrogen p a r t i a l pressure P H , i n t h e s p u t t e r i n g gas;. Note t h e absence of any s i g n i f i c a n t dependence of p~ on P H . The o p t i c a l gap and hydrogen content of these samples increased monotonically from 1.72 t o 1.83eV and 14 t o 19.5% r e s ? e c t i v e l y , with i n c r e a s i n g All of t h e samples i n Fig. 1 e x h i b i t e d d i s p e r s i v e t r a n s p o r t so t h a t t~ was defined by t h e i n t e r s e c t i o n of l i n e a r f i t s t o t h e f i r s t ( t < t T )

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981431

(3)

JOURNAL DE PHYSIQUE

and second ( t > t T ) branches o f l o g I- l o g t p l o t s . 5 T y p i c a l photocurrent decay data a r e shown as i n s e t s i n Figs. 2(a) and ( b ) . Also shown i n these f i g u r e s i s t h e temperature de?endence o f t h e d r i f t m o b i l i t y , f o r t h r e e d i f f e r e n t b i a s v o l - tages, f o r two o f t h e samples i n F i g . 1, one prepared a t PH = 3.7mT and t h e o t h e r a t 1.3mT. tlote t h e s t r o n g f i e l d depen- dence a t low temperatures c h a r a c t e r i s t i c o f d i s p e r s i v e t r a n s p o r t 5 and t h e small o r n o n - e x i s t e n t e f f e c t o f H on t h e tem- p e r a t u r e dependence.

I n t h e m u l t i p l e - t r a ? p i n g (P'iT) model o f

o d i s p e r s i v e transport,6 i n f o r m a t i o n about

0.4 0.6 0.8 1 .0 the microscopic p r o p e r t i e s o f the PH (~TORR) l o c a l i z e d s t a t e d i s t r i b u t i o n near t h e

m o b i l i t y edge can be i n f e r r e d from pO(T). I n t h e s,pecial case where t h e d i s t r i b u t i o n o f l o c a l i z e d s t a t e s below Fig. 1: Room tem?erature e l e c t r o n d r i f t t h e conduction band m o b i l i t y edge i s m o b i l i t y as a f u n c t i o n o f Hz p a r t i a l ex?onential, t h e d i s p e r s i o n parameter a pressure i n s p u t t e r i n g gas. i s equal t o T/Tc where Tc i s a character-

i s t i c temperature d e s c r i b i n g t h e w i d t h o f t h e band t a i l .7 The parameter a can be estimated from t h e experimental data i n two ways: e i t h e r from t h e slope o f t h e c u r r e n t decay on a l o g p l o t o r from t h e f i e l d dependence o f t ~ .

The experimental temperature dependence o f a ? determined b o t h ways, i s shown i n Figs. 3(a) and ( b ) f o r t h e same two samples as i n Figs. 2 ( a ) and ( b ) . The s o l i d c i r c l e s were determine fr m t h e f i e l d dependence o f t h e t r a n s i t time, assumed t o be o f t h e form t~

*

E-

fi\p

The o t h e r data i n F i g . 3 was d e r i v e d from t h e slope o f t h e p h o t o c u r r e n t decays on t h e l o g - l o g p l o t s . The a values from t h e f i r s t branch (slope a l - 1 ) and second branch ( s l o p e -a,-1) were averaged. I n general a 1 > a2 although t h e d i f f e r e n c e was o n l y m a r g i n a l l y g r e a t e r than t h e experimental uncer- t a i n t y . T h i s d i f f e r e n c e i n a f o r t h e two branches may i n d i c a t e t h a t t h e d e n s i t y o f s t a t e s f a l l s o f f more s l o w l y than e x p o n e n t i a l l y towards midgap. T h i s hypothesis i s c o n s i s t e n t w i t h t h e f a c t t h a t a increases w i t h b i a s (see Fig. 3 ) . A t h i g h f i e l d s ( s h o r t times) t h e e l e c t r o n s sample the r a p i d l y v a r y i n g d e n s i t y o f s t a t e s c l o s e t o t h e m o b i l i t y edge so t h a t a i s l a r g e and a t low f i e l d s ( l o n g times) they sample the more s l o w l y v a r y i n g d e n s i t y o f s t a t e s c l o s e t o t h e middle o f t h e gap and a i s small. Nevertheless a t any given f i e l d , t h e depth t h a t an average e l e c t r o n s i n k s i n t o t h e t r a p d i s t r i b u t i o n a t t~ i s independent o f temperature, t o a f i r s t approximation.7 Thus a(T) f o r a given f i e l d r e f l e c t s t h e slope of t h e d e n s i t y o f s t a t e s a t a p a r t i c u l a r t r a ? deyth.

I n o r d e r t o estimate t h e Tc f o r t h e t r a p d i s t r i b u t i o n vie f i t t h e a(T) data obtained from t h e f i e l d dependence o f t ~ , shown i n Fig. 3(a) and ( b ) , by t h e l i n e s through the o r i g i n , a l s o shown i n the f i g u r e . The corresponding values f o r Tc (411K and 419K f o r t h e 0.7mT and 1 .OmT samples r e s p e c t i v e l y ) , t o g e t h e r w i t h t h e experimental values o f vD(T) enable us t o e s t i m a t e the f r e e c a r r i e r m o b i l i t y po and t h e attempt r a t e v f o r thermal emission from t h e l o c a l i z e d states. I n t h e HT model W D i s given by7

f o r a < 1, where L i s t h e sample thickness, V i s t h e a p ~ l i e d b i a s and to = L~/N,V i s the f r e e c a r r i e r t r a n s i t time. The attempt r a t e v f o r thermal emission from l o c a l i z e d s t a t e s i s assumed t o be independent o f temperature. Using Eq. ( I ) , t h e Tc values discussed above and a d j u s t i n g v and pd f o r a b e s t f i t t o t h e 4V d r i f t

(4)

1000/T Fig. 2(a)

Fig. 2(a) ,(b).- Temperature dependence o f t h e e l e c t r o n d r i f t m o b i l i t y , w i t h t y p i c a l photocurrent decays as i n s e t s . The s o l i d .nes a r e f i t s t o t h e 4V data w i t h T = 4 1 1 K (419K) u = 2.4 x 1 0 1 3 s - l (1.0 x 1313 s - l ) and YO = 20 C ~ ~ / V S

(24 cm$/vS) f o r the 3.7mT (l.OnT) samples. The broken l i n e s a r e c a l c u l a t e d curves f o r the o t h e r voltages i n d i c a t e d .

F i g . 3 ( a ) , ( b ) . - Temperature dependence o f d i s p e r s i o n parameter determined from c u r r e n t decays and f i e l d dependence o f t ~ . The l i n e s are f i t s t o the f i e l d dependence data.

(5)

JOURNAL DE PHYSIQUE

mobility d a t a a s a function of temperature, we obtain t h e f i t s shown a s s o l i d l i n e s i n Figs. 2 ( a ) and (b). The broken l i n e s were c a l c u l a t e d from t h e same parameters, t h e only d i f f e r e n c e being t h a t t h e b i a s voltage was a d j u s t e d t o match t h e r e s t of t h e exyerimental d a t a . The c a l c u l a t e d curves a r e a l l i n e x c e l l e n t agreement with experiment.

In a d d i t i o n t h e r e s u l t i n g values of t h e f i t t i n parameters i n d i c a t e d i n t h e f i g u r e

4

c a p t i o n s ( u o = 20-24 c m e / ~ s , u = 1-2 x 1313 s - ) a r e p h y s i c a l l y p l a u s i b l e . I t i s i n t e r e s t i n g t o note t h a t both a r e l a r g e r than t h e c o r r e s onding parameters f o r glow

f'

discharge material (po = 13 C ~ ~ / V S and v = 4.6 x 1011 s- ) . 8 The band t a i l widths a r e a l s o l a r g e r

-

411K o r 419K compared with 312K. These d i f f e r e n c e s may be a consequence of t h e apparent n o n - e x ~ o n e n t i a l c h a r a c t e r of t h e l o c a l i z e d s t a t e d i s t r i - bution i n s p u t t e r e d m a t e r i a l , a c h a r a c t e r i s t i c t h a t was not observed i n t h e glow discharge m a t e r i a l . On t h e o t h e r hand t h e d i f f e r e n c e s may r e f l e c t r e a l v a r i a t i o n s

i n t h e l o c a l i z e d s t a t e s , t h e f r e e c a r r i e r mobility o r t h e l o c a t i o n of t h e mobility edge.

In conclusion t h e d r i f t mobility r e s u l t s presented here demonstrate t h a t hydrogen c o n t e n t i n t h e 14-19.5% range has very l i t t l e e f f e c t on t h e e l e c t r o n d r i f t mobility i n s p u t t e r e d f i l m s even thou h t h e d e n s i t y of s t a t e s near midgap changes by

several o r d e r s of magnitude17 and t h e o p t i c a l gap i n c r e a s e s by 0 - l l e V . We conclude t h a t t h e conduction band t a i l s t a t e s a r e not H r e l a t e d e i t h e r through SiH a n t i - bonding o r b i t a l s 1 99 o r Si-H r , c h b a r r i e r regions.10

ble thank R . Friedman f o r preparation of t h e f i l m s References.-

1. Ching, C I . Y., Daniel J . Lam and Chun C. Lin, Phys. Rev. B21 (1980), 2378;

E . id. Economou and D. A. Papaconstanto?oulos, Phys. Rev.

BZ

(1983), 2042.

2. Von Roedern, B . , L. Ley and M. Cardona, Phys. Rev. L e t t . (1977), 1576.

3. T i e d j e , T . , T . D. I+!oustakas, J . I:. Cebulka and C. Wronski, Bull. Am. Phys.

Soc.

3 ,

(1980), 329; P. B. Kirby, W . Paul, P . Jacques and J . L . Brebner, Proc. of I n t . Topical Conf. on Tetrahedronally Bonded Amorphous Semiconductors ( C a r e f r e e , Arizona, 12-14, March 1981 )

.

4. Roustakas, T. D., T. Tiedje and W. A. Lanford, Proc. of I n t . Topical Conf. on T e t r a h e d r a l l y Bonded Amorphous Semiconductors ( C a r e f r e e , Arizona, 12-14, 1 larch 1981 )

.

5. P f i s t e r , G . , and H . Scher, Adv. Phys. 27 (1978), 747.

6 . Noolandi, J . , Phys. Rev. 816 (1977), 4466.

7. T i e d j e , T . and A . Rose, S o l i d S t a t e Commun. 37 (1980), 49.

8. T i e d j e , T . , J . M. Cebulka, D. L . Itorel and ByAbeles, Phys. Rev. L e t t .

5

(1981), 1425.

9. Moustakas, T . D., D. A. Anderson and W. Paul, Solid S t a t e Commun.

2

(1977),

155.

10. ~ r o d s k ~ , PI. H., S o l i d S t a t e Commun. 36 (1980), 55.

11. T i e d j e , T., T . D. f?oustakas and J . I T C e b u l k a , Phys. Rev. 823 (1981), 5634.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to