• Aucun résultat trouvé

NOVEL APPROACHES TO SHORT-WAVELENGTH CHEMICAL LASERS

N/A
N/A
Protected

Academic year: 2021

Partager "NOVEL APPROACHES TO SHORT-WAVELENGTH CHEMICAL LASERS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227085

https://hal.archives-ouvertes.fr/jpa-00227085

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NOVEL APPROACHES TO SHORT-WAVELENGTH CHEMICAL LASERS

S. Rosenwaks

To cite this version:

S. Rosenwaks. NOVEL APPROACHES TO SHORT-WAVELENGTH CHEMICAL LASERS. Journal

de Physique Colloques, 1987, 48 (C7), pp.C7-339-C7-342. �10.1051/jphyscol:1987781�. �jpa-00227085�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, suppl6ment au n012, Tome 48, dgcembre 1987

NOVEL APPROACHES TO SHORT-WAVELENGTH CHEMICAL LASERS

S. ROSENWAKS

Department of P h y s i c s , Ben Gurion U n i v e r s i t y o f t h e Negev,

~ e e r - S h e v a . IL-84105, I s r a e l

Abstract

-

Short-wavelength chemical l a s e r s (SWCL1s) have been pursued i n many l a b o r a t o r i e s , following t h e g r e a t success achieved with i n f r a r e d chemical

l a s e r s u t i l i z i n g simple atom molecule exchange r e a c t i o n . However, a l l e f f o r t s t o o b t a i n SWCL's ( < lum) have f a i l e d t o date. The reasons f o r f a i l u r e and p o s s i b l e ways t o overcome t h e d i f f i c u l t i e s a r e discussed. In p a r t i c u l a r , a novel approach t o o b t a i n i n g SWCL1s based on a premixed f u e l - l a s a n t capable o f producing high energy p u l s e s , i s described. E l e c t r o n i c a l l y - e x c i t e d n i t r o g e n molecules a r e pro- duced by detonation of metal azides. Lasing i s expected v i a energy t r a n s f e r from t h e n i t r o g e n molecules t o metal atoms o r within t h e n i t r o g e n molecules. Prelimin- ary r e s u l t s obtained by d e t o n a t i o n o f metal azides a r e presented.

The search f o r short-wavelength chemical l a s e r s (SWCL'S) began i n t h e e a r l y s i x - t i e s . 1 I t has been pursued i n many l a b o r a t o r i e s , encouraged byehe g r e a t success achieved with i n f r a r e d chemical l a s e r s u t i l i z i n g simple atom-molecule exchangere- a c t i o n s ( f o r a summary on i n f r a r e d chemicals l a s e r s p r i o r t o 1976 s e e r e f e r e n c e 2; f o r l a t e r developments s e e t h e proceedings o f t h e Gas Flow and Chemical La- s e r Symposia, r e f e r e n c e s 3 a - f ) .

U n t i l t h e mid-seventies, most attempts t o o b t a i n SWCL1s u t i l i z e d r e a c t i o n s o f metal atoms with

oxidant^,^

although r e a c t i o n p a t h s not i n v o l v i n g metal atoms were suggested a s we1lO5 A well-known example o f t h i s " d i r e c t " approach t o t h e SWCL i s t h e r e a c t i o n

Ba + N20 -> BaO* + N 2 , (1)

which was s t u d i e d i n a number o f l a b ~ r a t o r i e s . ~ Extensive e f f o r t s t o o b t a i n a t h r e s h o l d population i n v e r s i o n v i a r e a c t i o n (1) and many o t h e r , analogous,

" d i r e c t 1 ' r e a c t i o n s 5 have f a i l e d t o d a t e . This approach has been l a r g e l y ab- andoned.

A more r e c e n t approach t o t h e SWCL has been based on the " i n d i r e c t n , t r a n s f e r chemical l a s e r approach. This approach was utiliz'ed t o o b t a i n i n f r a r e d chemical l a s e r s , e . g . v i a energy t r a n s f e r from chemically-produced, v i b r a t i o n a l l y - e x c i t - ed HF t o C02, which, i n t u r n , l a s e d a t 10.6 microns .2 A High-efficiency e l e c t r o n i c - t r a n s x t i o n i n f r a r e d t r a n s f e r chemical l a s e r has i n f a c t been developed.

This l a s e r i s t h e chemical i o d i n e l a s e r , i n which e l e c t r o n i c a l l y e x c i t e d O2 i s chemically produced and t r a n s f e r s i t s -1 eV energy t o i o d i n e atoms,which l a s e a t 1.315 microns. 7

The l a s t few years have seen e x t e n s i v e e f f o r t s t o achieve t r a n s f e r chemical l a s e r s a t s h o r t wavelengths ( e l m i ~ r o n ) . 3 ~ - ~ One example i s t h e r e a c t i o n

NF(b) + IF(X) -> NF(X) + IF(B)

,

(2)

where t h e e x c i t e d NF ( i n i t s e l f a p o s s i b l e l a s a n t ) i s produced i n r e a c t i v e mix- t u r e s comprised o f molecules containing N, F and H s p e c i e s . I F ( B ) i s a po- t e n t i a l l a s a n t i n t h e v i s i b l e wavelength r e g i o n s 8

Most e f f o r t s t o o b t a i n SWCL's, i n c l u d i n g r e a c t i o n scheme ( 2 ) , have concentrated on systems s u i t a b l e f o r CW operation. These e f f o r t s have so f a r been unsuccess- f u l d e s p i t e t h e f a c t t h a t i n many cases t h e energy t r a n s f e r Trocess i s very e f f i - c i e n t . The main d i f f i c u l t y i n o b t a i n i n g a CW SWCL l i e s i n t h e f a c t t h a t t h e over a l l r e a c t i o n r a t e ( t o produce e i t h e r t h e l a s a n t s p e c i e s l l d i r e c t l y l l o r t h e r e s e r - v o i r s p e c i e s f o r a t r a n s f e r l a s e r ) i s l i m i t e d by t h e d i f f u s i v e mixing rate.Quench-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987781

(3)

C7-340 JOURNAL DE PHYSIQUE

i n e of both l a s i n g and r e s e r v o i r s p e c i e s i n p o t e n t i a l SWCL mixtures i S o f t e n s i g - n i f i c a n t l y f a s t e r t h a n mixing r a t e s t h a t can be achieved u s i n g c u r r e n t n o z z l e t e c h nology a t p r e s s u r e s needed f o r high i n v e r s i o n d e n s i t i e ~ . ~ The quenching can be homogeneous ( r a d i a t i v e o r c o l l i s i o n a l

-

i n c l u d i n g chemical r e a c t i o n s ) o r h e t e r - ogeneous (on t h e w a l l s ) . Even if l a s i n g i s observed, t h e primary bottleneck t o e f f i c i e n t CW SWCL l a s i n g w i l l i n most c a s e s be c o l l i s i o n a l quenchingby t h e many s p e c i e s p r e s e n t i n suggested r e a c t i o n mixtures. I t should be noted t h a t o p e r a t i o n o f CW chemical mixing l a s e r s i s l i m i t e d t o low p r e s s u r e s (usually up t o a few t e n s of t o r r ) by t h e f a c t t h a t t h e lower l i m i t o f t h e p e r m i s s i b l e mixing t i m e i s d e t e r - mined by t h e d i f f u s i o n r a t e . High power o p e r a t i o n of t h e s e l a s e r s t h e r f o r e r e - q u i r e s t h e use o f l a r g e vacuum pumps.

S p e c i e s with l o n g e f f e c t i v e l i f e t i m e s a r e t h e obvious c a n d i d a t e s f o r CW mixing l a s e r s . The o n l y r e p o r t e d , e s t a b l i s h e d example o f a chemically-produced, e l e c t r o - n i c a l l y - e x c i t e d r e s e r v o i r molecule which i s quenching r e s i s t a n t i s O ~ ( ~ A ) . I t s e a s e of chemical p r o d u c t i o n , long r a d i a t i v e l i f e t i m e , and low p r o b a b l l l t y f o r quenching by c o l l i s i o n s w i t h many s p e c i e s and with v a r i o u s w a l l m a t e r i a l s g a make i t an i d e a l energy r e s e r v o i r f o r CW t r a n s f e r l a s e r s . However, i t s energy c o n t e n t ( 1 eV) l i m i t s i t s use t o i n f r a r e d l a s e r s u n l e s s e x c i t a t i o n o f - h i g h - l y i n g metastable e l e c t r o n i c s t a t e s v i a m u l t i p l e c o l l i s i o n s with O ~ ( ' A ) molecules can b e c o n t r i v e d . This p o s s i b i l i t y has been explored r e c e n t l y i n our

labor at or^.^

0 2 ( l h ) has been r e a c t e d with both pb9a and B i g c atoms and r e a c t i o n s with o t h e r atoms has been considered as w e l l . 9 b For Pb, and 3 ~ 2 s t a t e s have been observed a s well as h i g h l y e l e c t r o n i c a l l y e x c i t e d PbO s p e c i e s . For B i , t h e 3 ~ 3 , 2 s t a t e a s well as e x c i t e d B i 2 and B i O have been observed.

A very a t t r a c t i v e energy r e s e r v o i r t h a t has been explored f o r t h e p a s t s e v e r a l y e a r s i s t h e N 2 molecule i n i t s lowest e x c i t e d s t a t e , ~ ~ 2 % . This s t a t e has an energy c o n t e n t of 6.2 eV and a r a d i a t i v e l i f e t i m e o f 2 seconds. Furthermore, i n e x t e n s i v e i n v e s t i g a t i o n s c a r r i e d o u t i n our l a b o r a t o r y i t has been f o u n d t h a t energy t r a n s f e r from N2(A) t o a number o f atomic s p e c i e s i s both e f f i c i e n t and s t a t e s e - l e c t i v e , i . e . , t h e r e i s a p r e f e r e n t i a l population o f e l e c t r o n i c l e v e l s t h a t f u l - f i l l c e r t a i n p r o p e n s i t y r u l e s . 1 ° The p o s s i b i l i t y o f p r e f e r e n t i a l energy t

from N2(A) t o s p e c i f i c molecular s t a t e s has a l s o been explored r e c e n t l y ,

F83Pr

However, t h e r e i s a very s e v e r e problem i n u s i n g N2(A) a s an energy r e s e r v o i r . N2 (A) s u f f e r s from s e l f - d e s t r u c t i o n v i a t h e energy-pooling r e a c t i o n

N2(A) + N2(A) 4 N2* + N2, (3)

which i s very e f f i c i e n t , t h e r a t e c o n s t a n t b e i n g a t l e a s t g a s - k i n e t i c . 1 4 A s a r e - s u l t , p r o d u c t i o n o f high c o n c e n t r a t i o n s o f N2(A) f o r high-power CW mixing l a s e r s i s i m p r a c t i c a l , even i f a r e a c t i o n scheme which produces "clean" N2(A) is found.

The l i m i t a t i o n s i n h e r e n t i n t h e schemes d e s c r i b e d above t o o b t a i n high power S W C L I ~ have l e d us t o a novel approach based on a "premixed" s o l i d f u e l - l a s a n t . The core o f our approach i s t o bypass t h e mixing and quenching problems s o d e t r i m e n t a l t o o p e r a t i o n o f high-power SWCL's by u s i n g "premixed" f u e l l a s a n t systems capable of producing high energy l a s e r p u l s e s . To i l l u s t r a t e our approach, t h e d i s s c u s s i o n w i l l d e a l with a s p e c i f i c system; o t h e r examples have been considered b u t w i l l n o t b e d i s c u s s e d h e r e . Our model f u e l - l a s a n t molecule i s l e a d a z i d e , Pb (N3)2. The

l a s a n t i s t h e Pb atom and t h e f u e l i s t h e N2 molecule, e x c i t e d t o t h e A s t a t e . The chemical and l a s i n g k i n e t i c s scheme i n shorthand i s t h e following:

p b ( ~ ~ ) ~ detonation, Pb + N3, N 2 , N

,

(4)

N 3 + N3 4 N2* + 2N2, (5)

N + NJ 4 N2* + N 2

,

(6)

Pb + N2* -> Pb* + N 2 , (7)

Pb* hv(laser1, pb. (8)

Pb(N3)1z i s a w e l l known e x p l o s i v e t h a t can he han3led. s a f e l y with adequate precau- t i o n s aqd can be detonated upon f l a s h i n i t i a t i o n . 1 6 Reactions (5) and (6), where

(4)

N and N a r e ground s t a t e s p e c i e s and N: a t r i p l e t s t a t e , a r e e n e r g e t i c a l l y and s ~ i n algowed. Measurements i n s e v e r a l l a b o r a t o r i e s i n d i c a t e t h a t t r i p l e t n i t r o g e n i s indeed a product o f (5) and (6) . I 7 Since a l l t r i p l e t s end up a s N2(A)

,

decomposition o f Pb (N3) produces N 2 (A)

.

Since t h e f u e l and t h e l a s a n t o r i g i n a t e i n t h e same molecule, t h e r e i s no need f o r mixing. Furthermore, t h e r e a c t i o n sequence (4) -> (7) f a v o r s f a s t energy t r a n s f e r from N2(A) t o Pb, t h u s p r e v e n t i n g t h e buildup o f high c o n c e n t r a t i o n s o f N2(A) and l a r g e l y e l i m i n a t i n g t h e d e t r i m e n t a l e f f e c t o f t h e energy p o o l i n g r e a c t l o n ( 3 ) .

We have i n i t i a t e d l e a d a z i d e . b y s h o r t ( -10ns )

,

l a s e r p u l s e s a t wavelengths from 266 t o 1064nm a t e n e r g i e s from a few t o s e v e r a l hundred m i l i j o u l e s . Pre- l i m i n a r y r e s u l t s i n d i c a t e t h a t e l e c t r o n i c a l l y e x c i t e d N 2 i s formed following t h e i n i t i a t i o n and t h a t n o n s t a t i s t i c a l e x c i t a t i o n t r a n s f e r t o high l y i n g s t a t e s o f Pb t a k e s p l a c e . Moreover, c a l c u l a t i o n s based on a coupled k i n e t i c - h y d r o - dynamic model p o i n t o u t t h a t t h e i n i t i a t i o n should r e s u l t i n p o p u l a t i o n i n v e r s i o n between p o t e n t i a l l a s e r l e v e l s of Pb. A comprehensive d e s c r i p t i o n o f t h e e x p e r i - ments and modeling w i l l be t h e s u b j e c t o f f u t u r e p u b l i c a t i o n s .

References

Appl

.

Opt. Suppl

.

2 : "Chemical Lasers" (1965)

.

"Handbook o f Chemical Lasers", R.W.F. Gross and J . F . Bott eds.

(Wiley, New York, 1976).

a . "Gasdynamic and Chemical Lasers", M. F i e b i g and H . E . Huge1 eds.

(DFVLR-Press, Koln-Porz, 1976).

b . "Gas Flow and Chemical Lasers", J . F . Wendt ed.

(Hemisphere, Washington, 1979)

.

c . J o u r n a l de Physique 41, C-9 (1980).

d . "Gas Flow and Chemical Lasers1', M. Onorato ed. (Plenum, New York, 1984).

e . "Gas Flow and Chemical Lasers 1984", A.S. Kaye and A , C . Walker e d . (Adam H i l g e r , London, 1985)

.

f . "Gas Flow and Chemical Lasers", S . Rosenwaks ed.

(Springer, Berlin-Heidelbere, 1987).

For example: S.W. Benson e t a l . , H.P. Broida e t a l . , H . B . Palmer e t a l . , and R . N . Zare e t a l . , Numerous p u b l i c a t i o n s i n J . Chem. Phys. and Chem.

Phys. L e t t . i n t h e s e v e n t i e s .

T.A. Cool, i n "Physical Chemistry o f F a s t Reactions", I.W.M. Smith ed.

(Plenum, New York, 1980).

For example: a ) C . R . Jones and H.P. Broida, J . Chem. Phys.

60,

4369 (1974);

b) R.W. F i e l d , C.R. Jones and H.P. Broida, i b i d p. 4377 and r e f e r e n c e s t h e r e i n .

W . E . PlcL'ermott, N . R . Pchelkin, D . J . Benard and R . R . Bousek, Appl. Phys. L e t t .

32,

469 (1978).

a . P.V. Avizonis i n r e f e r e n c e 3d and r e f e r e n c e s c i t e d t h e r e i n . b . A.T. P r i t t and D . J . Benard i n r e f e r e n c e 3e and r e f e r e n c e s

c i t e d t h e r e i n .

c. S . J . Davis i n r e f e r e n c e 3f and r e f e r e n c e s c i t e d t h e r e i n .

a . J . Bachar and S. Rosenwaks, Chem. Phys. L e t t .

96,

526 (1983).

b . S . Rosenwaks and J . Bachar i n r e f e r e n c e 3e.

c . 9. Tel-Dan, J . Bachar and S. Rosenwaks, Chem. Phys. L e t t .

126,

510, (1986).

a . S. Rosenwaks, J. Chem. Phys.

-

65, 3668 (1976).

b . S . Rosenwaks, Chem. Phys. L e t t . 63, 352 (1979).

c . I . Nadler and S. Rosenwaks, ~ h e m 3 h y s . L e t t .

69,

266 (1980).

(5)

JOURNAL DE PHYSIQUE

d . I . Nadler G. Rawnitski and S. Rosenwaks, J. Phys. Chem.

86,

1503 (1982).

11. a . De-Zhao Cao and D.W. S e t s e r , Chem. Phys. L e t t .

116,

363 (1985) b . D.S. Richard and D.W. S e t s e r , Chem. Phys. L e t t . 136, 215 (1987)

-

12. a . N . F . Golde and A.M. Moyle, Chem. Phys. L e t t . 117, 375 (1985).

b . J . M . Thomas, F. Kaufman and M.F. Golde, J . ~ h e r p h y s .

6,

6885 (1987).

13. L . G . P i p e r , W.J; M a r i n e l l i , W.T. Rowlins and B . D . Green, J . Chem. Phys.

83, 5602 (1985).

-

14. I . Nadler and S. Rosenwaks, J . Chem. phys.

83,

3932 (1985)

and r e f e r e n c e s t h e r e i n .

15. "Dangerous P r o p e r t i e s o f I n d u s t r i a l M a t e r i a l s " , N. I . Sax ed.

(Van Nostrand, New York, 1979).

16. J . Roth, J . Chem. Phys.

41,

1529 (1964).

17. a . L . G . P i p e r , R.H. Krech and R.L. T a y l o r , J . Chem. Phys. 71, 2099 (1979).

b . K. Yamasaki, T.Fueno and 0. Kajimoto, Chem. Phys. ~ e t t . m , 425 (1983).

c . J . Brunning and M.A.A. Clyne, Chem. Phys. L e t t .

106,

3 7 7 (1984) and r e f e r e n c e s t h e r e i n .

d . S.J. David and R.D. Cooabe, J. Phys. Chem.

89,

5206 (1985).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to