• Aucun résultat trouvé

Nanostructured zinc and tin oxides for gas sensors

N/A
N/A
Protected

Academic year: 2021

Partager "Nanostructured zinc and tin oxides for gas sensors"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02048940

https://hal.archives-ouvertes.fr/hal-02048940

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nanostructured zinc and tin oxides for gas sensors

Justyna Jońca, Andrey Ryzhikov, Myrtil L. Kahn, Katia Fajerwerg, Philippe Menini, Audrey Chapelle, Chang Shim, Alain Gaudon, Pierre Fau

To cite this version:

Justyna Jońca, Andrey Ryzhikov, Myrtil L. Kahn, Katia Fajerwerg, Philippe Menini, et al.. Nanos-tructured zinc and tin oxides for gas sensors. 3rd International Conference on Advanced Complex Inorganic Nanomaterials (ACIN 2015), Jul 2015, Namur, Belgium. 2015. �hal-02048940�

(2)

ZnO Nanoparticles synthesis

1,2

Conclusions

Aim of the project

The development of high sensitivity and selectivity MOS (metal oxide semiconductor) gas sensors with SnO

2

and ZnO nanoparticles layers based on micromachined

silicon substrate for the detection of CO, C

3

H

8

, NH

3

, NO

2

, …

The morphology of ZnO nanostructures significantly influences the sensors gases responses and therefore offers a possible selectivity improvement way for gas sensing device. The sensors based on ZnO CL structures present the highest selectivity for CO or NH3 relatively to C3H8 when operating at 400°C. ZnO NR sensors display a high response to all tested gases with an optimum selectivity for C3H8 comparatively to CO and NH3 when operating at 340°C. ZnO NP layers present the best stability of the response for C3H8 between 340 to 500°C.

Sn3O2(OH)2 octahedra have been prepared from tin amidure precursor in mild conditions, and transforms into SnO2 at 500°C. Gas sensing properties of SnO2 sensor to CO, C3H8, NH3, and NO2 gases have been investigated. At 340°C, the sensors present the best selectivity between CO and other reducing gases (C3H8 and NH3). At 300°C, the sensors are extremely sensitive and sensitive to 1 ppm of NO2 (Rn = 196%). This study is the first step dedicated to the preparation of a multisensor system based on chemoresistive layers with specific morphologies and different operating temperatures.

ACKNOWLEDGMENTS:

PRES, Région Midi-Pyrénées (NELI program -Nez Electronique Intégré-), BPI France and Sigfox SA for « Object’s World » project funding, and V. Collière (TEMSCAN Toulouse ) for SEM and TEM images.

Nanostructured zinc and tin oxides for gas sensors

J. Jonca,

1

A. Ryzhikov,

1

M. L. Kahn,

1

K. Fajerwerg,

1,2

P. Menini,

2, 3

A. Chapelle,

2, 3

C. H. Shim,

3,4

A. Gaudon,

4

P. Fau

1,2

1 CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France 2 Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France

3 CNRS, LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes), 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4 Toulouse, France 4 Alpha MOS, 20 avenue Didier Daurat, 31400 Toulouse, France

LCC

Temperature profile of annealing and stabilization procedure of sensing layers

Optical image of sensor with ZnO

sensitive layer and SEM-FEG images of b. ZnO CL, c. ZnO NPs, d. ZnO NRs

XRD diagrams of ZnO

nanoparticle a. cloudy-like structures, b. isotropic

nanoparticles, c. nanorods TEM images of ZnO nanoparticles with various morphology: a. ZnO CL, b. ZnO NPs

(NP1), c. ZnO NRs (NR1)

Micromachined silicon platform

3

and sensitive layer deposition

gas responses

Design of the round shaped platinum heater and interdigitated electrodes for the sensitive layer contact

Thermal homogeneity of the heater operating at 400°C

Gas sensor silicon

platform on TO5 package.

Drop deposition of the metal oxide nanoparticles on the silicon platform

ZnCy2 + Ligand (OA, HDA) + H2O ZnO*Ligand NPs

Organic Solvent

S= (Rair-Rgas) / R gas

[1] M. Monge, M. L. Kahn, A. Maisonnat and B. Chaudret, Angew. Chem. Int. Ed., 2003, 42, 5321-5324.

[2] A. Ryzhikov, J. Jońca, M.L. Kahn , K. Fajerwerg, B. Chaudret, A. Chapelle, P. Ménini, C.H.H. Shim, A. Gaudon, P. Fau J. Nanopart. Res., 2015, Volume 17, Issue 7 (DOI 10.1007/s11051-015-3086-2 [3] Ph. Menini et al., Eurosensors XXII proceedings, (2008) 342.

SnO

2

Nanoparticles synthesis

500° C Air

Organic Solvent / H2O

[Sn(NMe2)2]2 + Ligand (OA, HDA) Sn2O3(OH)2*Ligand NPs SnO2

500°C air

(ZnCy2 – dicyclohexylzinc, OA – octylamine, HDA – hexadecylamine) CH3(CH2)7NH2 CH3(CH2)15NH2

Optical image of sensor with SnO2 sensitive layer and SEM-FEG characterization

ZnO Nanoparticles gas sensors

SnO

2

Nanoparticles gas sensors

SnO2 sensors responses to a) 100 and 490 ppm CO, b) 100 and 400 ppm C3H8, c) 5 ppm NH3, d) 1 ppm NO2 at different temperatures (RH 50%). 500°C 400°C 340°C 300°C 0 20 40 60 80 100 120 140 160 180 200 N or m al iz ed res pons e ( % ) CO C3H8 NH3 NO2

SnO2 sensors’ normalized responses to 100 ppm CO, 100 ppm C3H8, 5 ppm NH3 and 1 ppm NO2 at different temperatures and RH 50%

XRD diagram of Sn2O3(OH)2 XRD diagram of SnO2

Sensors responses obtained with ZnO CL, NP, and NR at different operating temperatures (500, 400 and 340°C) and relative humidity 50% (Y scale in log plot). (a) 100 and 490 ppm CO, (b) 100 and 400 ppm C3H8, (c) 19 ppm NH3.

Normalized responses obtained with ZnO CL, NP and NR at different operating temperatures (500, 400 and 340°C) and relative humidity 50%. (a) 100 ppm CO, (b) 100 ppm C3H8, (c) 19 ppm NH3

Références

Documents relatifs

L’étude de l’interférence de l’Hb carbamylée, c’est-à-dire celle de l’ion cyanate formé à partir de l’urée sur la chaîne  de l’hémoglobine, a été

 لا تاجايتحاو تابغر عابشإ لفكي امب ةيكنبلا تامدخلا جيزم ميمصت نئابز شب رمتسم لك لا اضر لفكي نوبز لا تاجايتحلا ةيفاو ةساردب مايقلا دعب كلذو نئابز ؛  ؤسم

Tout d’abord, on considère cette approche pour le cas d’un talus sans pieux et le cas d’un talus avec pieux, on étudiera le positionnement des pieux et on comparons

We are back to the question of what are the rights and resources actually held by the xweto: as regards these young land brokers, it is knowledge about vacant land and coming

Nesta parte, os autores propoem seis estratégias, apoiadas em estudos de caso: criar reservas de biodiversidade que beneficiem comunidades agrícolas locais, desen- volver redes

In his work on two-dimensional separation, Haller (2002) analyzed unsteady 2D separation as a material instability due to an unstable manifold emanating from a fixed

building prototype, shown in Figure 6, using the SAFIR structural analysis software. For the purpose of comparisons, CAN/ULC-S101 fire was selected as the design fire, since the same

To demonstrate this point, we simulated the bound ionic dynamics by solving the time-dependent version of equation ( 7 ) for the ionic space, with the initial condition that